Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,985)

Search Parameters:
Keywords = particles and health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2673 KB  
Article
RNA Interference-Mediated Silencing of HbREF and HbSRPP Genes Reduces Allergenic Protein Content While Maintaining Rubber Production in Hevea brasiliensis
by Thanyarat Kuasuwan, Methaporn Meethong, Napassawan Inaek, Panumas Puechpon, Sumalee Obchoei and Phanthipha Runsaeng
Int. J. Mol. Sci. 2025, 26(20), 9944; https://doi.org/10.3390/ijms26209944 (registering DOI) - 13 Oct 2025
Abstract
Allergenic proteins in natural rubber latex (NRL) pose significant health risks, particularly in rubber gloves. This study evaluated RNA interference (RNAi) technology for silencing HbREF (rubber elongation factor) and HbSRPP (small rubber particle protein) genes in Hevea brasiliensis to reduce latex allergen content. [...] Read more.
Allergenic proteins in natural rubber latex (NRL) pose significant health risks, particularly in rubber gloves. This study evaluated RNA interference (RNAi) technology for silencing HbREF (rubber elongation factor) and HbSRPP (small rubber particle protein) genes in Hevea brasiliensis to reduce latex allergen content. Double-stranded RNA (dsRNA) targeting these genes demonstrated high stability at 25–37 °C for 6 h and under UV/outdoor conditions for 72 h, but degraded rapidly above 50 °C. Among the three delivery methods tested, direct injection achieved the highest efficiency (>90% gene silencing within 12 h), followed by root drenching (54–84%) and foliar spray (46–70%). HbREF silencing achieved 98–99% expression reduction within 3 h, while HbSRPP showed dose-dependent responses (70–90% silencing) without off-target effects. Gene silencing affected downstream rubber synthesis genes HbCPT (cis-prenyltransferase) and HbRME (rubber membrane elongation protein) (37–58% reduction) while upstream genes remained unaffected. HbREF silencing reduced Hev b1 allergen by 64.04% and Hev b3 by 12.51%, whereas HbSRPP silencing decreased Hev b3 by 71.54% and Hev b1 by 13.48%. Both treatments caused only a 11–13% reduction in dry rubber content. This RNAi approach effectively reduces major latex allergens while maintaining rubber production, demonstrating commercial potential for developing hypoallergenic rubber products through precision agriculture biotechnology. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

23 pages, 5081 KB  
Article
Bioaccessibility-Based Fuzzy Health Risk Assessment and Integrated Management of Toxic Metals Through Multimedia Environmental Exposure near Urban Industrial Complexes
by Siqi Xu, Donghua Zhu, Miao An, Haoyu Wang, Jinyuan Guo, Yazhu Wang, Yongchang Wei and Fei Li
Toxics 2025, 13(10), 861; https://doi.org/10.3390/toxics13100861 (registering DOI) - 11 Oct 2025
Abstract
Few studies have explored the holistic public health risk assessment associated with toxic elements (TEs) and their bioaccessibility in integrated urban environmental media including soils, vegetables, atmospheric particles, dust, etc. Urban industrial complex areas like Qingshan-Chemical District (QCD) in the Chinese Wuhan city, [...] Read more.
Few studies have explored the holistic public health risk assessment associated with toxic elements (TEs) and their bioaccessibility in integrated urban environmental media including soils, vegetables, atmospheric particles, dust, etc. Urban industrial complex areas like Qingshan-Chemical District (QCD) in the Chinese Wuhan city, located within the Yangtze River Economic Belt, face increasing environmental exposure risks due to industrial activities. This study innovatively assessed the hierarchical risks of toxic metals in 4 environmental media (air PM, dust, soil, vegetables) from the QCD based on field sampling and chemical analysis, and developed an improved fuzzy health risk assessment model based on toxic metals’ in vitro bioaccessibilities of different exposure pathways and triangular fuzzy numbers for handling parameter uncertainties. The study found that the highest health risks were associated with ingestion, particularly from consuming homegrown vegetables. Carcinogenic risks for arsenic (As), lead (Pb), and cadmium (Cd) via ingestion exceeded the admissible threshold of 1.00 × 10−6, with As showing the highest risk ([1.92 × 10−3, 2.37 × 10−3]), followed by Cd ([2.98 × 10−5, 3.67 × 10−5]) and Pb ([7.92 × 10−7, 1.48 × 10−6]). Inhalation risks from soil, dust, and air particulates were below the threshold, indicating lower respiratory concerns. Dermal exposure, especially from soil and dust, posed elevated carcinogenic risks for As ([7.47 × 10−6, 8.06 × 10−6]). With the screened priority risk control toxic metals and pathways, the targeted measures including relocating vegetable planting areas, promoting cultivation of low-enrichment crops, building vegetation buffer zones around the industrial park, etc., were proposed. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

14 pages, 1253 KB  
Article
Advanced Characterization of Environmental Pollutant Metabolism in Human Skin
by Rafael Reis, Martine Zanini, Guillaume Lereaux, Ariane Dimitrov and Samia Boudah
J. Xenobiot. 2025, 15(5), 163; https://doi.org/10.3390/jox15050163 (registering DOI) - 11 Oct 2025
Viewed by 40
Abstract
Ultrafine particles (UFPs) containing polycyclic aromatic hydrocarbons (PAHs) benzo[a]pyrene (BaP), are linked to pollution-induced health concerns, with skin being highly susceptible to contamination. Understanding the metabolic fate of these environmental pollutants in the skin is crucial. Moreover, traditional in vitro models often lack [...] Read more.
Ultrafine particles (UFPs) containing polycyclic aromatic hydrocarbons (PAHs) benzo[a]pyrene (BaP), are linked to pollution-induced health concerns, with skin being highly susceptible to contamination. Understanding the metabolic fate of these environmental pollutants in the skin is crucial. Moreover, traditional in vitro models often lack metabolic competency, while animal testing raises ethical concerns. This study introduces a novel approach combining stable isotope labeling (SIL) and liquid chromatography–high-resolution mass spectrometry (LC-HRMS) to investigate BaP metabolism. The physiologically relevant 3D reconstructed human epidermis (RHE) model was used. RHE models were exposed to BaP and deuterium-labeled BaP (BaP-d12). These analyses, followed by data analysis incorporating stable isotope filtering, revealed the presence of five distinct BaP phase I metabolites, including mono-hydroxylated, dihydroxylated, and quinone derivatives. This study demonstrates the power of coupling stable isotope labeling with LC-HRMS for the comprehensive characterization of BaP metabolic pathways in human skin. The identification of specific metabolites enhances our understanding of BaP detoxification mechanisms and their potential adverse effects. This analytical approach holds promise for investigating the metabolic fate of various other environmental pollutants. Full article
Show Figures

Graphical abstract

17 pages, 849 KB  
Systematic Review
Health Effects and Preventive Strategies for Radon Exposure: A Systematic Review of the Literature
by Luigi Cofone, Marise Sabato, Chiara Colombo, Stefania Scalingi, Antonio Montesi, Lorenzo Paglione and Federica Patania
J. Respir. 2025, 5(4), 16; https://doi.org/10.3390/jor5040016 - 10 Oct 2025
Viewed by 111
Abstract
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is [...] Read more.
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is recognized as a Group 1 carcinogen by the IARC. Despite regulatory thresholds (e.g., EURATOM standards), health risks remain. Various mitigation methods aim to reduce indoor radon exposure and its impact. Materials and Methods: This systematic review followed PRISMA guidelines. PubMed, Scopus, and Web of Science were searched up to 28 February 2025, using a defined string. Studies with original data on radon exposure and lung cancer risk or mitigation efficacy were included. Independent screening and quality assessment (Newcastle–Ottawa Scale) were conducted by multiple reviewers. Results: Of the 457 studies identified, 14 met the inclusion criteria. Eleven of these investigated the link between indoor radon and lung cancer risk, and three evaluated mitigation strategies. Radon levels were commonly measured using passive alpha track detectors. Levels varied depending on geographical location, season, building design and ventilation, these were higher in rural homes and during the colder months. Case–control studies consistently found an increased lung cancer risk with elevated radon exposure, especially among smokers. Effective mitigation methods included sub-slab depressurisation and balanced ventilation systems, which significantly reduced indoor radon concentrations. Adenocarcinoma was the most common lung cancer subtype in non-smokers, whereas squamous and small cell carcinomas were more prevalent in smokers exposed to radon. Discussion and Conclusions: This review confirms the robust association between indoor radon exposure and lung cancer. Risks persist even below regulatory limits and are amplified by smoking. While mitigation techniques are effective, their application remains uneven across regions. Stronger public education, building codes, and targeted interventions are needed, particularly in high-risk areas. To inform future prevention and policy, further research should seek to clarify radon’s molecular role in lung carcinogenesis, especially among non-smokers. Full article
Show Figures

Figure 1

12 pages, 1548 KB  
Article
The Occurrence and Characteristics of Microplastics in Seawater Surface and Sea Cucumber (Holothuria atra and Holothuria edulis) at Similan and Surin Islands (Andaman Sea), Thailand
by Rungtip Wonglersak, Sireepus Jeensin, Ratchaneewarn Sumitrakij and Arom Mucharin
Toxics 2025, 13(10), 853; https://doi.org/10.3390/toxics13100853 (registering DOI) - 10 Oct 2025
Viewed by 172
Abstract
Microplastics are considered to be one of the major threats that have significant effects on marine ecosystems and marine organisms. These tiny plastic particles can also absorb and carry toxic substances to marine life, potentially affecting human health through food chains. This study [...] Read more.
Microplastics are considered to be one of the major threats that have significant effects on marine ecosystems and marine organisms. These tiny plastic particles can also absorb and carry toxic substances to marine life, potentially affecting human health through food chains. This study investigates microplastics in surface seawater and in two species of sea cucumber, Holothuria atra at Similan Island and Holothuria edulis at Surin Island. Color, shape, and components of microplastics were identified to evaluate sources of the microplastics found in the area. The results found that the average abundance of microplastics in seawater at Similan and Surin Islands is 1.93 ± 1.42 and 1.11 ± 0.75 pieces/m3, respectively. Black fiber is a dominant microplastic found in seawater and both species of sea cucumber. Fourier-Transform Infrared spectroscopy (FTIR) indicated that polyethylene terephthalate (PET) and polyester are the major components of microplastics in surface seawater, while cotton blends and other mixed components are the major components in sea cucumbers. These findings imply that microplastics found in surface seawater could potentially degrade from fishing and aquaculture equipment, maritime transport, and materials from plastic containers. Microplastics in sea cucumbers, on the other hand, are probably originating from domestic sewage discharge, especially textile washing and fishing equipment. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

24 pages, 15793 KB  
Article
AirCalypse: A Case Study of Temporal and User-Behaviour Contrasts in Social Media for Urban Air Pollution Monitoring in New Delhi Before and During COVID-19
by Prithviraj Pramanik, Tamal Mondal, Sirshendu Arosh and Mousumi Saha
Sustainability 2025, 17(19), 8924; https://doi.org/10.3390/su17198924 - 8 Oct 2025
Viewed by 369
Abstract
Air pollution has become a significant concern for human health, especially in developing countries. Among Primary Pollutants, particulate matter 2.5 (PM2.5), refers to airborne particles which have a diameter of 2.5 micrometres or less, and has become a widely used [...] Read more.
Air pollution has become a significant concern for human health, especially in developing countries. Among Primary Pollutants, particulate matter 2.5 (PM2.5), refers to airborne particles which have a diameter of 2.5 micrometres or less, and has become a widely used measure for monitoring air quality globally. The standard go-to method usually uses Federal Reference Grade sensors to understand air quality. But, they are quite cost-prohibitive, so the popular alternative is low-cost (LC) air quality sensors. Even LC air quality monitors do not cover many areas, especially across the global south. On the other hand, the ubiquitous use of online social media OSM has led to its evolution in participatory sensing. While it does not function as a physical sensor, it can be a proxy indicator of public perception on the topic under study. OSM platforms such as Twitter/X and Reddit have already demonstrated their value in understanding human perception across various domains, including air quality monitoring. This study focuses on understanding air pollution in a resource-constrained setting by examining how the community perception on social media can complement traditional monitoring. We leverage metadata readily available from social media user data to find patterns with air quality fluctuations before and during the pandemic. We use the US Embassy PM2.5 data for baseline measurement. In the study, we empirically analyse the variations in quantitative & intent-based community perception in seasonal & pandemic outbreaks with varying air quality. We compare the baseline against temporal & user-specific attributes of Twitter/X relating to tweets like daily frequency of tweets, tweet lags 1–5, user followers, user verified, and user lists memberships across two timelines: pre-COVID-19 (20 March 2019– 29 February 2020) & COVID-19 (1 March 2020–20 September 2020). Our analysis examines both the quantitative and the intent-based community engagement, highlighting the significance of features like user authenticity, tweet recurrence rates, and intensity of participation. Furthermore, we show how behavioural patterns in the online discussions diverged across the two periods, which reflected the broader shifts in the air pollution levels and the public attention. This study empirically demonstrates the significance of X/Twitter metadata, beyond standard tweet content, and provides additional features for modelling and understanding air quality in developing countries. Full article
(This article belongs to the Special Issue Air Pollution and Sustainability)
Show Figures

Figure 1

22 pages, 1249 KB  
Review
From Ocean to Table: How Public Awareness Shapes the Fight Against Microplastic Pollution
by Joshua Khorsandi, Liahm Blank, Kaloyan Momchilov, Michael Dagovetz and Kavita Batra
Urban Sci. 2025, 9(10), 418; https://doi.org/10.3390/urbansci9100418 - 8 Oct 2025
Viewed by 334
Abstract
Microplastic pollution is an escalating environmental and public health issue. Defined as plastic particles less than 5 mm in size, microplastics have been found in oceans, rivers, food, drinking water, air, and even human tissues. While scientific research on microplastics has expanded significantly, [...] Read more.
Microplastic pollution is an escalating environmental and public health issue. Defined as plastic particles less than 5 mm in size, microplastics have been found in oceans, rivers, food, drinking water, air, and even human tissues. While scientific research on microplastics has expanded significantly, public understanding and behavioral change remain limited. This literature scan synthesizes global findings on public awareness, perceptions, and responses to microplastics, drawing from surveys, focus groups, and online behavioral data collected by existing studies. It explores the following: (1) general knowledge and perceived environmental and health risks; (2) trust in scientific and governmental sources; (3) willingness to adopt behavioral changes; (4) attitudes toward policy and corporate responsibility. Public concern is high, especially regarding marine life and food safety, but varies across populations based on education, socioeconomic status, and media exposure. Despite growing concern, psychological distance and persistent knowledge gaps hinder meaningful action. Communication strategies such as school programs, media campaigns, and eco-labels show mixed success, while regulatory interventions like plastic bags or microbead bans are more effective when supported by clear public messaging. This literature scan highlights the need for interdisciplinary collaboration to close the knowledge–behavior–policy gap and strengthen public engagement, particularly in urban settings where consumption and waste generation are concentrated. Full article
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Development and Characterization of Sustainable Antimicrobial Food Packaging Films with Incorporated Silver Nanoparticles Synthesized from Olive Oil Mill By-Products
by Christina M. Gkaliouri, Nikolas Rigopoulos, Zacharias Ioannou, Efstathios Giaouris, Konstantinos P. Giannakopoulos and Kosmas Ellinas
Sustainability 2025, 17(19), 8916; https://doi.org/10.3390/su17198916 - 8 Oct 2025
Viewed by 470
Abstract
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation [...] Read more.
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation of this work is the synthesis of novel agar–starch–silver nanoparticle coatings, where the contained nanoparticles were produced via green methods using two agro-industrial by-products of Greek olive oil production—olive stone extract and olive mill wastewater—as reducing agents. The morphology of the novel coatings was confirmed using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, revealing nanoscale particles with variable sizes. Additional film characterization was performed through Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and surface profilometry. Infrared spectroscopy analysis suggested the presence of functional groups responsible for nanoparticle stabilization, while energy-dispersive X-ray spectroscopy revealed silver aggregation in both olive stone extract and olive mill wastewater-derived films. Profilometry showed that films with olive mill wastewater-based nanoparticles had a rougher surface than those synthesized from olive stone extract. Antibacterial efficacy was tested against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) using a spot-on-film assay with high (106 CFU/film) and low (103 CFU/film) bacterial loads. After 72 h of incubation at 4 °C, both film types showed strong antibacterial activity at high bacterial concentrations, demonstrating their potential for active food packaging. These findings highlight a promising approach to sustainable food packaging within the circular economy, utilizing agricultural waste to create biodegradable materials with effective antimicrobial functionality. Full article
Show Figures

Figure 1

19 pages, 1737 KB  
Article
Effect of Microparticle Crystallinity and Food Matrix on the Release Profile and Antioxidant Activity of Encapsulated Gallic and Ellagic Acids During Simulated In Vitro Intestinal Digestion
by Yesica Vilcanqui, Alejandra Quintriqueo-Cid, Patricio Romero-Hasler, Begoña Giménez, Eduardo Soto-Bustamante and Paz Robert
Antioxidants 2025, 14(10), 1211; https://doi.org/10.3390/antiox14101211 - 7 Oct 2025
Viewed by 335
Abstract
The development of phenolic-based functional food ingredients is of growing interest due to their beneficial effects on human health. This study investigated the combined influence of microparticle physical state, phenolic compound type (gallic acid, GA; and ellagic acid, EA), and model food matrix [...] Read more.
The development of phenolic-based functional food ingredients is of growing interest due to their beneficial effects on human health. This study investigated the combined influence of microparticle physical state, phenolic compound type (gallic acid, GA; and ellagic acid, EA), and model food matrix on the release profile, bioaccessibility, and antioxidant activity of GA and EA during in vitro gastrointestinal digestion. GA and EA were encapsulated with inulin (In) by spray-drying. By varying formulation and operational conditions, both semicrystalline (GA-InSc, EA-InSc) and amorphous (GA-InA, EA-InA) microparticles were obtained. Microparticles were characterized for crystallinity, encapsulation efficiency, particle size, morphology, and release profile during in vitro simulated gastrointestinal digestion following the INFOGEST method. The physical state of microparticles and type of phenolic compound critically influenced release profile, bioaccessibility, and antioxidant activity during digestion. GA, being more water-soluble, was rapidly released, reaching nearly 100% in the gastric phase, whereas EA exhibited limited gastric release and higher intestinal release, particularly in EA-InSc. Incorporation into different food matrices further modulated these effects; carbohydrate- and blend-based matrices improved phenolic release and antioxidant activity for both compounds. These findings highlight the importance of microparticle formulation, phenolic characteristics, and matrix interactions in designing functional food ingredients with optimized health benefits. Full article
(This article belongs to the Special Issue Phenolic Antioxidants—2nd Edition)
Show Figures

Graphical abstract

8 pages, 1868 KB  
Proceeding Paper
Reliability Evaluation of CAMS Air Quality Products in the Context of Different Land Uses: The Example of Cyprus
by Jude Brian Ramesh, Stelios P. Neophytides, Orestis Livadiotis, Diofantos G. Hadjimitsis, Silas Michaelides and Maria N. Anastasiadou
Environ. Earth Sci. Proc. 2025, 35(1), 64; https://doi.org/10.3390/eesp2025035064 - 6 Oct 2025
Viewed by 213
Abstract
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, [...] Read more.
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, the country suffers from heavy traffic conditions caused by the limited public transportation system in Cyprus. Therefore, taking into consideration the country’s geographic location, heavy commercial activities, and lack of good public transportation system, Cyprus is exposed to dust episodes and high anthropogenic emissions associated with multiple health and environmental issues. Therefore, continuous and qualitative air quality monitoring is essential. The Department of Labor Inspection of Cyprus (DLI) has established an air quality monitoring network that consists of 11 stations at strategic geographic locations covering rural, residential, traffic and industrial zones. This network measures the following pollutants: nitrogen oxide, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, particulate matter 2.5, and particulate matter 10. This case study compares and evaluates the agreement between Copernicus Atmosphere Monitoring Service (CAMS) air quality products and ground-truth data from the DLI air quality network. The study period spans from January to December 2024. This study focuses on the following three pollutants: particulate matter 2.5, particulate matter 10, and ozone, using Ensemble Median, EMEP, and CHIMERE near-real-time model data provided by CAMS. A data analysis was performed to identify the agreement and the error rate between those two datasets (i.e., ground-truth air quality data and CAMS air quality data). In addition, this study assesses the reliability of assimilated datasets from CAMS across rural, residential, traffic and industrial zones. The results showcase how CAMS near-real-time analysis data can supplement air quality monitoring in locations without the availability of ground-truth data. Full article
Show Figures

Figure 1

22 pages, 3812 KB  
Review
Micro- and Nanoplastics Act as Metal Carriers with the Potential to Alter Human Gene Expression Patterns—The Inferences from Bioinformatic Online Tools
by Maja Grabacka and Małgorzata Pierzchalska
Biomolecules 2025, 15(10), 1418; https://doi.org/10.3390/biom15101418 - 6 Oct 2025
Viewed by 383
Abstract
Micro- and nanoplastic particles (MNPLs) present in the environment have recently become a potential health hazard factor due to the ability to penetrate living organisms, their organs, and cells. MNPLs interact with and absorb chemicals and elements, including metals, such as iron, copper, [...] Read more.
Micro- and nanoplastic particles (MNPLs) present in the environment have recently become a potential health hazard factor due to the ability to penetrate living organisms, their organs, and cells. MNPLs interact with and absorb chemicals and elements, including metals, such as iron, copper, and zinc, and transport them into the cells. The cells subsequently respond with the altered gene expression profiles. In this study, we applied freely accessible online bioinformatic tools to draw out the sets of genes modulated by the metal ions and MNPLs. We focused on the gene interactome as revealed by The Comparative Toxicogenomics Database (CTD). To achieve a deeper insight into the biological processes that are potentially modulated, the retrieved CTD lists of genes, whose expression was influenced by MNPLs and metals, were subsequently analyzed using online tools: Metascape and String database. The genes from the revealed networks were arranged into functional clusters, annotated mainly as inflammation and immune system activity, regulation of apoptosis, oxidative stress response, Wingless-related Integration Site (WNT) signaling and ferroptosis. The complexity of the interactions between the gene sets altered by MNPLs and metal ions illustrates their pleiotropic effects on living systems. Full article
(This article belongs to the Special Issue Molecular Advances in Drug Resistance and Novel Therapies for Cancer)
Show Figures

Graphical abstract

15 pages, 643 KB  
Article
Determinants of Atherogenic Dyslipidemia and Lipid Ratios: Associations with Sociodemographic Profile, Lifestyle, and Social Isolation in Spanish Workers
by Pere Riutord-Sbert, Pedro Juan Tárraga López, Ángel Arturo López-González, Irene Coll Campayo, Carla Busquets-Cortés and José Ignacio Ramírez Manent
J. Clin. Med. 2025, 14(19), 7039; https://doi.org/10.3390/jcm14197039 - 5 Oct 2025
Viewed by 376
Abstract
Background: Atherogenic dyslipidemia is defined by the coexistence of high triglyceride concentrations, low levels of high-density lipoprotein cholesterol (HDL-C), and an excess of small, dense particles of low-density lipoprotein cholesterol (LDL-C). This lipid profile is strongly associated with an increased burden of cardiovascular [...] Read more.
Background: Atherogenic dyslipidemia is defined by the coexistence of high triglyceride concentrations, low levels of high-density lipoprotein cholesterol (HDL-C), and an excess of small, dense particles of low-density lipoprotein cholesterol (LDL-C). This lipid profile is strongly associated with an increased burden of cardiovascular disease and represents a leading cause of global morbidity and mortality. To better capture this risk, composite lipid ratios—including total cholesterol to HDL-C (TC/HDL-C), LDL-C to HDL-C (LDL-C/HDL-C), triglycerides to HDL-C (TG/HDL-C), and the atherogenic dyslipidemia index (AD)—have emerged as robust markers of cardiometabolic health, frequently demonstrating superior predictive capacity compared with isolated lipid measures. Despite extensive evidence linking these ratios to cardiovascular disease, few large-scale studies have examined their association with sociodemographic characteristics, lifestyle behaviors, and social isolation in working populations. Methods: We conducted a cross-sectional analysis of a large occupational cohort of Spanish workers evaluated between January 2021 and December 2024. Anthropometric, biochemical, and sociodemographic data were collected through standardized clinical protocols. Indices of atherogenic risk—namely the ratios TC/HDL-C, LDL-C/HDL-C, TG/HDL-C, and the atherogenic dyslipidemia index (AD)—were derived from fasting lipid measurements. The assessment of lifestyle factors included tobacco use, physical activity evaluated through the International Physical Activity Questionnaire (IPAQ), adherence to the Mediterranean dietary pattern using the MEDAS questionnaire, and perceived social isolation measured by the Lubben Social Network Scale. Socioeconomic classification was established following the criteria proposed by the Spanish Society of Epidemiology. Logistic regression models were fitted to identify factors independently associated with moderate-to-high risk for each lipid indicator, adjusting for potential confounders. Results: A total of 117,298 workers (71,384 men and 45,914 women) were included. Men showed significantly higher odds of elevated TG/HDL-C (OR 4.22, 95% CI 3.70–4.75) and AD (OR 2.95, 95% CI 2.70–3.21) compared with women, whereas LDL-C/HDL-C ratios were lower (OR 0.86, 95% CI 0.83–0.89). Advancing age was positively associated with all lipid ratios, with the highest risk observed in participants aged 60–69 years. Lower social class, smoking, physical inactivity, poor adherence to the Mediterranean diet, and low social isolation scores were consistently linked to higher atherogenic risk. Physical inactivity showed the strongest associations across all indicators, with ORs ranging from 3.54 for TC/HDL-C to 7.12 for AD. Conclusions: Atherogenic dyslipidemia and elevated lipid ratios are strongly associated with male sex, older age, lower socioeconomic status, unhealthy lifestyle behaviors, and reduced social integration among Spanish workers. These findings highlight the importance of workplace-based cardiovascular risk screening and targeted prevention strategies, particularly in high-risk subgroups. Interventions to promote physical activity, healthy dietary patterns, and social connectedness may contribute to lowering atherogenic risk in occupational settings. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

20 pages, 7349 KB  
Article
Electrostatic Interactions Override Surface Area Effects in Size-Dependent Adsorptive Removal of Microplastics by Fe3O4 Nanoparticles
by Lei Hu, Jinxin Zhou and Daisuke Kitazawa
Sustainability 2025, 17(19), 8878; https://doi.org/10.3390/su17198878 - 5 Oct 2025
Viewed by 435
Abstract
Microplastics (MPs), as an emerging persistent contaminant, pose a potential threat to ecosystems and human health. The adsorptive removal of MPs from aqueous environments using magnetic nanoparticles has become a particularly promising remediation technology. Nevertheless, there remain significant knowledge gaps regarding its adsorption [...] Read more.
Microplastics (MPs), as an emerging persistent contaminant, pose a potential threat to ecosystems and human health. The adsorptive removal of MPs from aqueous environments using magnetic nanoparticles has become a particularly promising remediation technology. Nevertheless, there remain significant knowledge gaps regarding its adsorption mechanism, especially how the key physical properties of magnetic nanoparticles regulate their adsorption behavior towards MPs. This study first investigated the relationship between the particle size of Fe3O4 nanoparticles and their adsorption efficacy for MPs. The results demonstrated a non-monotonic, size-dependent adsorption of MPs by Fe3O4 nanoparticles, with the adsorption efficiency and capacity following the order: 300 nm > 15 nm > 100 nm. This non-linear relationship suggested that factors other than specific surface area (which would favor smaller particles) are significantly influencing the adsorption process. Isotherm analysis indicated that the adsorption is not an ideal monolayer coverage process. Kinetic studies showed that the adsorption process could be better described by the pseudo-second-order model, while intra-particle diffusion played a critical role throughout the adsorption process. Furthermore, the effect of pH on adsorption efficiency was examined, revealing that the optimal performance occurs under neutral to weak acidic conditions, which is consistent with measurements of surface charges of nanoparticles. These findings suggest that the adsorption is not determined by specific surface area but is dominated by electrostatic interactions. The size-dependent adsorption of MPs by Fe3O4 nanoparticles provides new insights for the modification of magnetic adsorbents and offers a novel perspective for the sustainable and efficient remediation of environmental MPs pollution. Full article
(This article belongs to the Special Issue Advances in Adsorption for the Removal of Emerging Contaminants)
Show Figures

Figure 1

15 pages, 1023 KB  
Article
Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics
by Fernanda Daud Sarruf, Michele Georges Issa, Maria Valéria Robles Velasco, Catarina Rosado and André Rolim Baby
Cosmetics 2025, 12(5), 219; https://doi.org/10.3390/cosmetics12050219 - 4 Oct 2025
Viewed by 462
Abstract
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge [...] Read more.
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge on the short-term impact of cosmetic formulations containing a blend of red, green, and black clays, assessing their effects on sebum regulation and in cutaneous biomechanical behavior (firmness/elasticity). Unlike daily skincare products, clay masks are used infrequently and for short durations; thus, an in vivo assessment was conducted after a 2-h application to reflect typical consumer use. The mineralogical and physicochemical properties of the different clays were characterized. Mineralogical analysis revealed distinct compositions among the clays: black clay exhibited a simpler mineral profile, lower density, and smaller particle size; green clay contained expandable smectite and was the densest; and red clay displayed the largest average particle size and highest iron content. Thermal analysis identified two major transitions: dehydration and kaolinite dehydroxylation. In vivo studies conducted in participants showed a significant reduction in skin oiliness across all clay-based formulations compared to baseline, control, and placebo following a 2-h application, and the rebound sebum production was dependent on clay concentration. Cutometry measurements did not reveal statistically significant improvements in skin firmness or elasticity compared to the control and placebo. The findings suggested that while clay-based formulations effectively reduced skin oiliness in the short term, their impact on sebum regulation and on skin biomechanical properties was limited after such a short product application period. Additional studies are warranted to elucidate the distinct effects of each clay, assess their behavior in different formulation bases, and evaluate their efficacy after repeated use. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 1329 KB  
Article
Integrating Acheta domesticus into Cocoa Cream Products: Nutritional Enhancement and Impact on Technological Properties
by Milica Stožinić, Ivana Lončarević, Branislav Šojić, Danica Zarić, Đurđica Ačkar, Biljana Pajin and Attila Gere
Processes 2025, 13(10), 3162; https://doi.org/10.3390/pr13103162 - 4 Oct 2025
Viewed by 351
Abstract
Over the past few decades, people have become increasingly aware of how the ingredients in their food affect their health, leading to significant changes in dietary habits. A notable trend is the growing demand for high-protein foods. However, as consumption of high-protein products [...] Read more.
Over the past few decades, people have become increasingly aware of how the ingredients in their food affect their health, leading to significant changes in dietary habits. A notable trend is the growing demand for high-protein foods. However, as consumption of high-protein products increases, manufacturers face challenges in sourcing enough protein to meet this rising demand. One promising alternative is insect protein, which has attracted considerable attention in recent years due to its high nutritional value, with Acheta domesticus protein containing up to 80% protein per gram. To explore this potential, this study was conducted to investigate the effects of integrating different concentrations (10%, 12.5%, and 15%) of Acheta domesticus protein powder into cocoa cream products. The study’s findings indicated that incorporation of Acheta Domesticus protein resulted in a limited alteration in the particle size distribution of the cocoa cream, while sensory evaluations confirmed the absence of a gritty texture. In addition to sensory analysis, the study examined chemical composition, rheological properties, texture, color, and thermal characteristics. These results were compared with a control sample. The findings of this study indicate that the samples with 12.5 and 15% of the added protein can claim a nutritional statement “source of protein”. Full article
(This article belongs to the Special Issue Advances in the Design, Analysis and Evaluation of Functional Foods)
Show Figures

Graphical abstract

Back to TopTop