Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,597)

Search Parameters:
Keywords = parameter excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 5816 KB  
Review
A Review of Hybrid Manufacturing: Integrating Subtractive and Additive Manufacturing
by Bruno Freitas, Vipin Richhariya, Mariana Silva, António Vaz, Sérgio F. Lopes and Óscar Carvalho
Materials 2025, 18(18), 4249; https://doi.org/10.3390/ma18184249 - 10 Sep 2025
Abstract
It is challenging to manufacture complex and intricate shapes and geometries with desired surface characteristics using a single manufacturing process. Parts often need to undergo post-processing and must be transported from one machine into another between steps. This makes the whole process cumbersome, [...] Read more.
It is challenging to manufacture complex and intricate shapes and geometries with desired surface characteristics using a single manufacturing process. Parts often need to undergo post-processing and must be transported from one machine into another between steps. This makes the whole process cumbersome, time-consuming, and inaccurate. These shortcomings play a major role during the manufacturing of micro and nano products. Hybrid manufacturing (HM) has emerged as a favorable solution for these issues. It is a flexible process that combines two or more manufacturing processes, such as additive manufacturing (AM) and subtractive manufacturing (SM), into a single setup. HM works synergistically to produce complex, composite, and customized components. It makes the process more time efficient and accurate and can prevent unnecessary transportation of parts. There are still challenges ahead regarding implementing and integrating sensors that allow the machine to detect defects and repair or customize parts according to needs. Even though modern hybrid machines forecast an exciting future in the manufacturing world, they still lack features such as real-time adaptive manufacturing based on sensors and artificial intelligence (AI). Earlier reviews do not profoundly elaborate on the types of laser HM machines available. Laser technology resolutely handles additive and subtractive manufacturing and is capable of producing groundbreaking parts using a wide scope of materials. This review focuses on HM and presents a compendious overview of the types of hybrid machines and setups used in the scientific community and industry. The study is unique in the sense that it covers different HM setups based on machine axes, materials, and processing parameters. We hope this study proves helpful to process, plan, and impart productivity to HM processes for the betterment of material utilization and efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

16 pages, 1624 KB  
Article
Oxidation of Supported Nickel Nanoparticles: Effects of Lattice Strain and Vibrational Excitations of Active Sites
by Sergey Yu. Sarvadii, Andrey K. Gatin, Nadezhda V. Dokhlikova, Sergey A. Ozerin, Vasiliy A. Kharitonov, Dinara Tastaibek, Vladislav G. Slutskii and Maxim V. Grishin
Nanomaterials 2025, 15(18), 1390; https://doi.org/10.3390/nano15181390 - 10 Sep 2025
Abstract
This work investigated the oxidation in an atmosphere of N2O of different surface areas of single nickel nanoparticles deposited on highly oriented pyrolytic graphite (HOPG). Using scanning tunneling microscopy and spectroscopy, it was shown that oxide formation begins at the top [...] Read more.
This work investigated the oxidation in an atmosphere of N2O of different surface areas of single nickel nanoparticles deposited on highly oriented pyrolytic graphite (HOPG). Using scanning tunneling microscopy and spectroscopy, it was shown that oxide formation begins at the top of the nanoparticle, while the periphery is resistant to oxidation. The active site of oxygen incorporation is a vibrationally excited group of nickel atoms, and the gap between them is the place where an oxygen adatom penetrates. The characteristic time of vibrational relaxation of the active site is 10−9–10−7 s. The reason for the oxidation resistance is the deformation of the nanoparticle atomic lattice near the Ni-HOPG interface. A relative compression of the nanoparticle atomic lattice ξ = 0.4–0.8% was shown to be enough for such an effect to manifest. Such compression increases the activation energy for oxygen incorporation by 6–12 kJ/mol, resulting in inhibition of oxide growth at the periphery of the nanoparticle. In fact, in this work, oxygen adatoms served as probes, and their incorporation between nickel atoms allowed the measurement of the nanoparticle’s lattice parameters at different distances from the Ni–HOPG interface. The developed theoretical framework not only accounts for the observed oxidation behavior but also offers a potential pathway to estimate charge transfer and local work functions for deposited nickel catalysts. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Figure 1

76 pages, 13574 KB  
Review
Luminescence Properties of Defects in GaN: Solved and Unsolved Problems
by Michael A. Reshchikov
Solids 2025, 6(3), 52; https://doi.org/10.3390/solids6030052 - 10 Sep 2025
Abstract
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on [...] Read more.
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on the current understanding of point defects in GaN and their impact on photoluminescence (PL). Since our earlier review (Reshchikov and Morkoç, J. Appl. Phys. 2005, 97, 061301), substantial progress has been made in this field. PL bands associated with major intrinsic and extrinsic defects in GaN are now much better understood, and several defects in undoped GaN (arising from unintentional impurities or specific growth conditions) have been identified. Notably, the long-debated origin of the yellow luminescence band in GaN has been resolved, and the roles of Ga and N vacancies in the optical properties of GaN have been revised. Zero-phonon lines have been discovered for several defects. Key parameters, such as electron- and hole-capture coefficients, phonon energies, electron–phonon coupling strength, thermodynamic charge transition levels, and the presence of excited states, have been determined or refined. Despite these advances, several puzzles associated with PL remain unsolved, highlighting areas for future investigation. Full article
Show Figures

Graphical abstract

36 pages, 9522 KB  
Article
Dynamic Characteristics and Parameter Optimization of Floor Vibration Isolation Systems for Metro-Induced Vibrations in Over-Track Buildings
by Ming Jing, Feng Lu, Yibo Shi, Ruijun Zhang, Yong Chen, Weidong Huang and Yifeng Zhao
Buildings 2025, 15(18), 3260; https://doi.org/10.3390/buildings15183260 - 9 Sep 2025
Abstract
The rapid expansion of urban rail transit networks has raised concerns about metro-induced vibrations in over-track structures. Floor vibration isolation systems provide an adaptable and efficient mitigation strategy, offering flexibility in architectural design while enhancing vibration comfort. This study investigates the dynamic characteristics [...] Read more.
The rapid expansion of urban rail transit networks has raised concerns about metro-induced vibrations in over-track structures. Floor vibration isolation systems provide an adaptable and efficient mitigation strategy, offering flexibility in architectural design while enhancing vibration comfort. This study investigates the dynamic characteristics and parameter optimization of such systems under multi-point excitations. A four-degree-of-freedom (4-DOF) model is developed to analyze the dynamic behavior of the isolation floor system, revealing that the height difference between the horizontal bearing installation plane and the centroid of the isolation plate critically induces “translation–rotation” coupling. Theoretical stability analysis and finite element simulations are employed to evaluate the effects of key parameters, including the isolation plate length, number of bearings, bearing arrangement, isolation frequency, and damping ratio. The results demonstrate that increasing the number of bearings reduces floor acceleration and displacement while improving response uniformity. The optimal isolation frequency range is identified as 3–5 Hz, balancing both isolation efficacy and uniformity. Additionally, increasing the bearing damping ratio to 0.05–0.1 can comprehensively mitigate vibration responses and improve vibration uniformity. Sensitivity analysis confirms that these optimal parameters exhibit strong robustness against ±20% practical deviations, ensuring reliable performance in engineering applications. These findings provide theoretical and practical guidance for optimizing floor isolation systems in over-track buildings, contributing to the sustainable development of urban rail transit networks. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 5645 KB  
Article
Low-Backward Radiation Circular Polarization RFID Reader Antenna Design for Sports-Event Applications
by Chia-Hung Chang, Ting-An Chang, Ming-Zhang Kuo, Tung-Ming Koo, Chung-I G. Hsu and Xinhua Wang
Electronics 2025, 14(18), 3582; https://doi.org/10.3390/electronics14183582 - 9 Sep 2025
Abstract
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna [...] Read more.
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna using an acrylic dielectric substrate with a wideband branch-line coupler feeding network is employed to improve overall radiation efficiency, which, in turn, provides two excitation port with a phase difference of 90°. Thus, right-hand circular polarization can be obtained. Instead of a conventional FR4–air–FR4 structure, the proposed FR4–acrylic–FR4 composite configuration is adopted to substantially increase the antenna’s mechanical strength and durability against external pressure from runners. The antenna’s performance is attributed to the use of an effective composite dielectric constant and an optimized design of its parameters. Additionally, the patch antenna’s low-backward radiation characteristic helps reduce multipath interference in real-world applications. The measured results are in good agreement with the simulated data, validating the proposed antenna design. In order to further assess the practical performance of the antenna, outdoor measurements are carried out to validate the estimated reading distances derived from controlled anechoic chamber tests. The measured return loss remained below −10 dB across the frequency range of 755–990 MHz, exhibiting a slight discrepancy compared to the simulated bandwidth of 800–1030 MHz. For the characteristic of the circular polarization, the measured axial ratio is below 3 dB within the range of 860–920 MHz. While a more relaxed criterion of an axial ratio below 6 dB is considered, the operating frequency range extends from 560 MHz to 985 MHz, which falls within the frequency band relevant for RFID reader applications. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 3454 KB  
Article
Design and Vibration Characteristic Analysis of Piezoelectric Micro Oil-Supply Device
by Zhaoliang Dou, Jianfang Da, Gang Zhou, Shaohua Zhang, Lu Gao and Fengbin Liu
Appl. Sci. 2025, 15(17), 9849; https://doi.org/10.3390/app15179849 - 8 Sep 2025
Abstract
In response to the lubrication failure problem during spacecraft operation, new requirements have been put forward for micro, precise, and dynamically adjustable lubrication and oil-supply technology for its key moving components. This article charts the design of a micro fuel-supply device structure based [...] Read more.
In response to the lubrication failure problem during spacecraft operation, new requirements have been put forward for micro, precise, and dynamically adjustable lubrication and oil-supply technology for its key moving components. This article charts the design of a micro fuel-supply device structure based on a piezoelectric oscillator. Through finite-element simulation, the influence of the vibration mode and excitation parameters (waveform, frequency, voltage amplitude) of the piezoelectric oscillator on the displacement response amplitude and period of the oscillator is analyzed in depth. Research on waveform characteristics shows that sine waves can maintain frequency and phase stability due to their single-frequency nature, with an amplitude of 0.21615 mm between the two; The study of frequency characteristics shows that the displacement response amplitude of the piezoelectric oscillator is the largest at a 4914.2 Hz resonant state, which is about 10 times that of the non-resonant state; the study on voltage amplitude characteristics shows that the vibration displacement amplitude is significantly positively correlated with the driving voltage. When the excitation voltage is 220 V, the displacement response amplitude is 0.21615 mm and the period is 3960 µs. This study provides important theoretical support for optimizing the performance of piezoelectric oscillators. Full article
Show Figures

Figure 1

22 pages, 1828 KB  
Article
Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury
by Evan B. Sandler, Jennifer Ann Iddings, Karen Minassian and Edelle C. Field-Fote
Biomedicines 2025, 13(9), 2195; https://doi.org/10.3390/biomedicines13092195 - 8 Sep 2025
Abstract
Background: Transcutaneous spinal stimulation (TSS) is a noninvasive stimulation approach to modulate spinal reflex circuit excitability after spinal cord injury (SCI) Posterior root muscle (PRM) reflexes can be used to characterize the change in excitability of spinal reflex circuits after TSS; these [...] Read more.
Background: Transcutaneous spinal stimulation (TSS) is a noninvasive stimulation approach to modulate spinal reflex circuit excitability after spinal cord injury (SCI) Posterior root muscle (PRM) reflexes can be used to characterize the change in excitability of spinal reflex circuits after TSS; these responses are likely influenced by stimulus parameters. Methods: We compared PRM reflex responses to 3 TSS conditions: single-site continuous (SS-CONT), single-site burst (SS-BURST), and dual-site continuous (DS-CONT). Stimulation (frequency: 50 Hz, intensity: 80% soleus reflex threshold[RT]) was delivered for 30 min. The cathode was placed over the thoracic spine (T11–T12) and anodes placed paraumbilically; a second cathode over the lumbar spine (L1/2 or L2/3) was used for DS-CONT. PRM reflex responses in the soleus were elicited by paired 1 ms monophasic conditioning–test stimuli at a 50 ms interstimulus interval via the T11–12 cathode and paraumbilical anodes. Soleus PRM reflex indices included RT, response amplitude at 1.2xRT (RA1.2xRT), slope, area under the input–output curve (AUC). Paired-pulse indices were collected, including paired-pulse depression (PPD) and depression of the area under the curve (AUCdep). To assess the correlation between biomechanical and electrophysiologic measures of soleus spasticity, the ankle clonus drop test first drop excursion (FDE) was measured. All indices were measured at baseline and immediately post-intervention. Results: In whole-group analyses, PPD and AUCdep were significantly decreased. Significant decreases in PPD and AUCdep were identified only after the SS-CONT condition. No significant changes were identified in other PRM reflex indices after any of the 3 TSS conditions. No relationships between baseline FDE and any PRM reflex parameter were identified at baseline. Conclusions: With stimulation intensity of 80% soleus RT, modulation of targeted spinal reflex circuits was observed only in the SS-CONT condition when the response of the conditioning and test stimuli were considered. In addition, stretch-induced spasticity of the soleus may not be consistent with electrophysiologic testing. Full article
(This article belongs to the Special Issue Mechanisms and Therapeutic Strategies of Brain and Spinal Cord Injury)
Show Figures

Figure 1

10 pages, 7372 KB  
Article
Quench Dynamics and Stability of Dark Solitons in Exciton–Polariton Condensates
by Chunyu Jia and Zhaoxin Liang
Symmetry 2025, 17(9), 1482; https://doi.org/10.3390/sym17091482 - 8 Sep 2025
Viewed by 105
Abstract
Exciton–polariton condensates (EPCs) have emerged as a paradigmatic platform for investigating nonequilibrium quantum many-body phenomena, particularly due to their intrinsic open-dissipative nature and strong nonlinear interactions governed by the interplay between stimulated scattering and reservoir-mediated damping. Recent advances in Feshbach resonance engineering now [...] Read more.
Exciton–polariton condensates (EPCs) have emerged as a paradigmatic platform for investigating nonequilibrium quantum many-body phenomena, particularly due to their intrinsic open-dissipative nature and strong nonlinear interactions governed by the interplay between stimulated scattering and reservoir-mediated damping. Recent advances in Feshbach resonance engineering now enable precise tuning of interaction strengths, opening new avenues to explore exotic nonlinear excitations in these driven-dissipative systems. In this work, we systematically investigate the quench dynamics and stability of dark solitons in repulsive one-dimensional EPCs under sudden parameter variations in both nonlinear interaction strength g and pump intensity P. Through a Hamiltonian variational approach that incorporates reservoir damping effects, we derive reduced equations of motion for soliton velocity evolution that exhibit remarkable qualitative agreement with direct numerical simulations of the underlying open-dissipative Gross–Pitaevskii equation. Our results reveal three distinct dynamical regimes: (i) stable soliton propagation at intermediate pump powers, (ii) velocity-dependent soliton breakup above critical pumping thresholds, and (iii) parametric excitation of soliton trains under simultaneous interaction quenches. These findings establish a quantitative framework for understanding soliton dynamics in nonresonantly pumped EPCs, with implications for quantum fluid dynamics and nonequilibrium Bose–Einstein condensates. Full article
(This article belongs to the Special Issue Symmetry-Related Quantum Phases in Exciton-Polariton Condensates)
Show Figures

Figure 1

31 pages, 8445 KB  
Article
HIRD-Net: An Explainable CNN-Based Framework with Attention Mechanism for Diabetic Retinopathy Diagnosis Using CLAHE-D-DoG Enhanced Fundus Images
by Muhammad Hassaan Ashraf, Muhammad Nabeel Mehmood, Musharif Ahmed, Dildar Hussain, Jawad Khan, Younhyun Jung, Mohammed Zakariah and Deema Mohammed AlSekait
Life 2025, 15(9), 1411; https://doi.org/10.3390/life15091411 - 8 Sep 2025
Viewed by 255
Abstract
Diabetic Retinopathy (DR) is a leading cause of vision impairment globally, underscoring the need for accurate and early diagnosis to prevent disease progression. Although fundus imaging serves as a cornerstone of Computer-Aided Diagnosis (CAD) systems, several challenges persist, including lesion scale variability, blurry [...] Read more.
Diabetic Retinopathy (DR) is a leading cause of vision impairment globally, underscoring the need for accurate and early diagnosis to prevent disease progression. Although fundus imaging serves as a cornerstone of Computer-Aided Diagnosis (CAD) systems, several challenges persist, including lesion scale variability, blurry morphological patterns, inter-class imbalance, limited labeled datasets, and computational inefficiencies. To address these issues, this study proposes an end-to-end diagnostic framework that integrates an enhanced preprocessing pipeline with a novel deep learning architecture, Hierarchical-Inception-Residual-Dense Network (HIRD-Net). The preprocessing stage combines Contrast Limited Adaptive Histogram Equalization (CLAHE) with Dilated Difference of Gaussian (D-DoG) filtering to improve image contrast and highlight fine-grained retinal structures. HIRD-Net features a hierarchical feature fusion stem alongside multiscale, multilevel inception-residual-dense blocks for robust representation learning. The Squeeze-and-Excitation Channel Attention (SECA) is introduced before each Global Average Pooling (GAP) layer to refine the Feature Maps (FMs). It further incorporates four GAP layers for multi-scale semantic aggregation, employs the Hard-Swish activation to enhance gradient flow, and utilizes the Focal Loss function to mitigate class imbalance issues. Experimental results on the IDRiD-APTOS2019, DDR, and EyePACS datasets demonstrate that the proposed framework achieves 93.46%, 82.45% and 79.94% overall classification accuracy using only 4.8 million parameters, highlighting its strong generalization capability and computational efficiency. Furthermore, to ensure transparent predictions, an Explainable AI (XAI) approach known as Gradient-weighted Class Activation Mapping (Grad-CAM) is employed to visualize HIRD-Net’s decision-making process. Full article
(This article belongs to the Special Issue Advanced Machine Learning for Disease Prediction and Prevention)
Show Figures

Figure 1

23 pages, 4098 KB  
Article
Modeling of the Dynamic Characteristics for a High-Load Magnetorheological Fluid-Elastomer Isolator
by Yu Tao, Wenhao Chen, Feifei Liu and Ruijie Han
Actuators 2025, 14(9), 442; https://doi.org/10.3390/act14090442 - 5 Sep 2025
Viewed by 112
Abstract
To meet the vibration isolation requirements of engines under diverse operating conditions, this paper proposes a novel magnetorheological fluid-elastomer isolator with high load and tunable parameters. The mechanical and magnetic circuit structures of the isolator were designed and optimized through theoretical calculations and [...] Read more.
To meet the vibration isolation requirements of engines under diverse operating conditions, this paper proposes a novel magnetorheological fluid-elastomer isolator with high load and tunable parameters. The mechanical and magnetic circuit structures of the isolator were designed and optimized through theoretical calculations and finite element simulations, achieving effective vibration isolation within confined spaces. The dynamic performance of the isolator was experimentally evaluated using a hydraulic testing system under varying excitation amplitudes, frequencies, initial positions, and magnetic fields. Experimental results indicate that the isolator achieves a static stiffness of 3 × 106 N/m and a maximum adjustable compression load range of 105.4%. In light of the asymmetric nonlinear dynamic behavior of the isolator, an improved nine-parameter Bouc–Wen model is proposed. Parameter identification performed via a genetic algorithm demonstrates a model accuracy of 95.0%, with a minimum error reduction of 28.8% compared to the conventional Bouc–Wen model. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

26 pages, 14073 KB  
Article
Research on Control Strategy of Semi-Active Suspension System Based on Fuzzy Adaptive PID-MPC
by Cheng Cai, Guiyong Wang, Zhigang Wang, Raoqiang Li and Zhiwei Li
Appl. Sci. 2025, 15(17), 9768; https://doi.org/10.3390/app15179768 - 5 Sep 2025
Viewed by 297
Abstract
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as [...] Read more.
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as the primary controller to optimize suspension performance, incorporating a fuzzy adaptive PID compensation mechanism for real-time adjustment of PID parameters, thereby improving control efficacy. A half-car semi-active suspension model was established on the MATLAB/Simulink (2020b) platform, with simulation validation conducted across diverse road profiles, including speed bump road surface, Class B road surface, and Class C road surface. Simulation results demonstrate that the proposed strategy achieves a significant reduction in both vehicle vertical acceleration and vehicle pitch angle acceleration while maintaining appropriate suspension deflection and tire dynamic loads, effectively elevating occupant ride comfort. Research demonstrates that the fuzzy adaptive PID-MPC control strategy exhibits commendable performance under typical road operating conditions, possessing notable potential for practical engineering implementation. Full article
Show Figures

Figure 1

16 pages, 1785 KB  
Article
Research on Linear Active Disturbance Rejection Control of Electrically Excited Motor for Vehicle Based on ADP Parameter Optimization
by Heping Ling, Junzhi Zhang and Hua Pan
Actuators 2025, 14(9), 440; https://doi.org/10.3390/act14090440 - 4 Sep 2025
Viewed by 160
Abstract
In the three-motor hybrid architecture, the auxiliary drive uses electrically excited synchronous motor (EESM), which has the advantages of high torque density, wide speed range and strong anti-demagnetization ability. However, the strong electromagnetic coupling between the field winding and the armature winding leads [...] Read more.
In the three-motor hybrid architecture, the auxiliary drive uses electrically excited synchronous motor (EESM), which has the advantages of high torque density, wide speed range and strong anti-demagnetization ability. However, the strong electromagnetic coupling between the field winding and the armature winding leads to the difficulty of current control, and the traditional PID has limitations in dynamic response and immunity. In order to solve this problem, a linear active disturbance rejection control (LADRC) method for the rotor of EESM is proposed in this paper, linear extended state observer (LESO) is used to estimate and compensate the system internal and external disturbances (such as winding coupling and parameter perturbation) in real time. The method only uses the input and output of the system and does not depend on any mechanical parameters, so that the torque response is improved by 50%, and the steady-state fluctuation is reduced by 10.2%. In addition, an adaptive dynamic programming (ADP) parameter optimization strategy is proposed to solve the bandwidth parameter tuning problem of LADRC algorithm in complex operating conditions, and the related mathematical analysis of optimality properties is given. Finally, the proposed method is compared with the traditional PI controller in several operating conditions of EESM, and the effectiveness of the proposed method is validated by the corresponding results. Full article
(This article belongs to the Section Control Systems)
19 pages, 2436 KB  
Article
Conformal Curved-Electrode Sensor with High-Frequency Optimization for Distributed Conductivity Monitoring in Shipboard Desalination Pipelines
by Wenlong Wang, Junya Shi, Cong Chen, Haibin Yang, Kai Li, Zhiying Zheng and Linzhou Huang
Sensors 2025, 25(17), 5464; https://doi.org/10.3390/s25175464 - 3 Sep 2025
Viewed by 347
Abstract
Current seawater desalination systems on ships face several limitations including outdated concentration detection methods, low detection accuracy, and insufficient real-time monitoring capabilities. This study addresses these issues by developing a concentration measurement device based on two-electrode conductivity measurement principles. The key innovation involves [...] Read more.
Current seawater desalination systems on ships face several limitations including outdated concentration detection methods, low detection accuracy, and insufficient real-time monitoring capabilities. This study addresses these issues by developing a concentration measurement device based on two-electrode conductivity measurement principles. The key innovation involves transforming conventional parallel plates into curved electrode plates that can be embedded directly into pipelines, enabling real-time concentration monitoring in shipboard seawater desalination systems. We established an equivalent circuit model and conducted simulation analysis of amplitude–frequency and phase–frequency response characteristics to guide excitation signal frequency selection. Using 3D printing technology, we fabricated pipeline components and manually processed curved electrode plates, then assembled experimental devices and determined optimal working parameters through systematic measurements of solution conductivity versus frequency and concentration. Laboratory testing with known concentration saline solutions demonstrated high measurement accuracy, with the device achieving a relative error of only 1.457% for 3.5% NaCl solution (simulated seawater) and 3.000% for commercial saline (0.9% NaCl) after calibration. Finally, we integrated a PLC control system for automated concentration measurement and display. Compared to traditional devices that require sampling in static water environments, this system can be distributed throughout shipboard desalination systems, providing more convenient, accurate, and efficient monitoring capabilities. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 8772 KB  
Article
Compact Turbine Last Stage-Exhaust Hood: Aerodynamic Performance and Structural Optimization Under Coupled Variable Working Conditions
by Yuang Shi, Lei Zhang, Yujin Zhou, Luotao Xie and Zichun Yang
Machines 2025, 13(9), 801; https://doi.org/10.3390/machines13090801 - 3 Sep 2025
Viewed by 282
Abstract
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of [...] Read more.
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of the last-stage moving blade shrouds and exhaust hood stiffeners on steam flow loss, static pressure recovery, and vibrational excitation. The research methodology includes the following: employing a hybrid structured-unstructured meshing technique, conducting numerical simulations based on the Shear Stress Transport (SST) turbulence model, and utilizing the static pressure recovery coefficient, total pressure loss coefficient, and cross-sectional flow velocity non-uniformity as performance evaluation metrics. The principal findings are as follows: (1) After installing self-locking shrouds on the moving blades, steam flow loss is reduced by 4.7%, and the outlet pressure non-uniformity decreases by 12.3%. (2) Although the addition of cruciform stiffeners in the diffuser section of the exhaust hood enhances structural rigidity, it results in an 8.4% decrease in the static pressure recovery coefficient, necessitating further optimization of geometric parameters. (3) The coupled model exhibits optimal aerodynamic performance at a 50% design flow rate and 100% design exhaust pressure. The results provide a theoretical basis for the structural optimization of low-noise compact steam turbines. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

17 pages, 1898 KB  
Article
A Novel Methodology for Designing Digital Models for Mobile Robots Based on Model-Following Simulation in Virtual Environments
by Brayan Saldarriaga-Mesa, José Varela-Aldás, Flavio Roberti and Juan M. Toibero
Robotics 2025, 14(9), 124; https://doi.org/10.3390/robotics14090124 - 2 Sep 2025
Viewed by 296
Abstract
Virtual environment simulations have gained great importance in the field of robotics by enabling the validation and optimization of control algorithms before their implementation on real platforms. However, the construction of accurate digital models is limited not only by the lack of detailed [...] Read more.
Virtual environment simulations have gained great importance in the field of robotics by enabling the validation and optimization of control algorithms before their implementation on real platforms. However, the construction of accurate digital models is limited not only by the lack of detailed characterization of the components but also by the uncertainty introduced by the physics engine and the plugins used in the simulation. Unlike other works, which attempted to model each element of the robot in detail and rely on the physics engine to reproduce its behavior, this paper proposes a methodology based on model following. The proposed architecture forces the simulated robot to replicate the dynamics of the real robot without requiring exactly the same physical parameters. The experimental validation was carried out on two unmanned surface vehicle (USV) platforms with different dynamic parameters and, therefore, different responses to excitation signals, demonstrating that the proposed approach enables a drastic reduction in error. In particular, RMSE and MAE were reduced by more than 98%, with R2 values close to 1.0, demonstrating an almost perfect correspondence between the real and simulated dynamics. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Graphical abstract

Back to TopTop