Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = patient-derived xenograft model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 22066 KB  
Article
Gadd45B Deficiency Drives Radio-Resistance in BRAFV600E-Mutated Differentiated Thyroid Cancer by Disrupting Iodine Metabolic Genes
by Shan Jiang, Zhiwen Hong, Qianjiang Wu, Rouhan A, Zhaobo Wang, Xue Guan, Xinghua Wang, Ari A. Kassardjian, Yali Cui and Tengchuang Ma
Cancers 2025, 17(19), 3201; https://doi.org/10.3390/cancers17193201 - 30 Sep 2025
Abstract
Background: Differentiated thyroid cancer (DTC) is commonly treated with radioactive iodine (RAI), but resistance to RAI remains a significant clinical challenge. The molecular mechanisms driving dedifferentiation and RAI refractoriness, particularly in BRAFV600E-mutated tumors, are not fully understood. Methods: RNA sequencing was [...] Read more.
Background: Differentiated thyroid cancer (DTC) is commonly treated with radioactive iodine (RAI), but resistance to RAI remains a significant clinical challenge. The molecular mechanisms driving dedifferentiation and RAI refractoriness, particularly in BRAFV600E-mutated tumors, are not fully understood. Methods: RNA sequencing was conducted on BRAFV600E-mutated DTC and RAIR-DTC tissue samples to identify differentially expressed genes. Gadd45B was identified as significantly downregulated in RAIR-DTC. Functional studies including overexpression and knockdown experiments were performed in thyroid cancer cell lines and xenograft models. Downstream targets, including MAP3K4 and MYCBP, were evaluated through co-immunoprecipitation, luciferase assays, and Western blot. The therapeutic efficacy of recombinant Gadd45B protein in combination with BRAFV600E and TERT inhibitors was assessed in patient-derived xenograft (PDX) models. Results: Gadd45B overexpression suppressed MAPK pathway activity by interacting with MAP3K4 and downregulated c-MYC stability through competition with MYCBP. These interactions enhanced the expression of iodine-metabolism genes (NIS, TPO, Tg), increased RAI uptake, and reversed tumor dedifferentiation. In vivo, Gadd45B restoration reduced tumor burden and improved RAI uptake. Combined treatment with Gadd45B protein, PLX4720, and BIBR1532 produced synergistic therapeutic effects in PDX models. Conclusions: Gadd45B plays a pivotal role in regulating the differentiation status and RAI sensitivity of BRAFV600E-mutated thyroid cancer. These findings identify Gadd45B as a promising therapeutic target for restoring RAI responsiveness in RAIR-DTC patients. Full article
(This article belongs to the Special Issue Advanced Research on Radioresistant Tumors)
16 pages, 4959 KB  
Article
Donor-Derived Vγ9Vδ2 T Cells for Acute Myeloid Leukemia: A Promising “Off-the-Shelf” Immunotherapy Approach
by Amanda Eckstrom, Anudishi Tyagi, Maryam Siddiqui, Jenny Borgman, Jieming Zeng, Adishwar Rao, Abhishek Maiti and Venkata Lokesh Battula
Cancers 2025, 17(19), 3166; https://doi.org/10.3390/cancers17193166 - 29 Sep 2025
Abstract
Background: Venetoclax-based combination therapies have provided treatment options for patients with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy. However, venetoclax resistance is common, and for such patients, the prognosis is dismal, and treatment approaches with different mechanisms of action are [...] Read more.
Background: Venetoclax-based combination therapies have provided treatment options for patients with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy. However, venetoclax resistance is common, and for such patients, the prognosis is dismal, and treatment approaches with different mechanisms of action are urgently needed. γδ T cells are a promising candidate owing to their good safety profile and cytotoxic effects in various types of cancers but are mostly unstudied in AML. Methods: Here we used flow cytometry to profile the subtype and memory phenotype of peripheral blood γδ T cells in AML patients and investigate the feasibility of using donor-derived Vγ9Vδ2 T cells to treat AML as both a single agent and in combination with venetoclax. Additionally, we used bioluminescence imaging to examine the effect of donor-derived Vγ9Vδ2 T cells on AML xenograft models alone and in combination with venetoclax. Results: We observed that Vδ2 T cells were less abundant and the TEMRA (terminally differentiated effector memory) phenotype was more prevalent as compared with that of healthy donors, suggesting that replenishing patients with Vδ2 T cells may be an effective treatment option. We found that donor-derived Vγ9Vδ2 T cells that Vγ9Vδ2 T cells efficiently induced apoptosis in AML cells from eight cell lines and three primary cultures in an effector-to-target cell ratio-dependent manner. Moreover, Vγ9Vδ2 T cells showed potent cytotoxicity against the venetoclax-resistant OCI-AML3 cell line and remained potent in the presence of venetoclax. Treatment with Vγ9Vδ2 T cells significantly extended survival in two AML xenograft models established with the aggressive Molm-13 and the venetoclax-resistant OCI-AML3 cell lines. An additive effect of venetoclax and Vγ9Vδ2 T cells was observed in the latter model. Conclusions: Overall, these findings suggest Vγ9Vδ2 T cells as a promising “off-the-shelf” immunotherapy approach for AML patients, especially for patients with venetoclax-resistant disease. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

22 pages, 9932 KB  
Article
A Novel Serum-Free Triculture Model of Glioblastoma, Astrocytes, and Macrophages
by Hasan Alrefai, Lauren C. Nassour-Caswell, Manoj Kumar, Benjamin Lin, Taylor L. Schanel, Nicholas J. Eustace, Jianqing Zhang, Christian T. Stackhouse, Nayonika Mukherjee, Patricia H. Hicks, Joshua C. Anderson, Christopher Ryan Miller and Christopher D. Willey
Int. J. Mol. Sci. 2025, 26(19), 9335; https://doi.org/10.3390/ijms26199335 - 24 Sep 2025
Viewed by 29
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. While in vitro patient-derived xenografts (PDX) lines are useful for studying GBM, they often exclude astrocytes and macrophages, which contribute significantly to tumor growth, invasion, and chemoradioresistance. Integrating these cells [...] Read more.
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. While in vitro patient-derived xenografts (PDX) lines are useful for studying GBM, they often exclude astrocytes and macrophages, which contribute significantly to tumor growth, invasion, and chemoradioresistance. Integrating these cells into tumor models is difficult due to their need for serum, which triggers GBM-PDX lines to lose their stem-like properties. The aim of this study was to develop a serum-free triculture model of GBM-PDX lines, normal human astrocytes (NHAs), and macrophages. Serum-free media alternatives were formulated for NHAs and identified for THP-1 macrophages, then combined with GBM PDX media to establish “PSX,” an experimental maintenance media. Cells were transitioned to serum-free media alternatives and functionally assessed through several parameters unique to each cell type. In addition to assessing GBM “stemness,” a custom 350-gene NanoString chip was used to assess differential gene expression in monocultured PDX cells versus PDX cells exposed to NHAs and macrophages. PSX maintained canonical function in astrocytes and macrophages while preserving the stem-like properties of GBM-PDX cells. Tri-culturing all three cells increased the expression of stemness-associated transcription factors and increased the expression of genes related to stemness and hypoxia in GBM cells. GBM PDX cells exposed to NHAs and macrophages in direct triculture exhibit increases in markers of stemness and hypoxia. These findings suggest that the serum-free triculture model presented herein may better recapitulate the tumoral heterogeneity of GBM in vitro, providing a novel model to utilize in current research. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

17 pages, 7798 KB  
Article
Dendritic Cell-Cytokine-Induced Killer Cells Co-Loaded with WT1/MUC1/Poly(I:C) Enhance Antitumor Immune Responses In Vitro and In Vivo
by Huimin Liu, Chenlong Wang, Hongtao Chang, Liangliang Dong, Guoqing Yang, Cailing Tong and Lin Mao
Biomolecules 2025, 15(10), 1356; https://doi.org/10.3390/biom15101356 - 24 Sep 2025
Viewed by 72
Abstract
Dendritic cell-cytokine-induced killer (DC-CIK) therapy faces limitations due to antigenic heterogeneity and suboptimal immune activation. In this study, we developed a multi-antigen-loaded DC-CIK (Ag-DC-CIK) system that co-targets Wilms’ tumor 1 (WT1), mucin-1 (MUC1), and the TLR3 agonist poly(I:C) to improve therapeutic outcomes. Utilizing [...] Read more.
Dendritic cell-cytokine-induced killer (DC-CIK) therapy faces limitations due to antigenic heterogeneity and suboptimal immune activation. In this study, we developed a multi-antigen-loaded DC-CIK (Ag-DC-CIK) system that co-targets Wilms’ tumor 1 (WT1), mucin-1 (MUC1), and the TLR3 agonist poly(I:C) to improve therapeutic outcomes. Utilizing umbilical cord blood-derived DC and CIK cells, we demonstrated that Ag-DC-CIK significantly enhanced cytotoxicity, as evidenced by the lactate dehydrogenase (LDH) assay, and increased apoptosis induction, indicated by elevated Bax and reduced Bcl-2 expression, in various tumor cell lines (HeLa, HCT116, MKN45) and organoids generated from a gastric cancer patient. Furthermore, Ag-DC-CIK effectively suppressed tumor cell migration and reduced the viability of the organoid. In MKN45 xenograft models, Ag-DC-CIK treatment inhibited tumor growth without inducing systemic toxicity, as shown by decreased Ki67 cell proliferation. This tripartite strategy synergistically enhances DC-CIK therapy by expanding antigen recognition and augmenting immune responses, presenting a promising translational approach for the treatment of gastric cancer. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

17 pages, 3037 KB  
Article
Programmed-Cell-Death-Related Signature Reveals Immune Microenvironment Characteristics and Predicts Therapeutic Response in Diffuse Large B Cell Lymphoma
by Donghui Xing, Kaiping Luo, Xiang He, Xin Hu, Yixin Zhai, Yanan Jiang, Wenqi Wu and Zhigang Zhao
Biomedicines 2025, 13(10), 2320; https://doi.org/10.3390/biomedicines13102320 - 23 Sep 2025
Viewed by 228
Abstract
Background/Objectives: Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous and aggressive lymphoma with a high incidence rate. Although modern therapeutic approaches have significantly improved patient survival rates, treatment relapse and drug resistance remain major clinical challenges. Programmed cell death (PCD) [...] Read more.
Background/Objectives: Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous and aggressive lymphoma with a high incidence rate. Although modern therapeutic approaches have significantly improved patient survival rates, treatment relapse and drug resistance remain major clinical challenges. Programmed cell death (PCD) promotes tumorigenesis and regulates the tumor microenvironment (TME) and drug sensitivity. Exploring the application potential of PCD in DLBCL could pave the way for new treatment strategies for this malignancy. Methods: We systematically analyzed 13 types of PCD pathways and integrated transcriptomic and clinical data from 832 DLBCL patients (GSE10846, GSE11318, and GSE87371). A PCD-based prognostic signature, termed the Programmed Cell Death Score (PCDS), was constructed using 20 key PCD-related genes. Its clinical relevance was evaluated through survival analysis, drug response profiling, and tumor immune infiltration assessment using CIBERSORT, ESTIMATE, and ssGSEA algorithms. Results: The PCDS robustly stratified patients by survival and outperformed conventional clinical indicators such as age, stage, Eastern Cooperative Oncology Group (ECOG), and lactate dehydrogenase (LDH) in prognostic prediction. High-PCDS tumors were associated with immune suppression, characterized by reduced CD8+ T cell infiltration, elevated M2 macrophages, and increased programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) expression. Drug sensitivity analysis revealed that high-PCDS patients may benefit more from agents like sorafenib and fulvestrant, while low-PCDS patients responded better to NU7441. Functional validation using DLBCL cell lines and xenografts confirmed the oncogenic role of a representative gene (CTH) within the model. Conclusions: This study presents a novel prognostic scoring system derived from multiple PCD pathways that effectively stratifies DLBCL patients by risk and therapeutic responsiveness. Notably, the PCDS is closely associated with key immunological characteristics of the TME. These findings advance personalized treatment strategies and support clinically relevant decision-making in DLBCL. Full article
Show Figures

Figure 1

15 pages, 5600 KB  
Article
Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma
by Guoliang Wu, Han Li, Zhongshui Xie, Song Ni, Yiming Zhu, Chunxue Jia, Chenyu Pan, Shaoyan Liu and Hongjuan Wang
Pharmaceutics 2025, 17(9), 1204; https://doi.org/10.3390/pharmaceutics17091204 - 16 Sep 2025
Viewed by 287
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a major epithelial malignancy of the head and neck with high morbidity and mortality. The conventional antineoplastic medications used in clinical practice have become less effective due to the heterogeneity of tumors, accompanied by severe [...] Read more.
Background: Oral squamous cell carcinoma (OSCC) is a major epithelial malignancy of the head and neck with high morbidity and mortality. The conventional antineoplastic medications used in clinical practice have become less effective due to the heterogeneity of tumors, accompanied by severe side effects. Therefore, the development of novel chemotherapeutic agents has become an important goal of anti-OSCC therapy. Methods: Our group has previously developed a novel wogonin–aloperine co-amorphous (Wog–Alop). In this study, the anti-OSCC efficacy of Wog–Alop was evaluated by a patient-derived tumor xenograft (PDX) model. Subsequently, network pharmacology was employed to predict the key targets of Wog–Alop on OSCC, and the predicted key targets were further confirmed by Western blot and immunochemistry. Results: The results revealed that Wog–Alop manifests the higher efficacy in inhibition of OSCC proliferation by regulating the expression of the key targets, Bcl-2, Bax, P53, and Caspase3, implying that the apoptotic mechanism is implicated in Wog–Alop-induced inhibition of proliferation in OSCC. Conclusions: Collectively, the present work demonstrated anti-OSCC bioactivity of Wog–Alop, suggesting that Wog–Alop could be developed as an innovative therapeutic agent for OSCC therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

11 pages, 1161 KB  
Article
Preclinical Efficacy of the Estrogen Receptor Degrader Fulvestrant in Combination with RAF/MEK Clamp Avutometinib and FAK Inhibitor in a Low-Grade Serous Ovarian Cancer Animal Model with Acquired Resistance to Chemotherapy and Aromatase Inhibitor
by Cem Demirkiran, Stefania Bellone, Victoria M. Ettorre, Miranda Mansolf, Tobias Max Philipp Hartwich, Blair McNamara, Michelle Greenman, Yang Yang-Hartwich, Elena Ratner, Niccoló G. Santin, Namrata Sethi, Luca Palmieri, Silvia Coma, Jonathan A. Pachter, Sarah Ottum and Alessandro D. Santin
Int. J. Mol. Sci. 2025, 26(18), 8924; https://doi.org/10.3390/ijms26188924 - 13 Sep 2025
Viewed by 332
Abstract
Low-grade-serous ovarian carcinomas (LGSOC) are rare tumors characterized by a high recurrence rate and limited treatment options. Most LGSOC are estrogen receptor (ER)-positive and demonstrate alterations in the RAS/MAPK pathway. Avutometinib is a dual RAF/MEK clamp, whereas defactinib and VS-4718 are focal adhesion [...] Read more.
Low-grade-serous ovarian carcinomas (LGSOC) are rare tumors characterized by a high recurrence rate and limited treatment options. Most LGSOC are estrogen receptor (ER)-positive and demonstrate alterations in the RAS/MAPK pathway. Avutometinib is a dual RAF/MEK clamp, whereas defactinib and VS-4718 are focal adhesion kinase (FAK) inhibitors. Fulvestrant is an ER antagonist/degrader. We assessed the preclinical efficacy of fulvestrant, avutometinib + VS-4718 (FAKi), and the triple combination in a chemotherapy/aromatase inhibitor-resistant LGSOC patient-derived tumor xenograft (PDX) model. Tissue obtained from a LGSOC patient wild-type for KRAS/NRAS/BRAF mutations in progression after chemotherapy/anastrozole was transplanted into female CB17/lcrHsd-Prkdc/SCID mice (PDX-OVA(K)250). The animals were treated with either saline/control, fulvestrant, avutometinib/FAKi, or the triple combination of avutometinib/FAKi/fulvestrant. Avutometinib and FAKi were given five-days on and two-days off through oral gavage. Fulvestrant was administered subcutaneously weekly. Mechanistic studies were performed ex vivo using Western blot assays. Animals treated with the triple combination demonstrated stronger tumor growth inhibition compared to all the other experimental groups including control/saline (p < 0.001), single-agent fulvestrant (p = 0.04 from day eight and onwards), and avutometinib/FAKi (p = 0.02 from day 18). Median survival for mice treated with saline/control was 29 days while mice in all other experimental groups were alive at day 60 (p < 0.0001). Treatment was well tolerated across all experimental treatments. By Western blot, exposure of OVA(K)250 to the triple combination demonstrated a decrease in phosphorylated MEK (p-MEK) and p-ERK levels. The addition of fulvestrant to avutometinib/FAKi is well tolerated in vivo and enhances the antitumor activity of avutometinib/FAKi in a LGSOC-PDX model with acquired resistance to chemotherapy/aromatase inhibitors. These results support the clinical evaluation of avutometinib/defactinib in combination with fulvestrant or an aromatase inhibitor in patients with recurrent LGSOC. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 4343 KB  
Article
A Murine Model of Glioblastoma Initiating Cells and Human Brain Organoid Xenograft for Photodynamic Therapy Testing
by Alejandra Mosteiro, Diouldé Diao, Carmen Bedia, Leire Pedrosa, Gabriela Ailén Caballero, Iban Aldecoa, Mar Mallo, Francesc Solé, Ana Sevilla, Abel Ferrés, Gloria Cabrera, Marta Muñoz-Tudurí, Marc Centellas, Estela Pineda, Àngels Sierra Jiménez and José Juan González Sánchez
Int. J. Mol. Sci. 2025, 26(18), 8889; https://doi.org/10.3390/ijms26188889 - 12 Sep 2025
Viewed by 330
Abstract
Glioblastoma (GB) is one of the most aggressive brain tumors, characterized by high infiltrative capacity that enables tumor cells to invade healthy brain tissue and evade complete surgical resection. This invasiveness contributes to resistance against conventional therapies and a high recurrence rate. Strategies [...] Read more.
Glioblastoma (GB) is one of the most aggressive brain tumors, characterized by high infiltrative capacity that enables tumor cells to invade healthy brain tissue and evade complete surgical resection. This invasiveness contributes to resistance against conventional therapies and a high recurrence rate. Strategies capable of eliminating residual tumor cells are urgently needed. Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA), an FDA- and EMA-approved compound, induces selective accumulation of the photosensitizer protoporphyrin IX (PpIX) in metabolically active tumor cells, enabling targeted cytotoxicity through light activation. A major limitation to its clinical application is the unclear variation in the cytotoxic effect of PDT according to individual tumoral differences. In this study, we propose and validate an in vivo model of patient-derived GB initiating cells (GICs) and brain organoids to test the effects of PDT. First, patient-derived GICs were molecularly characterized by flow cytometry and copy number variation profiling using OncoScan CNV Assays, then co-cultured with human brain organoids to generate a hybrid model recapitulating key aspects of the tumor microenvironment. 5-ALA photodynamic therapy (PDT) efficacy was assessed in vitro by GFP-based viability measurements, LDH release assays, and TUNEL staining. Then, a murine model was generated to study PDT in vivo, based on a heterotopic (renal subcapsular engraftment) xenograft of the GICs-human brain organoid co-culture. PDT was tested in the model; in each subject, one kidney tumoral engraftment was treated and the contralateral served as a control. Immunofluorescence analysis was used to study the cell composition of the brain organoid-tumoral engraftment after PDT, and the effects on non-GIC cells. The antitumoral effect was determined by the degree of cell death analysis with the TUNEL technique. The GICs-brain organoid co-culture resulted in tumoral growth and infiltration both in vitro and in vivo. The pattern of growth and infiltration varied according to the tumoral genetic profile. 5-ALA PDT resulted in a reduction in the number of GICs and an increase in apoptotic cells in all four lines tested in vitro. A correlation was found between the induced phototoxicity in vivo with the molecular typification of GICs cell lines in vitro. There were no changes in the number or distribution of neuronal cells after the application of PDT, while a reduction in active astrocytes was observed. 5-ALA PDT could be effective in eradicating GICs with a heterogeneous molecular profile. The hybrid human-murine model presented here could be useful in investigating adjuvant therapies in GB, under the concept of personalized medicine. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 2736 KB  
Article
Human Retinal Organoid Modeling Defines Developmental Window and Therapeutic Vulnerabilities in MYCN-Amplified Retinoblastoma
by Jinkyu Park, Gang Cui, Jiyun Hong, Han Jeong, Minseok Han, Min Seok Choi, Jeong Ah Lim, Sanguk Han, Christopher Seungkyu Lee, Min Kim, Sangwoo Kim, Junwon Lee and Suk Ho Byeon
Int. J. Mol. Sci. 2025, 26(17), 8675; https://doi.org/10.3390/ijms26178675 - 5 Sep 2025
Viewed by 1106
Abstract
MYCN amplification without concurrent RB1 mutations characterizes a rare yet highly aggressive subtype of retinoblastoma; however, its precise developmental origins and therapeutic vulnerabilities remain incompletely understood. Here, we modeled this subtype by lentiviral-mediated MYCN overexpression in human pluripotent stem cell-derived retinal organoids, revealing [...] Read more.
MYCN amplification without concurrent RB1 mutations characterizes a rare yet highly aggressive subtype of retinoblastoma; however, its precise developmental origins and therapeutic vulnerabilities remain incompletely understood. Here, we modeled this subtype by lentiviral-mediated MYCN overexpression in human pluripotent stem cell-derived retinal organoids, revealing a discrete developmental window (days 70–120) during which retinal progenitors showed heightened susceptibility to transformation. Tumors arising in this period exhibited robust proliferation, expressed SOX2, and lacked CRX, consistent with origin from primitive retinal progenitors. MYCN-overexpressing organoids generated stable cell lines that reproducibly gave rise to MYCN-driven tumors when xenografted into immunodeficient mice. Transcriptomic profiling demonstrated that MYCN-overexpressing organoids closely recapitulated molecular features of patient-derived MYCN-amplified retinoblastomas, particularly through activation of MYC/E2F and mTORC1 signaling pathways. Pharmacological screening further identified distinct therapeutic vulnerabilities, demonstrating distinct subtype-specific sensitivity of MYCN-driven cells to transcriptional inhibitors (THZ1, Flavopiridol) and the cell-cycle inhibitor Volasertib, indicative of a unique oncogene-addicted state compared to RB1-deficient retinoblastoma cells. Collectively, our study elucidates the developmental and molecular mechanisms underpinning MYCN-driven retinoblastoma, establishes a robust and clinically relevant human retinal organoid platform, and highlights targeted transcriptional inhibition as a promising therapeutic approach for this aggressive pediatric cancer subtype. Full article
(This article belongs to the Special Issue Molecular Pathogenesis and Therapeutics in Retinopathy)
Show Figures

Figure 1

34 pages, 1483 KB  
Review
Choice of Animal Models to Investigate Cell Migration and Invasion in Glioblastoma
by Piyanka Hettiarachchi and Taeju Park
Cancers 2025, 17(17), 2776; https://doi.org/10.3390/cancers17172776 - 26 Aug 2025
Viewed by 1058
Abstract
Glioblastoma is an aggressive and prevalent form of brain cancer characterized by rapid tumor cell migration and invasion into surrounding healthy tissues, making it resistant to conventional treatments. Despite advances in therapeutic approaches, patient prognosis remains poor, with a median survival of approximately [...] Read more.
Glioblastoma is an aggressive and prevalent form of brain cancer characterized by rapid tumor cell migration and invasion into surrounding healthy tissues, making it resistant to conventional treatments. Despite advances in therapeutic approaches, patient prognosis remains poor, with a median survival of approximately 15 months. Tumor cell infiltration along perivascular spaces and white matter tracts is a major driver of recurrence, underscoring the need for experimental models that accurately capture these invasive behaviors. Animal models remain indispensable for this purpose, offering insights that cannot be fully replicated in vitro. This review focuses on applying animal models to elucidate the mechanisms underlying glioblastoma cell migration and invasion, which remain critical to improving therapeutic outcomes. By comparing the advantages of animal models with in vitro systems, we highlight the unique insights animal models provide, particularly in capturing the intricate dynamics of tumor cell motility. In particular, patient-derived xenograft (PDX) models preserve patient-specific heterogeneity and invasion patterns, such as white matter tract and perivascular infiltration, enabling clinically relevant drug testing. Zebrafish xenografts provide real-time, high-resolution visualization of tumor-vascular interactions, facilitating rapid assessment of invasion dynamics and early-stage drug screening. Genetically engineered models (GEM) allow precise discrimination of how defined genetic alterations drive specific invasive routes in the brain. Furthermore, we explore the use of advanced imaging techniques in these models to monitor tumor progression in real time. Moreover, we discuss the major drawbacks of these animal models, such as incomplete immune components and tumor microenvironment recapitulation. Ultimately, animal models are essential for bridging the gap between basic research and clinical application, offering a powerful platform for developing targeted strategies to combat glioblastoma’s relentless progression. Full article
(This article belongs to the Special Issue Cell Biology of Cancer Invasion: 2nd Edition)
Show Figures

Figure 1

21 pages, 5953 KB  
Article
Network Pharmacology and Experimental Validation Identify Paeoniflorin as a Novel SRC-Targeted Therapy for Castration-Resistant Prostate Cancer
by Meng-Yao Xu, Jun-Biao Zhang, Yu-Zheng Peng, Mei-Cheng Liu, Si-Yang Ma, Ye Zhou, Zhi-Hua Wang and Sheng Ma
Pharmaceuticals 2025, 18(8), 1241; https://doi.org/10.3390/ph18081241 - 21 Aug 2025
Viewed by 742
Abstract
Background: Despite advances in prostate cancer treatment, castration-resistant prostate cancer (CRPC) remains clinically challenging due to inherent therapy resistance and a lack of durable alternatives. Although traditional Chinese medicine offers untapped potential, the therapeutic role of paeoniflorin (Pae), a bioactive compound derived from [...] Read more.
Background: Despite advances in prostate cancer treatment, castration-resistant prostate cancer (CRPC) remains clinically challenging due to inherent therapy resistance and a lack of durable alternatives. Although traditional Chinese medicine offers untapped potential, the therapeutic role of paeoniflorin (Pae), a bioactive compound derived from Paeonia lactiflora, in prostate cancer has yet to be investigated. Methods: Using an integrative approach (network pharmacology, molecular docking, and experimental validation), we identified Pae key targets, constructed protein–protein interaction networks, and performed GO/KEGG pathway analyses. A Pae-target-based prognostic model was developed and validated. In vitro and in vivo assays assessed Pae effects on proliferation, migration, invasion, apoptosis, and tumor growth. Results: Pae exhibited potent anti-CRPC activity, inhibiting cell proliferation by 60% and impairing cell migration by 65% compared to controls. Mechanistically, Pae downregulated SRC proto-oncogene, non-receptor tyrosine kinase (SRC) mRNA expression by 68%. The Pae-target-based prognostic model stratified patients into high- and low-risk groups with distinct survival outcomes. Organoid and xenograft studies confirmed Pae-mediated tumor growth inhibition and SRC downregulation. Conclusions: Pae overcomes CRPC resistance by targeting SRC-mediated pathways, presenting a promising therapeutic strategy. Our findings underscore the utility of network pharmacology-guided drug discovery and advocate for further clinical exploration of Pae in precision oncology. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 3228 KB  
Article
CUSP06, a Novel CDH6-Targeted Antibody-Drug Conjugate, Demonstrates Antitumor Efficacy in Multiple CDH6-Expressing Human Cancer Models
by Wei Lu, Jing Shi, Wentao Zhang, Nicole Covino, Amy Penticoff, Robert Phillips, John Cogswell, Laurie Tatalick, Stephanie Pasas-Farmer, Jianjian Zhang, Caiwei Chen, Yixuan Wang, Huiyan Shi, Shuhui Liu, Xun Meng and Eric Slosberg
Pharmaceutics 2025, 17(8), 1049; https://doi.org/10.3390/pharmaceutics17081049 - 13 Aug 2025
Viewed by 1068
Abstract
Background/Objectives: Cadherin-6 (CDH6), also known as K-cadherin, is a type II classic cadherin molecule that plays an important role in the embryonic development of the kidney but has very limited expression in adult tissues. It is overexpressed in several human malignancies, primarily in [...] Read more.
Background/Objectives: Cadherin-6 (CDH6), also known as K-cadherin, is a type II classic cadherin molecule that plays an important role in the embryonic development of the kidney but has very limited expression in adult tissues. It is overexpressed in several human malignancies, primarily in ovarian cancer, renal cell carcinoma, as well as, less frequently, cholangiocarcinoma, uterine serous carcinoma, glioma, lung, pancreatic and thyroid cancers. The characteristic of limited expression in normal tissues, high expression in tumor tissues, and rapid internalization upon antibody binding makes CDH6 a well-suited antibody-drug conjugate (ADC) target. Methods: We developed a novel CDH6-targeting ADC, CUSP06, consisting of a proprietary humanized antibody selective for CDH6, a protease cleavable linker, and an exatecan payload, with a drug-to-antibody ratio (DAR) of 8. We further characterized the pharmacological activities of CUSP06 in multiple in vitro and in vivo models. Results: CUSP06 was selectively bound to cell surface CDH6 and was efficiently internalized into CDH6-positive ovarian cancer cells, and led to the induction of DNA damage and apoptosis of CDH6-positive cancer cells. CUSP06 exhibited strong antiproliferative activity against several CDH6-positive cancer cell lines and demonstrated strong bystander cell killing effect in the cell mixing experiments in vitro. CUSP06 exhibits excellent in vivo antitumor efficacy in CDH6-high or -low cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) models from human ovarian, renal and uterine cancers, as well as cholangiocarcinoma. CUSP06 demonstrated a favorable safety profile in GLP-compliant toxicology studies in Sprague Dawley rats and cynomolgus monkeys. Conclusions: The preclinical data highlighted the therapeutic potential of CUSP06 in multiple CDH6-positive human cancers. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

21 pages, 2524 KB  
Article
The Relevance of G-Quadruplexes in Gene Promoters and the First Introns Associated with Transcriptional Regulation in Breast Cancer
by Huiling Shu, Ke Xiao, Wenyong Zhu, Rongxin Zhang, Tiantong Tao and Xiao Sun
Int. J. Mol. Sci. 2025, 26(14), 6874; https://doi.org/10.3390/ijms26146874 - 17 Jul 2025
Viewed by 513
Abstract
The role of G-quadruplexes (G4s) in gene regulation has been widely documented, especially in gene promoters. However, the transcriptional mechanisms involving G4s in other regulatory regions remain largely unexplored. In this study, we integrated the G4-DNA data derived from 22 breast cancer patient-derived [...] Read more.
The role of G-quadruplexes (G4s) in gene regulation has been widely documented, especially in gene promoters. However, the transcriptional mechanisms involving G4s in other regulatory regions remain largely unexplored. In this study, we integrated the G4-DNA data derived from 22 breast cancer patient-derived tumor xenograft (PDTX) models and MCF7 cell line as potential breast cancer-associated G4s (BC-G4s). Genome-wide analysis showed that BC-G4s are more prevalent in gene promoters and the first introns. The genes accommodating promoter or intronic BC-G4s show significantly higher transcriptional output than their non-G4 counterparts. The biased distribution of BC-G4s in close proximity to the transcription start site (TSS) is associated with an enrichment of transcription factor (TF) interactions. A significant negative correlation was detected between the G4–TF interactions within the first introns and their cognate promoters. These different interactions are complementary rather than redundant. Furthermore, the differentially expressed genes (DEGs) harboring promoter and first intron BC-G4s are significantly enriched in the cell cycle pathway. Notably, promoter BC-G4s of DEGs could be a central hub for TF–TF co-occurrence. Our analysis also revealed that G4-related single nucleotide variants (SNVs) affect the stability of G4 structures and the transcription of disease-related genes. Collectively, our results shed light on how BC-G4s within promoters and first introns regulate gene expression and reinforce the critical role of G4s and G4-related genes in breast cancer-associated processes. Full article
(This article belongs to the Special Issue Molecular Research of Multi-omics in Cancer)
Show Figures

Figure 1

20 pages, 960 KB  
Review
Zebrafish as a Model for Translational Immuno-Oncology
by Gabriela Rodrigues Barbosa, Augusto Monteiro de Souza, Priscila Fernandes Silva, Caroline Santarosa Fávero, José Leonardo de Oliveira, Hernandes F. Carvalho, Ana Carolina Luchiari and Leonardo O. Reis
J. Pers. Med. 2025, 15(7), 304; https://doi.org/10.3390/jpm15070304 - 11 Jul 2025
Cited by 1 | Viewed by 1384
Abstract
Despite remarkable progress in cancer immunotherapy, many agents that show efficacy in murine or in vitro models fail to translate clinically. Zebrafish (Danio rerio) have emerged as a powerful complementary model that addresses several limitations of traditional systems. Their optical transparency, [...] Read more.
Despite remarkable progress in cancer immunotherapy, many agents that show efficacy in murine or in vitro models fail to translate clinically. Zebrafish (Danio rerio) have emerged as a powerful complementary model that addresses several limitations of traditional systems. Their optical transparency, genetic tractability, and conserved immune and oncogenic signaling pathways enable high-resolution, real-time imaging of tumor–immune interactions in vivo. Importantly, zebrafish offer a unique opportunity to study the core mechanisms of health and sickness, complementing other models and expanding our understanding of fundamental processes in vivo. This review provides an overview of zebrafish immune system development, highlighting tools for tracking innate and adaptive responses. We discuss their application in modeling immune evasion, checkpoint molecule expression, and tumor microenvironment dynamics using transgenic and xenograft approaches. Platforms for high-throughput drug screening and personalized therapy assessment using patient-derived xenografts (“zAvatars”) are evaluated, alongside limitations, such as temperature sensitivity, immature adaptive immunity in larvae, and interspecies differences in immune responses, tumor complexity, and pharmacokinetics. Emerging frontiers include humanized zebrafish, testing of next-generation immunotherapies, such as CAR T/CAR NK and novel checkpoint inhibitors (LAG-3, TIM-3, and TIGIT). We conclude by outlining the key challenges and future opportunities for integrating zebrafish into the immuno-oncology pipeline to accelerate clinical translation. Full article
(This article belongs to the Special Issue Advances in Animal Models and Precision Medicine for Cancer Research)
Show Figures

Figure 1

15 pages, 1833 KB  
Article
Comparative Analysis of Gut Microbiota Responses to New SN-38 Derivatives, Irinotecan, and FOLFOX in Mice Bearing Colorectal Cancer Patient-Derived Xenografts
by Katarzyna Unrug-Bielawska, Zuzanna Sandowska-Markiewicz, Magdalena Piątkowska, Paweł Czarnowski, Krzysztof Goryca, Natalia Zeber-Lubecka, Michalina Dąbrowska, Ewelina Kaniuga, Magdalena Cybulska-Lubak, Aneta Bałabas, Małgorzata Statkiewicz, Izabela Rumieńczyk, Kazimiera Pyśniak, Michał Mikula and Jerzy Ostrowski
Cancers 2025, 17(13), 2263; https://doi.org/10.3390/cancers17132263 - 7 Jul 2025
Viewed by 929
Abstract
Background: Symbiotic gut microbiota can enhance cancer therapy efficacy, while treatment-induced dysbiosis may reduce effectiveness or increase toxicity. Our preclinical study compared the anticancer effects and impact on fecal microbiota and metabolites of two water-soluble SN-38 derivatives (BN-MePPR and BN-MOA), with those observed [...] Read more.
Background: Symbiotic gut microbiota can enhance cancer therapy efficacy, while treatment-induced dysbiosis may reduce effectiveness or increase toxicity. Our preclinical study compared the anticancer effects and impact on fecal microbiota and metabolites of two water-soluble SN-38 derivatives (BN-MePPR and BN-MOA), with those observed after treatment with Irinotecan, and the FOLFOX regimen in NOD scid gamma mice bearing patient-derived colon adenocarcinoma xenografts (CRC PDX). Methods: Five individual experiments with Irinotecan and its derivatives and eight individual experiments with FOLFOX were conducted using eight CRC PDX models. Chemotherapeutics were administered intraperitoneally 4–5 times at 5-day intervals. Fecal samples were collected before and after treatment. Microbiota composition was analyzed by 16S rRNA gene (V3–V4 regions) sequencing. Mass spectrometry was used to quantify short-chain fatty acids (SCFAs) and amino acids (AAs). Results: All treatments significantly inhibited tumor growth versus controls. However, no significant changes were observed in gut microbiota α- and β-diversity between treated and untreated groups. Tumor progression in controls was associated with increased abundance of Marvinbryantia, Lactobacillus, Ruminococcus, and [Eubacterium] nodatum group. FOLFOX-treated mice showed increased Marvinbryantia, Bacteroides, and Candidatus Arthromitus, and decreased Akkermansia. No distinct taxa changes were found in the Irinotecan or derivative groups. SCFA levels remained unchanged across groups, while BN-MePPR, BN-MOA, and Irinotecan all increased AA concentrations. Conclusions: Contrary to earlier toxicological data, these findings indicate a relatively limited impact of the tested chemotherapeutics on the gut microbiome and metabolome, emphasizing the importance of research method selection in preclinical studies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop