Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = parietin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1851 KB  
Article
The Natural Anthraquinone Parietin Inactivates Candida tropicalis Biofilm by Photodynamic Mechanisms
by Juliana Marioni, Bianca C. Romero, Ma. Laura Mugas, Florencia Martinez, Tomas I. Gómez, Jesús M. N. Morales, Brenda S. Konigheim, Claudio D. Borsarelli and Susana C. Nuñez-Montoya
Pharmaceutics 2025, 17(5), 548; https://doi.org/10.3390/pharmaceutics17050548 - 23 Apr 2025
Viewed by 666
Abstract
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the [...] Read more.
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the in vitro antifungal activity of PTN against Candida tropicalis biofilms under actinic irradiation, its role in O2•− and 1O2 production, and the cellular stress response. Methods: Minimum inhibitory concentration (MIC) of PTN was determined in C. tropicalis NCPF 3111 under dark and actinic light conditions. Biofilm susceptibility was assessed at MIC/2, MIC, MICx2, MICx4, and MICx6 in the same conditions, and viability was measured by colony-forming units. Photodynamic mechanisms were examined using Tiron (O2•− scavenger) or sodium azide (1O2 quencher). O2•− production was measured by the nitro-blue tetrazolium (NBT) reduction and nitric oxide (NO) generation by Griess assay. Total antioxidant capacity was studied by FRAP (Ferrous Reduction Antioxidant Potency) assay and superoxide dismutase (SOD) activity by NBT assay. Results: Photoexcitation of PTN reduced C. tropicalis biofilm viability by four logs at MICx2. Sodium azide partially reversed the effect, whereas Tiron fully inhibited it, indicating the critical role of O2•−. PTN also increased O2•− and NO levels, enhancing SOD activity and FRAP. However, this antioxidant response was insufficient to prevent biofilm photoinactivation. Conclusions: Photoinactivation of C. tropicalis biofilms by PTN is primarily mediated by O2•−, with a minor contribution from 1O2 and an imbalance in NO levels. These findings suggest PTN is a promising photosensitizer for antifungal photodynamic therapy. Full article
(This article belongs to the Special Issue Natural Products in Photodynamic Therapy)
Show Figures

Graphical abstract

28 pages, 21909 KB  
Article
Improved Photodynamic Therapy of Hepatocellular Carcinoma via Surface-Modified Protein Nanoparticles
by Ahmed M. Abdelsalam, Amir Balash, Shaimaa M. Khedr, Muhammad Umair Amin, Konrad H. Engelhardt, Eduard Preis and Udo Bakowsky
Pharmaceutics 2025, 17(3), 370; https://doi.org/10.3390/pharmaceutics17030370 - 14 Mar 2025
Cited by 2 | Viewed by 1002
Abstract
Background: Photodynamic therapy (PDT) has evolved as a reliable therapeutic modality for cancer. However, the broad application of the technique is still limited because of poor bioavailability and the non-selective distribution of photosensitizers within host tissues. Herein, zein, a natural corn protein, was [...] Read more.
Background: Photodynamic therapy (PDT) has evolved as a reliable therapeutic modality for cancer. However, the broad application of the technique is still limited because of poor bioavailability and the non-selective distribution of photosensitizers within host tissues. Herein, zein, a natural corn protein, was functionalized with glycyrrhetinic acid (GA) and polyethylene glycol (Z-PEG-GA) as a targeting platform for liver cancer cells. Parietin, as novel photosensitizer, was successfully encapsulated into zein via nanoprecipitation and used for the therapy of hepatocellular carcinoma. Methods: The in vitro phototoxicity of Z-PEG-GA nanoparticles and their non-functionalized control (Z-PEG) were assessed against hepatocellular carcinoma (HepG2 cells) and the In vivo biodistribution was determined in an adult male CD-1 Swiss albino mice model. Results: The formulated Z-PEG and Z-PEG-GA showed spherical shapes with average sizes of 82.8 and 94.7 nm for unloaded nanoparticles, respectively, and 109.7 and 111.5 nm for loaded nanoparticles carrying more than 70% of parietin, and Quantum yield measurements show that parietin’s photodynamic potential is conserved. Moreover, parietin-loaded Z-PEG-GA exhibited three-fold higher toxicity against liver cancer cells than its non-functionalized control and attained more than an eleven-fold enhancement in the generated intracellular reactive oxygen species (ROS) at a 9 J/cm2 radiant exposure. The generated intracellular ROS led to mitochondrial disruption and the release of cytochrome c. In vivo biodistribution studies revealed that fluorescence signals of Z-PEG-GA can persist in the excised animal liver for up to 24 h post-administration. Conclusions: Consequently, tailored zein can hold great potential for delivering several hydrophobic photosensitizers in anticancer PDT. Full article
Show Figures

Figure 1

17 pages, 1605 KB  
Article
Phytochemical Analysis and Antioxidant, Antimicrobial, and Antibiofilm Effects of a New Himalayan Lichen Placidium deosaiense Usman and Khalid Growing in Pakistan
by Anja Manojlović, Abdul Nasir Khalid, Muhammad Usman, Olgica Stefanović, Nevena Đukić, Nedeljko Manojlović and Jovica Tomović
Int. J. Mol. Sci. 2024, 25(20), 11203; https://doi.org/10.3390/ijms252011203 - 18 Oct 2024
Viewed by 1677
Abstract
Phytochemical composition and antimicrobial, antibiofilm, and antioxidant effects of a newly described Himalayan lichen Placidium deosaiense Usman and Khalid growing in Pakistan were investigated. HPLC–DAD methods were used for identification of secondary metabolites in acetone and methanol extracts. The total phenolics content was [...] Read more.
Phytochemical composition and antimicrobial, antibiofilm, and antioxidant effects of a newly described Himalayan lichen Placidium deosaiense Usman and Khalid growing in Pakistan were investigated. HPLC–DAD methods were used for identification of secondary metabolites in acetone and methanol extracts. The total phenolics content was measured using a spectrophotometric method. The study investigated the antioxidant (DPPH-scavenging activity assay and reducing-power assay), antibacterial (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)), and antibiofilm (inhibition of biofilm formation and reduction in mature biofilm) activities of extracts of the lichen P. deosaiense and isolated parietin. The chemical constituents olivetol, olivetolic acid, haematommic acid, fallacinol, and parietin were identified as major compounds in the tested extracts of the lichen. Parietin was isolated from the acetone extract on a separation column. The methanol extract had higher values of TPC (21.67 mg GAE/g) than the acetone extract. Isolated parietin showed the best antioxidant activity measures, according to the DPPH-scavenging activity assay (IC50 = 51.616 μg/mL) and reducing-power assay. Although the extracts showed the best antibacterial activity (especially against Proteus mirabilis ATCC 12453), parietin demonstrated superior antibiofilm activity (especially against Staphylococcus aureus ATCC 25923). This is the first report on the phytochemical composition of the lichen Placidium deosaiense and the first description of the chemical composition of some of the 45 species of the genus Placidium. This research will pave the way for further exploration of new activities of this lichen and its metabolites, which are important for medicine and pharmacy. Full article
Show Figures

Figure 1

11 pages, 3346 KB  
Article
The Roles of the Anthraquinone Parietin in the Tolerance to Desiccation of the Lichen Xanthoria parietina: Physiology and Anatomy of the Pale and Bright-Orange Thalli
by Amina G. Daminova, Ilya Y. Leksin, Venera R. Khabibrakhmanova, Oleg P. Gurjanov, Ekaterina I. Galeeva, Tatyana V. Trifonova, Ayrat R. Khamatgalimov, Richard P. Beckett and Farida V. Minibayeva
Int. J. Mol. Sci. 2024, 25(13), 7067; https://doi.org/10.3390/ijms25137067 - 27 Jun 2024
Cited by 5 | Viewed by 2509
Abstract
Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to [...] Read more.
Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to have high stress tolerance, possessing diverse defense mechanisms, including the presence of the bright-orange pigment parietin. While several studies have demonstrated the photoprotective and antioxidant properties of this anthraquinone, the role of parietin in the tolerance of lichens to desiccation is not clear yet. Thalli, which are exposed to solar radiation and become bright orange, may require enhanced desiccation tolerance. Here, we showed differences in the anatomy of naturally pale and bright-orange thalli of X. parietina and visualized parietin crystals on the surface of the upper cortex. Parietin was extracted from bright-orange thalli by acetone rinsing and quantified using HPLC. Although acetone rinsing did not affect PSII activity, thalli without parietin had higher levels of lipid peroxidation and a lower membrane stability index in response to desiccation. Furthermore, highly pigmented thalli possess thicker cell walls and, according to thermogravimetric analysis, higher water-holding capacities than pale thalli. Thus, parietin may play a role in desiccation tolerance by stabilizing mycobiont membranes, providing an antioxidative defense, and changing the morphology of the upper cortex of X. parietina. Full article
Show Figures

Figure 1

15 pages, 1634 KB  
Article
Microwave-Assisted Semisynthesis and Leishmanicidal Activity of Some Phenolic Constituents from Lichens
by Grover Castañeta, Rodrigo Villagomez, Efrain Salamanca, Pamela Canaviri-Paz, José A. Bravo, José L. Vila, Daniela Bárcenas-Pérez, José Cheel, Beatriz Sepúlveda, Alberto Giménez and Carlos Areche
Separations 2023, 10(10), 524; https://doi.org/10.3390/separations10100524 - 26 Sep 2023
Cited by 2 | Viewed by 2377
Abstract
Leishmaniasis is considered one of the most untreated tropical diseases in the world. In this study, we investigated the in vitro leishmanicidal activity and cytotoxicity of various isolated lichen substances, including atranorin (1), usnic acid (2), gyrophoric acid ( [...] Read more.
Leishmaniasis is considered one of the most untreated tropical diseases in the world. In this study, we investigated the in vitro leishmanicidal activity and cytotoxicity of various isolated lichen substances, including atranorin (1), usnic acid (2), gyrophoric acid (3), salazinic acid (4), galbinic acid (5), and parietin (6), and some semi-synthetic imine derivatives of usnic acid (7, 8, 9) and atranorin (10, 11, 12, 13). Imine condensation reactions with hydrazine and several amines were assisted by microwave heating, an efficient and eco-friendly energy source. The most interesting result was obtained for compound 2, which has high leishmanicidal activity but also high cytotoxicity. This cytotoxicity was mitigated in its derivative, 9, with better selectivity and high antileishmanic activity. This result may indicate that the usnic acid derivative (9) obtained using condensation with two cyclohexylamine groups is a promising lead compound for the discovery of new semisynthetic antiparasitic drugs. Full article
Show Figures

Graphical abstract

21 pages, 6463 KB  
Article
Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation
by Abdallah Mohamed Ayoub, Bernd Gutberlet, Eduard Preis, Ahmed Mohamed Abdelsalam, Alice Abu Dayyih, Ayat Abdelkader, Amir Balash, Jens Schäfer and Udo Bakowsky
Pharmaceutics 2022, 14(2), 357; https://doi.org/10.3390/pharmaceutics14020357 - 4 Feb 2022
Cited by 23 | Viewed by 3652
Abstract
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. [...] Read more.
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. Parietin (PTN), also termed physcion, a natural anthraquinone, is a promising photosensitizer somewhat underrepresented in aPDT because of its poor water solubility and potential to aggregate in the biological environment. This study investigated whether the complexation of PTN with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) could increase its solubility, enhance its photophysical properties, and improve its phototoxicity against bacteria. At first, the solubilization behavior and complexation constant of the PTN/HP-β-CD inclusion complexes were evaluated by the phase solubility method. Then, the formation and physicochemical properties of PTN/HP-β-CD complexes were analyzed and confirmed in various ways. At the same time, the photodynamic activity was assessed by the uric acid method. The blue light-mediated photodegradation of PTN in its free and complexed forms were compared. Complexation of PTN increased the aqueous solubility 28-fold and the photostability compared to free PTN. PTN/HP-β-CD complexes reduce the bacterial viability of Staphylococcus saprophyticus and Escherichia coli by > 4.8 log and > 1.0 log after irradiation, respectively. Overall, the low solubility, aggregation potential, and photoinstability of PTN were overcome by its complexation in HP-β-CD, potentially opening up new opportunities for treating infections caused by multidrug-resistant bacteria. Full article
Show Figures

Graphical abstract

8 pages, 1112 KB  
Communication
Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?
by Beatriz Fernández-Marín, Unai Artetxe, José María Becerril, Javier Martínez-Abaigar, Encarnación Núñez-Olivera and José Ignacio García-Plazaola
Molecules 2018, 23(7), 1741; https://doi.org/10.3390/molecules23071741 - 17 Jul 2018
Cited by 6 | Viewed by 4846
Abstract
The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether [...] Read more.
The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480–540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths. Then, to study energy transfer from parietin, we compared the response to UV of untreated and parietin-free thalli (removed with acetone). A chlorophyll fluorescence kinetic assessment provided evidence of UV-induced electron transport, though independently of the presence of parietin. Thus, a role for anthraquinones in energy harvesting is not supported for X. parietina under presented experimental conditions. Full article
(This article belongs to the Special Issue Lichens: Chemistry, Ecological and Biological Activities II)
Show Figures

Figure 1

13 pages, 1166 KB  
Article
Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor
by Alberto Cornejo, Francisco Salgado, Julio Caballero, Reinaldo Vargas, Mario Simirgiotis and Carlos Areche
Int. J. Mol. Sci. 2016, 17(8), 1303; https://doi.org/10.3390/ijms17081303 - 18 Aug 2016
Cited by 55 | Viewed by 8337
Abstract
Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra [...] Read more.
Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. Full article
(This article belongs to the Special Issue Analytical Techniques in Plant and Food Analysis)
Show Figures

Graphical abstract

15 pages, 1343 KB  
Article
Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin
by Adriana Basile, Daniela Rigano, Stefano Loppi, Annalisa Di Santi, Angela Nebbioso, Sergio Sorbo, Barbara Conte, Luca Paoli, Francesca De Ruberto, Anna Maria Molinari, Lucia Altucci and Paola Bontempo
Int. J. Mol. Sci. 2015, 16(4), 7861-7875; https://doi.org/10.3390/ijms16047861 - 9 Apr 2015
Cited by 95 | Viewed by 12074
Abstract
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria [...] Read more.
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. Full article
(This article belongs to the Special Issue Bioactive Phytochemicals in Functional Foods for Cancer Prevention)
Show Figures

Graphical abstract

Back to TopTop