Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,238)

Search Parameters:
Keywords = passive component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2823 KB  
Article
Polygonatum sibiricum Polysaccharides Alleviate Simulated Weightlessness-Induced Cognitive Impairment by Gut Microbiota Modulation and Suppression of NLRP3/NF-κB Pathways
by Fang Chen, Muhammad Noman Khan, Mengzhou Xie, Yiwen Zhang, Liang Li, Ahsana Dar Farooq, Jixian Liu, Qinghu He, Xinmin Liu and Ning Jiang
Nutrients 2025, 17(19), 3157; https://doi.org/10.3390/nu17193157 (registering DOI) - 5 Oct 2025
Abstract
Background/Objectives: Polygonatum sibiricum (PS), possessing both medicinal and edible dual functions, boasts a long history of application in Chinese traditional practices. As a component of its effectiveness, Polygonatum sibiricum polysaccharides (PSPs) have been reported to exert neuroprotective effects. However, the protective effects [...] Read more.
Background/Objectives: Polygonatum sibiricum (PS), possessing both medicinal and edible dual functions, boasts a long history of application in Chinese traditional practices. As a component of its effectiveness, Polygonatum sibiricum polysaccharides (PSPs) have been reported to exert neuroprotective effects. However, the protective effects of PS on the cognitive deficits induced by simulated weightlessness remain unclear. This study evaluated the therapeutic potential of PSPs to counteract the cognitive deficits induced by simulated weightlessness using the Hindlimb Unloading (HU) method. Methods: Mice were subjected to HU to establish cognitive impairment, and PSP was administered for four weeks. The Morris water maze test (MWMT) and passive avoidance test (PAT) were used to evaluate the cognitive abilities of mice, followed by an analysis of molecular mechanisms. Results: PSP treatment increased learning and memory in mice. PSP treatment partially restored gut microbial diversity and composition towards beneficial taxa, including Lactobacillus and Firmicutes, while inhibiting proinflammatory genera, including Alistipes and Proteus. At the same time, PSP upregulated Claudin-5 and Zonula Occludens-1 (ZO-1) levels in the colon, suggesting improved intestinal barrier integrity, and decreased neuroinflammatory response by inhibiting NLRP3 inflammasome activation and NF-κB phosphorylation in the hippocampus. It also modulated neurotransmitter homeostasis along the microbiota–gut–brain (MGB) axis by increasing the levels of gamma-aminobutyric acid (GABA) and serotonin (5-HT) while reducing the levels of excitotoxic metabolites, including Glutamate (Glu) and 3-hydroxykynurenine (3-HK). Conclusions: These results indicate that PSP may have beneficial effects on HU-induced cognitive impairment by regulating gut microbiota, enhancing barrier function, suppressing neuroimmune signaling, and restoring neurotransmitter balance. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

18 pages, 12224 KB  
Article
A Phase-Adjustable Noise-Shaping SAR ADC for Mitigating Parasitic Capacitance Effects from PIP Capacitors
by Xuelong Ouyang, Hua Kuang, Dalin Kong, Zhengxi Cheng and Honghui Yuan
Sensors 2025, 25(19), 6029; https://doi.org/10.3390/s25196029 - 1 Oct 2025
Abstract
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a [...] Read more.
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a reconfigurable architecture. The design utilizes a phase-adjustable logic unit to switch between a conventional SAR mode for high-speed operation and a noise-shaping (NS) SAR mode for high-resolution conversion, actively suppressing in-band quantization noise. An improved SAR logic unit facilitates the insertion of an adjustable phase while concurrently achieving an 86% area reduction in the core logic block. A prototype was fabricated and measured in a 0.35-µm CMOS process. In conventional mode, the ADC achieved a 7.69-bit effective number of bits at 2 MS/s. By activating the noise-shaping circuitry, performance was significantly enhanced to an 11.06-bit resolution, corresponding to a signal-to-noise-and-distortion ratio (SNDR) of 68.3 dB, at a 125 kS/s sampling rate. The results demonstrate that the proposed architecture effectively leverages the trade-off between speed and accuracy, providing a practical method for realizing high-performance ADCs despite the inherent limitations of non-ideal passive components. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 5185 KB  
Article
Additive Manufacturing of a Passive Beam-Steering Antenna System Using a 3D-Printed Hemispherical Lens at 10 GHz
by Patchadaporn Sangpet, Nonchanutt Chudpooti and Prayoot Akkaraekthalin
Electronics 2025, 14(19), 3913; https://doi.org/10.3390/electronics14193913 - 1 Oct 2025
Abstract
This paper presents a novel mechanically beam-steered antenna system for 10 GHz applications, enabled by multi-material 3D-printing technology. The proposed design eliminates the need for complex electronic circuitry by integrating a mechanically rotatable, 3D-printed hemispherical lens with a conventional rectangular patch antenna. The [...] Read more.
This paper presents a novel mechanically beam-steered antenna system for 10 GHz applications, enabled by multi-material 3D-printing technology. The proposed design eliminates the need for complex electronic circuitry by integrating a mechanically rotatable, 3D-printed hemispherical lens with a conventional rectangular patch antenna. The system comprises three main components: a 10-GHz patch antenna, a precision-fabricated hemispherical dielectric lens produced via stereolithography (SLA), and a structurally robust rotation assembly fabricated using fused deposition modeling (FDM). The mechanical rotation of the lens enables discrete beam-steering from −45° to +45° in 5° steps. Experimental results demonstrate a gain improvement from 6.21 dBi (standalone patch) to 10.47 dBi with the integrated lens, with minimal degradation across steering angles (down to 9.59 dBi). Simulations and measurements show strong agreement, with the complete system achieving 94% accuracy in beam direction. This work confirms the feasibility of integrating additive manufacturing with passive beam-steering structures to deliver a low-cost, scalable, and high-performance alternative to electronically scanned arrays. Moreover, the design is readily adaptable for motorized actuation and closed-loop control via embedded systems, enabling future development of real-time, programmable beam-steering platforms. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

49 pages, 6314 KB  
Review
A Comprehensive Analysis of Methods for Improving and Estimating Energy Efficiency of Passive and Active Fiber-to-the-Home Optical Access Networks
by Josip Lorincz, Edin Čusto and Dinko Begušić
Sensors 2025, 25(19), 6012; https://doi.org/10.3390/s25196012 - 30 Sep 2025
Abstract
With the growing global deployment of Fiber-to-the-Home (FTTH) networks driven by the demand for ensuring high-capacity broadband services, mobile network operators (MNOs) face challenges of excessive energy consumption (EC) of wired optical access networks (OANs). This paper presents a comprehensive review of methods [...] Read more.
With the growing global deployment of Fiber-to-the-Home (FTTH) networks driven by the demand for ensuring high-capacity broadband services, mobile network operators (MNOs) face challenges of excessive energy consumption (EC) of wired optical access networks (OANs). This paper presents a comprehensive review of methods aimed at improving the energy efficiency (EE) of wired access passive optical networks (PONs) and active optical networks (AONs). The most important energy management and power-saving methods for Optical Line Terminals (OLTs) and Optical Network Units (ONUs), as key OAN components, are overviewed in the paper. Special attention in the paper is further given to analyzing the impact of a constant increase in the number of subscribers and average data rate per subscriber on global instantaneous power and annual energy consumption trends of FTTH Gigabit PONs (GPONs) and FTTH point-to-point (P-t-P) networks. The analysis combines the real ONU/OLT device-level power profiles and the number of installed OLT and ONU devices with data traffic and subscriber growth projections for the period 2025–2035. A comparative EE analysis is performed for different MNO FTTH OAN architectures and technologies, point-of-presence (PoP) subscriber capacities, and GPON-to-P-t-P subscriber distribution ratios. The findings indicate that different FTTH PON and AON architectures, FTTH technologies, and PON-to-AON subscriber distributions can yield significantly different EE gains in the future. This review paper can serve as a decision-making guide for MNOs in balancing performance and sustainability goals, and as a reference for researchers, engineers, and policymakers engaged in designing next-generation wired optical access networks with minimized environmental impact. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

24 pages, 1169 KB  
Article
On the Active Involvement of Occupants for Improving the Thermal Resilience of Buildings: An Opportunity Still Overlooked
by Giorgia Peri, Giada Rita Licciardi, Laura Cirrincione and Gianluca Scaccianoce
Energies 2025, 18(19), 5201; https://doi.org/10.3390/en18195201 - 30 Sep 2025
Abstract
Climate change and extreme weather compromise building energy performance and Heating, Ventilation, and Air Conditioning (HVAC) systems, impacting occupant wellbeing and health. However, occupants can naturally adapt through their behaviors, representing a form of intrinsic resilience that enhances the building’s capacity to handle [...] Read more.
Climate change and extreme weather compromise building energy performance and Heating, Ventilation, and Air Conditioning (HVAC) systems, impacting occupant wellbeing and health. However, occupants can naturally adapt through their behaviors, representing a form of intrinsic resilience that enhances the building’s capacity to handle thermal extremes. This study explores the role of occupants in buildings’ thermal resilience; it begins by investigating passive and active strategies commonly discussed in the literature, then analyzes whether occupants are treated as passive or active subjects with adaptive capacity. Four databases were consulted, and 22 peer-reviewed papers were screened based on the following criteria: a clear definition of thermal resilient buildings, inclusion of at least one quantitative method for assessing whole-building resilience, original scientific contribution, and a focus on whole-building rather than component-level resilience. Analysis highlights that the intrinsic thermal resilience of occupants has received limited importance in current discourse on building resilience; in most studies (12 out of 22), occupants are treated as passive thermal loads, with no adaptive behavior considered. This study also suggests examining strategies traditionally used in energy efficiency and indoor comfort as a preliminary approach to encourage adaptive behaviors, and, above all, opens a discussion on integrating occupant behavior into resilience strategies. Full article
Show Figures

Figure 1

32 pages, 8667 KB  
Article
Addressing Development Challenges of the Emerging REEFS Wave Energy Converter
by José P. P. G. Lopes de Almeida and Vinícius G. Machado
Inventions 2025, 10(5), 85; https://doi.org/10.3390/inventions10050085 - 26 Sep 2025
Abstract
This article addresses the multifaceted challenges inherent in the development of the novel REEFS (Renewable Electric Energy From Sea) wave energy converter (WEC). Building on the submerged pressure differential principle, it frames similar WECs before focusing on REEFS that combines renewable energy generation [...] Read more.
This article addresses the multifaceted challenges inherent in the development of the novel REEFS (Renewable Electric Energy From Sea) wave energy converter (WEC). Building on the submerged pressure differential principle, it frames similar WECs before focusing on REEFS that combines renewable energy generation with coastal protection, functioning as an artificial reef. The review follows chronological criteria, encompassing experimental proof-of-concept, small-scale laboratory modeling, simplified and advanced computational fluid dynamics (CFD) simulations, and the design of a forthcoming real-sea model deployment. Key milestones include the validation of a passive variable porosity system, demonstration of wave-to-wire energy conversion, and quantification of wave attenuation for coastal defense. Additionally, the study introduces a second patent-protected REEFS configuration, isolating internal components from seawater via an elastic enveloping membrane. Challenges related to scaling, numerical modeling, and funding are thoroughly examined. The results highlight the importance of the proof-of-concept as the keystone of the development process, underscore the relevance of mixed laboratory-computational approaches and emphasize the need for a balanced equilibrium between intellectual property safeguard and scientific publishing. The REEFS development trajectory offers interesting insights for researchers and developers navigating the complex innovation seas of emerging wave energy technologies. Full article
19 pages, 1027 KB  
Article
A Convolutional-Transformer Residual Network for Channel Estimation in Intelligent Reflective Surface Aided MIMO Systems
by Qingying Wu, Junqi Bao, Hui Xu, Benjamin K. Ng, Chan-Tong Lam and Sio-Kei Im
Sensors 2025, 25(19), 5959; https://doi.org/10.3390/s25195959 - 25 Sep 2025
Abstract
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. [...] Read more.
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. This paper proposes a lightweight hybrid framework for cascaded channel estimation by combining a physics-based Bilinear Alternating Least Squares (BALS) algorithm with a deep neural network named ConvTrans-ResNet. The network integrates convolutional embeddings and Transformer modules within a residual learning architecture to exploit both local and global spatial features effectively while ensuring training stability. A series of ablation studies is conducted to optimize architectural components, resulting in a compact configuration with low parameter count and computational complexity. Extensive simulations demonstrate that the proposed method significantly outperforms state-of-the-art neural models such as HA02, ReEsNet, and InterpResNet across a wide range of SNR levels and IRS element sizes in terms of the Normalized Mean Squared Error (NMSE). Compared to existing solutions, our method achieves better estimation accuracy with improved efficiency, making it suitable for practical deployment in IRS-aided systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 3120 KB  
Article
Variability in the Carbon Management Index and Enzymatic Activity Under Distinct Altitudes in the Alpine Wetlands of Lesotho
by Knight Nthebere, Dominic Mazvimavi, Makoala Marake, Mosiuoa Mochala, Tebesi Raliengoane, Behrooz Mohseni, Krasposy Kujinga and Jean Marie Kileshye Onema
Sustainability 2025, 17(19), 8571; https://doi.org/10.3390/su17198571 - 24 Sep 2025
Viewed by 35
Abstract
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) [...] Read more.
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) to explore the variation and correlation between SEA and CMI as influenced by altitudinal gradients in alpine wetlands. This information is essential for exploring the impacts of soil degradation and guiding restoration efforts. The study was designed in blocks (catchments) with six altitudinal variations (from 2500 to 3155 m a.s.l), equivalent to alpine wetlands from three catchments (Senqunyane, Khubelu and Sani) as follows: Khorong and Tenesolo in Senqunyane; Khamoqana and Khalong-la-Lichelete in Sani; and Lets’eng-la-Likhama and Koting-Sa-ha Ramosetsana in Khubelu. The soil samples were collected in February 2025 (autumn season, i.e., wet season) at depths of 0–15 and 15–30 cm and analyzed for bulk density, texture, pH, electrical conductivity (EC), soil organic carbon (SOC), SEA, and carbon pools, and the CMI was computed following standard procedures. The results demonstrated that the soil was loam to sandy loam and was slightly acidic and non-saline in nature in the 0–15 cm layer across the wetlands. The significant decreases in SEA were 45.33%, 32.20% and 15.11% (p < 0.05) for dehydrogenase, fluorescein di-acetate and β-Galactosidase activities, respectively, in KSHM compared with those in Khorong (lower elevated site). The passive carbon pool (CPSV) was dominant over the active carbon pool (CACT) and contributed 76–79% of the SOC to the total organic carbon, with a higher CPSV (79%) observed at KSHM. The CMI was also greater (91.05 and 75.88) under KSHM at the 0–15 cm and 15–30 cm soil depths, respectively, than in all the other alpine wetlands, suggesting better carbon management at higher altitudinal gradients and less enzymatic activity. These trends shape climate change outcomes by affecting soil carbon storage, with high-altitude regions serving as significant, though relatively less active, carbon reservoirs. The PCA-Biplot graph revealed a negative correlation between the CMI and SEA, and these variables drove more variation across sites, highlighting a complex interaction influenced by higher altitude with its multiple ecological drivers, such as temperature variation, nutrient dynamics, and shifts in microbial communities. Further studies on metagenomics in alpine soils are needed to uncover altitude-driven microbial adaptations and their role in carbon dynamics. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

52 pages, 7168 KB  
Review
Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
by Yana Suchikova, Serhii Nazarovets, Marina Konuhova and Anatoli I. Popov
Ceramics 2025, 8(4), 119; https://doi.org/10.3390/ceramics8040119 - 23 Sep 2025
Viewed by 267
Abstract
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2 [...] Read more.
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate highly specialized applications in surface passivation and interface engineering, while CeO2 offers UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. Together, these findings suggest that binary oxide ceramics are poised to transition from supporting roles to essential components of stable, efficient, and environmentally safer next-generation solar cells. Full article
Show Figures

Figure 1

14 pages, 3363 KB  
Article
Selective Etching of Multi-Stacked Epitaxial Si1-xGex on Si Using CF4/N2 and CF4/O2 Plasma Chemistries for 3D Device Applications
by Jihye Kim, Joosung Kang, Dongmin Yoon, U-in Chung and Dae-Hong Ko
Materials 2025, 18(18), 4417; https://doi.org/10.3390/ma18184417 - 22 Sep 2025
Viewed by 167
Abstract
The SiGe/Si multilayer is a critical component for fabricating stacked Si channel structures for next-generation three-dimensional (3D) logic and 3D dynamic random-access memory (3D-DRAM) devices. Achieving these structures necessitates highly selective SiGe etching. Herein, CF4/O2 and CF4/N2 [...] Read more.
The SiGe/Si multilayer is a critical component for fabricating stacked Si channel structures for next-generation three-dimensional (3D) logic and 3D dynamic random-access memory (3D-DRAM) devices. Achieving these structures necessitates highly selective SiGe etching. Herein, CF4/O2 and CF4/N2 gas chemistries were employed to elucidate and enhance the selective etching mechanism. To clarify the contribution of radicals to the etching process, a nonconducting plate (roof) was placed just above the samples in the plasma chamber to block ion bombardment on the sample surface. The CF4/N2 gas chemistries demonstrated superior etch selectivity and profile performance compared with the CF4/O2 gas chemistries. When etching was performed using CF4/O2 chemistry, the SiGe etch rate decreased compared to that obtained with pure CF4. This reduction is attributed to surface oxidation induced by O2, which suppressed the etch rate. By minimizing the ion collisions on the samples with the roof, higher selectivity, and a better etch profile were obtained even in the CF4/N2 gas chemistries. Under high-N2-flow conditions, X-ray photoelectron spectroscopy revealed increased surface concentrations of GeFx species and confirmed the presence of Si–N bond, which inhibited Si etching by fluorine radicals. A higher concentration of GeFx species enhanced SiGe layer etching, whereas Si–N bonds inhibited etching on the Si layer. The passivation of the Si layer and the promotion of adhesion of etching species such as F on the SiGe layer are crucial for highly selective etching in addition to etching with pure radicals. This study provides valuable insights into the mechanisms governing selective SiGe etching, offering practical guidance for optimizing fabrication processes of next-generation Si channel and complementary field-effect transistor (CFET) devices. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

18 pages, 3294 KB  
Article
Compact and Efficient First-Order All-Pass Filter in Voltage Mode
by Khushbu Bansal, Bhartendu Chaturvedi and Jitendra Mohan
Microelectronics 2025, 1(1), 4; https://doi.org/10.3390/microelectronics1010004 - 20 Sep 2025
Viewed by 158
Abstract
This paper presents a new compact and efficient first-order all-pass filter in voltage mode based on a second-generation voltage conveyor, along with two resistors, and a capacitor. This circuit delivers an all-pass response from the low-impedance node and eliminates the need for a [...] Read more.
This paper presents a new compact and efficient first-order all-pass filter in voltage mode based on a second-generation voltage conveyor, along with two resistors, and a capacitor. This circuit delivers an all-pass response from the low-impedance node and eliminates the need for a voltage buffer in cascading configurations. A thorough non-ideal analysis, accounting for parasitic impedances and the non-ideal gains of the active module, shows negligible effects on the filter performance. Furthermore, a sensitivity analysis with respect to both active and passive components further validates the robustness of the design. The proposed all-pass filter is validated by Cadence PSPICE simulations, utilizing 0.18 µm TSMC CMOS process parameter and ±0.9 V power supply, including Monte Carlo analysis and temperature variations. Additionally, experimental validation is carried out using commercially available IC AD844, showing great consistency between theoretical and experimental results. Resistor-less realization of the proposed filter provides tunability feature. A quadrature sinusoidal oscillator is presented to validate the proposed structure. The introduced circuit provides a simple and effective solution for low-power and compact analog signal processing applications. Full article
Show Figures

Figure 1

21 pages, 12481 KB  
Article
RCS–Doppler-Assisted MM-GM-PHD Filter for Passive Radar in Non-Uniform Clutter
by Jia Wang, Baoxiong Xu, Zhenkai Zhang and Biao Jin
Sensors 2025, 25(18), 5864; https://doi.org/10.3390/s25185864 - 19 Sep 2025
Viewed by 271
Abstract
In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD [...] Read more.
In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities. Full article
Show Figures

Figure 1

14 pages, 3698 KB  
Article
Active Gaze Guidance and Pupil Dilation Effects Through Subject Engagement in Ophthalmic Imaging
by David Harings, Niklas Bauer, Damian Mendroch, Uwe Oberheide and Holger Lubatschowski
J. Eye Mov. Res. 2025, 18(5), 45; https://doi.org/10.3390/jemr18050045 - 19 Sep 2025
Viewed by 219
Abstract
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning [...] Read more.
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning by guiding the gaze along predefined patterns. An infrared fundus camera setup was used with nine healthy adults (aged 20–57) who completed tasks comparing passive viewing of moving patterns to actively tracing them by drawing using a touchpad interface. The active task involved participant-controlled target movement with real-time color feedback for accurate pattern tracing. Results showed that active tracing significantly increased pupil diameter by an average of 17.8% (range 8.9–43.6%; p < 0.001) and reduced blink frequency compared to passive viewing. More complex patterns led to greater pupil dilation, confirming the link between cognitive load and physiological response. These findings demonstrate that patient driven gaze guidance can stabilize gaze, reduce blinking, and naturally dilate the pupil. These conditions might enhance the quality of scannerless OCT or other imaging techniques benefiting from guided gaze and larger pupils. There could be benefits for children and people with compliance issues, although further research is needed to consider cognitive load. Full article
(This article belongs to the Special Issue Eye Tracking and Visualization)
Show Figures

Figure 1

27 pages, 2641 KB  
Review
Progress in Passive Silicon Photonic Devices: A Review
by Qidi Liu, Yusheng Bian and Jiawei Xiong
Photonics 2025, 12(9), 928; https://doi.org/10.3390/photonics12090928 - 18 Sep 2025
Viewed by 648
Abstract
Silicon photonics has emerged as a critical enabling technology for a diverse range of applications, from high-speed data communication and computing to advanced sensing and quantum information processing. This paper provides a comprehensive review of recent progress in the foundational passive devices that [...] Read more.
Silicon photonics has emerged as a critical enabling technology for a diverse range of applications, from high-speed data communication and computing to advanced sensing and quantum information processing. This paper provides a comprehensive review of recent progress in the foundational passive devices that underpin this technological revolution. We survey the state of the art in fundamental building blocks, including strip, rib, and silicon nitride waveguides, with a focus on achieving ultra-low propagation loss. The review details essential components for light coupling and splitting, such as grating couplers, edge couplers, multimode interference couplers, and directional couplers, citing their typical performance metrics. Key wavelength filtering and routing components, including high-Q ring resonators, Mach–Zehnder interferometers, and arrayed waveguide gratings, are analyzed. Furthermore, we provide a comparative overview of the capabilities of major photonic foundries operating on a multi-project wafer model. The paper concludes by discussing persistent challenges in packaging and polarization management, and explores future trends driven by co-packaged optics, inverse design methodologies, and the expansion of silicon photonics into new application domains. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

15 pages, 3977 KB  
Article
Research on Line Selection Method Based on Active Injection Under DC Feeder Single-Pole Grounding Fault
by Xinghua Huang, Yuanliang Fan, Wenqi Li, Jiayang Fei and Jianhua Wang
Energies 2025, 18(18), 4958; https://doi.org/10.3390/en18184958 - 18 Sep 2025
Viewed by 216
Abstract
Due to the “low damping” characteristics of the DC distribution system, the traditional passive scheme is not suitable for DC fault detection and positioning. Therefore, this paper proposes an active injection fault identification method suitable for DC feeder line under single-pole grounding faults. [...] Read more.
Due to the “low damping” characteristics of the DC distribution system, the traditional passive scheme is not suitable for DC fault detection and positioning. Therefore, this paper proposes an active injection fault identification method suitable for DC feeder line under single-pole grounding faults. Based on the high controllability of converters, this method uses the oscillation circuit characteristics of the DC side single-pole grounding fault to superimpose the harmonics of fixed frequency into the converter modulated wave, and derives the selection principles of harmonic amplitude and frequency. After the fault, the positive and negative current signals are extracted from the feeder lines, and the zero-mode current components are extracted by the Karrenbauer transformation and band-pass filter, the current phases are compared to achieve the fault feeder line selection. According to simulation verification, the power quality of the actively injected harmonics is within the standard range under the condition of global injection, and the single-pole grounding faults in each feeder line can be identified. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

Back to TopTop