Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = pearlite microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6338 KB  
Article
High-Strength Low-Alloy Steels for Automobiles: Microstructure and Mechanical Properties
by Guoqiang Ma, Bo Gao, Zhen Chen, Yuquan Li, Ruirui Wu, Hailian Gui and Zhibing Chu
Materials 2025, 18(20), 4660; https://doi.org/10.3390/ma18204660 - 10 Oct 2025
Viewed by 192
Abstract
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy [...] Read more.
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD), while mechanical properties were evaluated with Vickers hardness tester and tensile tests. Both steels exhibited a ferrite matrix with spheroidized carbides/pearlites. However, Sample A displayed equiaxed ferrite grains with localized pearlite colonies, while Sample B featured pronounced elongated ferrite grains with a band structure. Tensile testing revealed that Sample B had higher ultimate tensile stress and yield stress compared to Sample A. Texture analysis indicated that both steels were dominated by α-fiber and γ-fiber textures, with minor θ-fiber texture, resulting in minimal mechanical anisotropy between the rolling direction (RD) and transverse direction (TD). The quantitative assessment of strengthening mechanisms, based on microstructural parameters and experimental data, revealed that grain boundary strengthening dominates, with dislocation strengthening also contributing significantly. This work provides the first comprehensive quantification of individual strengthening contributions in automotive HSLA steels, offering critical guidance for developing further higher-strength automotive steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2334 KB  
Article
Effect of Imposed Shear During Oval-Caliber Rolling on the Properties of Mn–Si Low-Alloy Steel
by Kairosh Nogayev, Maxat Abishkenov, Zhassulan Ashkeyev, Gulzhainat Akhmetova, Saltanat Kydyrbayeva and Ilgar Tavshanov
Eng 2025, 6(10), 265; https://doi.org/10.3390/eng6100265 - 4 Oct 2025
Viewed by 223
Abstract
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and [...] Read more.
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and kinematic conditions. Tensile testing demonstrated that, relative to the unrolled condition (σ0.2 ≈ 269 MPa; σᵤ ≈ 494 MPa), the classical route increased yield and ultimate strengths to ~444 MPa and ~584 MPa, respectively, whereas the modified scheme yielded comparable values (~433 MPa and ~572 MPa) while providing superior ductility (δ ≈ 26.8%, ψ ≈ 68.6%). Vickers microhardness decreased systematically from 244 HV (unrolled) to 213 HV (classical) and 184 HV (modified), with the modified scheme exhibiting the lowest scatter (±4.8 HV), confirming enhanced structural uniformity. Scanning electron microscopy revealed ferrite–pearlite refinement under both rolling sequences, with the modified scheme producing finer equiaxed ferrite grains (~3–5 µm) and attenuated longitudinal banding. These features are indicative of shear-assisted dynamic recrystallization, activated by the inclined oval calibers. The findings highlight that the modified rolling strategy achieves a favorable strength–ductility balance and improved homogeneity, suggesting its applicability for advanced thermomechanical processing of low-alloy steels. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

16 pages, 6351 KB  
Article
The Role of La–Ti–Al–O Complex Inclusions in Microstructure Refinement and Toughness Enhancement of the Coarse-Grained Heat-Affected Zone in High-Heat-Input Welding
by Qiuming Wang, Jiangli He, Qingfeng Wang and Riping Liu
Metals 2025, 15(10), 1105; https://doi.org/10.3390/met15101105 - 3 Oct 2025
Viewed by 215
Abstract
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), [...] Read more.
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), and limited acicular ferrite (AF). This study investigates the effect of lanthanum (La) addition to Nb–Ti steel, leading to the formation of composite inclusions with a LaAlO3·TiN core surrounded by MnS/MnC precipitates. Unlike conventional Al2O3·MnS inclusions in Nb–Ti steel, these La-modified inclusions promote enhanced AF nucleation. This not only refines prior austenite grains but also reduces detrimental microstructural constituents such as GBF and FSP. As a result, the impact energy at −40 °C significantly improves from 23 J (Nb–Ti steel) to 137 J (Nb–Ti–La steel). Moreover, the inclusions exhibit an increase in size but a decrease in number density. The Nb–Ti–La variant demonstrates a higher AF volume fraction and increased AF density within the CGHAZ. The refined grain structure, along with an increased proportion of high-angle grain boundaries, effectively impedes secondary crack propagation. These microstructural modifications contribute to a substantial improvement in the low-temperature impact toughness of welded joints. Full article
Show Figures

Figure 1

16 pages, 4973 KB  
Article
Microstructure Evolution of a TRIP Fe–1.4Si–2.6Mn–0.17C Steel After Intercritical Treating and Its Effect on Mechanical Properties
by Valeria Miranda-Lopez, Manuel Alejandro Beltrán-Zúñiga, Victor M. Lopez-Hirata, Hector J. Dorantes-Rosales and Maribel L. Saucedo-Muñoz
Metals 2025, 15(10), 1096; https://doi.org/10.3390/met15101096 - 1 Oct 2025
Viewed by 256
Abstract
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. [...] Read more.
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. Microstructural analysis was performed by optical microscopy, scanning electron microscopy, and X-ray diffraction. All heat-treated specimens were mechanically characterized by uniaxial tension and Vickers hardness tests. Thermo-Calc software 2024b was used to analyze the microstructure and phases of heat-treated steel. The microstructural characterization results revealed that the phases and microconstituents were ferrite, austenite, cementite, pearlite, and retained austenite. Thermo-Calc results were consistent with the phases and microconstituents identified for each heat-treatment condition. On the other hand, the tension test results showed that the yield strength and ultimate tensile strength ranged between 690 and 820 MPa and 1190–1255 MPa, respectively, for these heat-treated steels. Likewise, Thermo-Calc proved to be a powerful tool for designing intercritical heat treatments for TRIP steels. Full article
Show Figures

Graphical abstract

16 pages, 7974 KB  
Article
The Impact of Hydrogen Charging Time on Microstructural Alterations in Pipeline Low-Carbon Ferrite–Pearlite Steel
by Vanya Dyakova, Boris Yanachkov, Kateryna Valuiska, Yana Mourdjeva, Rumen Krastev, Tatiana Simeonova, Krasimir Kolev, Rumyana Lazarova and Ivaylo Katzarov
Metals 2025, 15(10), 1079; https://doi.org/10.3390/met15101079 - 27 Sep 2025
Viewed by 354
Abstract
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying [...] Read more.
This study investigates the effect of hydrogen charging time on the mechanical properties and microstructural evolution of low-carbon ferrite–pearlite steel that has been in service for over 30 years in natural gas transmission. Specimens were subjected to in-situ electrochemical hydrogen charging for varying durations, followed by tensile testing. Detailed microstructural analysis was performed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Despite negligible changes in the overall hydrogen content (CH≈ 4.0 wppm), significant alterations in fracture morphology were observed. Fractographic and TEM analyses revealed a clear transition from ductile fracture in uncharged specimens to a predominance of brittle fracture modes (quasi-cleavage, intergranular, and transgranular) in hydrogen-charged samples. The results show time-dependent microstructural changes, including increased dislocation density and the formation of prismatic loop debris, particularly within the ferrite phase. Prolonged charging leads to localized embrittlement, which is explained by enhanced hydrogen trapping at ferrite-cementite boundaries, grain boundaries, and dislocation cores. TEM investigations further indicated a sequential activation of hydrogen embrittlement mechanisms: initially, Hydrogen-Enhanced Localized Plasticity (HELP) dominates within ferrite grains, followed by Hydrogen-Enhanced Decohesion (HEDE), particularly at ferrite-cementite interfaces in pearlite colonies. These findings demonstrate that extended hydrogen charging promotes defect localization, dislocation pinning, and interface decohesion, ultimately accelerating fracture propagation. The study provides valuable insight into the degradation mechanisms of ferrite-pearlite steels exposed to hydrogen, highlighting the importance of charging time. The results are essential for assessing the reliability of legacy pipeline steels and guiding their safe use in future hydrogen transport infrastructure. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

17 pages, 3251 KB  
Article
Determination of Final Ferrite Grain Size During Multiple-Stage Controlled Cooling of Low-Carbon, Low-Alloy Steels
by Nathan Dixon, Carl Slater, Jinlong Du and Claire Davis
Metals 2025, 15(9), 956; https://doi.org/10.3390/met15090956 - 28 Aug 2025
Viewed by 614
Abstract
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a [...] Read more.
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a large undercooling, which is the driving force for ferrite to form. The second stage involves slow natural (air) cooling, where the cooling rates and the transition temperature from water to air cooling are carefully controlled. This is crucial to prevent the formation of bainite or martensite. Ferrite grain sizes can be predicted for continuous cooling and isothermal transformation based on the prior austenite grain size, composition and cooling rate/isothermal transformation temperature. However, predictions for multiple-cooling-stage transformations have not been reported. In this work, EN S355-grade steel was used to study ferrite grain size development during continuous cooling, isothermal holding and complex (two-stage or multi-stage) cooling. Dilatometry and microstructure assessment was used to study the relationship between the final ferrite grain size and undercooling at which 40% of the ferrite formed. It was found that any changes in cooling rate/temperature (including a possible ‘bounce back’ in temperature due to latent heat formation) after 40% of the ferrite had formed had a negligible effect on the final ferrite grain size, assuming that re-austenitization or bainite formation was avoided. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels (2nd Edition))
Show Figures

Figure 1

13 pages, 2300 KB  
Article
Arc Quenching Effects on the Groove Shapes of Carbon Steel Tubes
by Tran Minh The Uyen, Van-Thuc Nguyen, Pham Quan Anh, Pham Son Minh and Nguyen Ho
Metals 2025, 15(9), 928; https://doi.org/10.3390/met15090928 - 22 Aug 2025
Viewed by 497
Abstract
This study investigates the impact of arc-hardening parameters on a groove-shaped S45C steel tube, with a focus on surface hardness and microstructure. According to the findings, when arc quenching occurs, the tube’s surface hardness increases significantly compared to its original hardness. The surface [...] Read more.
This study investigates the impact of arc-hardening parameters on a groove-shaped S45C steel tube, with a focus on surface hardness and microstructure. According to the findings, when arc quenching occurs, the tube’s surface hardness increases significantly compared to its original hardness. The surface layer hardness can increase to 50.3 HRC, which is 3.4 times greater than the untreated surface. Changing arc quenching parameters such as current intensity, gas flow rate, arc length, scan speed, heating angle, and cooling angle causes a variation in surface hardness due to the balance of heat input and cooling value. Moreover, the microhardness distribution is divided into three zones: the hardened zone (with a high hardness value), the heat-affected zone (HAZ), which has rapidly declining hardness, and the base metal (with a low hardness value). The hardened zone could have a hardness with a load of 0.3 N of 440 HV and a case depth of about 900 μm. The next zone is the HAZ, where the hardness with a load of 0.3 N drops significantly. The hardness in the base metal zone recovers to its original value of 152 HV. Interestingly, the microstructure, under the hardness distribution, illustrates the relationship between the hardness value and its phases. The hardened zone consists of martensite and residual austenite phases, resulting in a high hardness value. The bainite phase constitutes the HAZ, which correlates to the zone of rapid hardness reduction. Finally, the base metal zone has ferrite and pearlite microstructures, indicating the softest zone. The investigation’s findings may increase our understanding of the arc-hardening process and widen its industrial applications. Full article
Show Figures

Figure 1

12 pages, 5636 KB  
Article
CTOD Evaluation of High-Nitrogen Steels for Low-Temperature Welded Structures
by Min-Suk Oh, Young-Gon Kim and Sung-Min Joo
Metals 2025, 15(8), 916; https://doi.org/10.3390/met15080916 - 19 Aug 2025
Viewed by 596
Abstract
Welded structures, such as offshore platforms, require robust toughness in their heat-affected zones (HAZ) to withstand low-temperature environments. The coarse-grained HAZ (CGHAZ) adjacent to the fusion boundary often exhibits reduced toughness due to grain coarsening, particularly under high heat input welding conditions aimed [...] Read more.
Welded structures, such as offshore platforms, require robust toughness in their heat-affected zones (HAZ) to withstand low-temperature environments. The coarse-grained HAZ (CGHAZ) adjacent to the fusion boundary often exhibits reduced toughness due to grain coarsening, particularly under high heat input welding conditions aimed at enhancing productivity. To address this, high-nitrogen steels containing TiN particles were developed to suppress austenite grain growth by leveraging the thermal stability of TiN precipitates. Three high-nitrogen steels with varying carbon contents (0.09%, 0.11%, and 0.15%) were fabricated and subjected to crack tip opening displacement (CTOD) testing at −20 °C and −40 °C to evaluate low-temperature HAZ toughness. Results indicate that high-nitrogen TiN steels exhibit superior CTOD values (1.38–2.73 mm) compared to conventional 490-MPa class steels, with no significant reduction in toughness despite increased carbon content. This is attributed to the presence of stable TiN particles, which restrict austenite grain growth during welding thermal cycles, and the formation of fine ferrite–pearlite microstructures in the HAZ. These findings highlight the efficacy of high-nitrogen TiN steels in enhancing low-temperature fracture resistance for welded structures. Full article
(This article belongs to the Special Issue Advances in Welding Processes of Metallic Materials)
Show Figures

Graphical abstract

18 pages, 6346 KB  
Article
Degradation Characteristics of Microstructure and Mechanical Properties on the Cross-Section of a Massive Casting Made of G17Mn5 Steel
by Barbara Elżbieta Kalandyk, Dariusz Boroński, Paweł Maćkowiak, Małgorzata Trepczyńska-Łent, Justyna Kasińska and Sebastian Sobula
Materials 2025, 18(16), 3877; https://doi.org/10.3390/ma18163877 - 19 Aug 2025
Viewed by 534
Abstract
This paper presents the changes in microstructure and mechanical properties that occurred across the wall cross-section of a massive slag ladle casting due to service conditions. The slag ladle was made of low-carbon cast steel. Based on the test results, it was shown [...] Read more.
This paper presents the changes in microstructure and mechanical properties that occurred across the wall cross-section of a massive slag ladle casting due to service conditions. The slag ladle was made of low-carbon cast steel. Based on the test results, it was shown that the working environment influenced the macro-segregation of C and S on the cross-section of the wall and, consequently, had an effect on the changes in microstructure. A pearlitic–ferritic microstructure was found in the central part, while in the outer and inner parts of the wall, the microstructure was of a ferritic–pearlitic type. This change mainly influenced the impact energy—the lowest values were obtained at the centre of the wall (24 J at +20 °C). In the remaining areas tested on the wall cross-section at +20 °C, the impact energy exceeded the minimum required value of 27 J in the Charpy test. The tests revealed the presence of a network of cracks in areas adjacent to the inner surface of the ladle wall, which had a negative impact on the impact energy values, as did the presence of non-metallic inclusions. The changes found in the microstructure as a result of the ladle operation caused significant differences in properties such as impact energy and hardness, while also affecting, though to a lesser extent, the mechanical properties (UTS = 397–434 MPa; YS = 222–236 MPa). Full article
Show Figures

Graphical abstract

22 pages, 6208 KB  
Article
Corrosion Behavior of Annealed 20MnCr5 Steel
by Dario Kvrgić, Lovro Liverić, Paweł Nuckowski and Sunčana Smokvina Hanza
Materials 2025, 18(15), 3566; https://doi.org/10.3390/ma18153566 - 30 Jul 2025
Viewed by 468
Abstract
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data [...] Read more.
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data interpretability, a correlation analysis was performed and visualized through a correlation diagram, enabling statistical assessment of the relationships between grain features, phase distribution, mechanical properties, and corrosion indicators. The results demonstrated that corrosion resistance in 20MnCr5 steel is not governed by a single parameter but by the interplay between grain size, morphology, and phase balance. Excessive pearlite content or coarse, irregular grains were consistently associated with higher corrosion rates and lower electrochemical stability. In contrast, a moderate phase ratio and equiaxed grain structure, achieved through normalization, resulted in better corrosion resistance, confirmed by the highest polarization resistance and lowest corrosion current density values among all samples. Although increased grain refinement improved the hardness, it did not always correlate with a better corrosion performance, especially when morphological uniformity was lacking. This highlights the importance of balancing mechanical and corrosion properties through carefully controlled thermal processing. Full article
Show Figures

Figure 1

16 pages, 3146 KB  
Article
The Influence of Spheroidizing Annealing Process on the Microstructure and Low-Temperature Impact Toughness of Q235 Steel Used in Coal Explosion-Proof Equipment
by Hongkui Zhang, Yipeng Lan, Xinming Liu and Guanglong Li
Metals 2025, 15(8), 833; https://doi.org/10.3390/met15080833 - 25 Jul 2025
Viewed by 1282
Abstract
To improve the low-temperature impact toughness of Q235B steel, this paper adopts a heat treatment method combining quenching and spheroidizing annealing to enhance its microstructure and properties and conducts a detailed analysis of the evolution of the microstructure of Q235 steel under the [...] Read more.
To improve the low-temperature impact toughness of Q235B steel, this paper adopts a heat treatment method combining quenching and spheroidizing annealing to enhance its microstructure and properties and conducts a detailed analysis of the evolution of the microstructure of Q235 steel under the spheroidizing annealing process. The results show that spheroidizing annealing at 700 °C has a significant spheroidizing effect on the pearlite structure: after 6 h of annealing, the room-temperature tensile strength reaches 522 MPa, the elongation is 31.28%, and the impact energy is 323.14 J; as the impact temperature decreases, the impact toughness of Q235B steel decreases, but the impact energy can still remain at 291.62 J under service conditions of −20 °C. This is attributed to the spherical cementite formed by spheroidizing annealing, which has better dispersibility and can reduce stress concentration, thereby improving the low-temperature impact toughness. Full article
Show Figures

Figure 1

13 pages, 4282 KB  
Article
Cerium Addition Enhances Impact Energy Stability in S355NL Steel by Tailoring Microstructure and Inclusions
by Jiandong Yang, Bijun Xie and Mingyue Sun
Metals 2025, 15(7), 802; https://doi.org/10.3390/met15070802 - 16 Jul 2025
Viewed by 510
Abstract
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical [...] Read more.
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical components. In this study, vacuum-induction-melted ingots of S355NL steel containing 0–0.086 wt.% rare earth cerium were prepared. The effects of Ce on microstructures, inclusions, and impact toughness were systematically investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and Charpy V-notch testing. The results indicate that appropriate Ce additions (0.0011–0.0049 wt.%) refine the average grain size from 5.27 μm to 4.88 μm, reduce the pearlite interlamellar spacing from 204 nm to 169 nm, and promote the transformation of large-size Al2O3-MnS composite inclusions into fine, spherical, Ce-rich oxysulfides. Charpy V-notch tests at –50 °C reveal that 0.0011 wt.% Ce enhances both longitudinal (269.7 J) and transverse (257.4 J) absorbed energies while minimizing anisotropy (E_t/E_l  =  1.01). Conversely, excessive Ce addition (0.086 wt.%) leads to coarse inclusions and deteriorates impact performance. These findings establish an optimal Ce window (0.0011–0.0049 wt.%) for microstructural and inclusion engineering to enhance the low-temperature impact toughness of S355NL steel. Full article
Show Figures

Figure 1

16 pages, 8314 KB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 735
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

19 pages, 12177 KB  
Article
Comparison of Microstructure and Hardening Ability of DCI with Different Pearlite Contents by Laser Surface Treatment
by Zile Wang, Xianmin Zhou, Daxin Zeng, Wei Yang, Jianyong Liu and Qiuyue Shi
Metals 2025, 15(7), 734; https://doi.org/10.3390/met15070734 - 30 Jun 2025
Viewed by 371
Abstract
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to [...] Read more.
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to facilitate the scientific selection of DCI for specific applications. In this study, a Laserline-LDF3000 fiber-coupled semiconductor laser with a rectangular spot was used to harden the surface of ductile cast irons (DCIs) with different pearlite contents. The hardened surface layer having been solid state transformed (SST) and with or without being melted–solidified (MS) was obtained under various process parameters. The microstructure, hardened layer depth, hardness and hardening ability were analyzed and compared as functions of pearlite contents and laser processing parameters. The results show that the MS layers on the DCIs with varied pearlite contents have similar microstructures consisting of fine transformed ledeburite, martensite and residual austenite. The microstructure of the SST layer includes martensite, residual austenite and ferrite, whose contents vary with the pearlite content of DCI. In the pearlite DCI, martensite and residual austenite are found, while in ferrite DCI, there is only a small amount of martensite around the graphite nodule, with a large amount of unaltered ferrite remaining. There exists no significant difference in the hardness of MS layers among DCIs with different pearlite contents. Within the SST layer, the variation in the hardness value in the pearlite DCI is relatively small, but it gradually decreases along the depth in the ferrite DCI. In the transition region between the SST layer and the base metal (BM), there is a steep decrease in hardness in the pearlite DCI, but it decreases gently in the ferrite DCI. The depth of the hardened layer increases slightly with the increase in the pearlite content in the DCI; however, the effective hardened depth and the hardening ability increase significantly. When the pearlite content of DCI increases from 10% to 95%, its hardening ability increases by 1.1 times. Full article
Show Figures

Figure 1

15 pages, 5025 KB  
Article
Impact of High Contact Stress on the Wear Behavior of U75VH Heat-Treated Rail Steels Applied for Turnouts
by Ruimin Wang, Guanghui Chen, Nuoteng Xu, Linyu Sun, Junhui Wu and Guang Xu
Metals 2025, 15(6), 676; https://doi.org/10.3390/met15060676 - 18 Jun 2025
Viewed by 493
Abstract
Considering the greater contact stress of turnout rails during wear and the development of heavy-haul railways, twin-disc sliding–rolling wear tests were performed on U75VH heat-treated rail steels applied for turnouts under high contact stress ranging from 1980 MPa to 2270 MPa. The microstructure [...] Read more.
Considering the greater contact stress of turnout rails during wear and the development of heavy-haul railways, twin-disc sliding–rolling wear tests were performed on U75VH heat-treated rail steels applied for turnouts under high contact stress ranging from 1980 MPa to 2270 MPa. The microstructure of the worn surfaces was analyzed using optical microscope (OM), scanning electron microscope (SEM), 3D microscope, electron backscatter diffraction (EBSD), and hardness tests. The results indicated that after 10 h of wear, the weight loss was 63 mg at a contact stress of 1980 MPa, while it reached 95 mg at a contact stress of 2270 MPa. At a given contact stress, the wear rate increased with increasing wear time, while a nearly linear increase in wear rate was observed with increasing contact stress. As wear time and contact stress increased, the worn surface showed more pronounced wear morphology, leading to greater surface roughness. Crack length significantly increased with wear time, and higher contact stress facilitated crack propagation, resulting in longer, deeper cracks. After 10 h of wear under a contact stress of 2270 MPa, large-scale cracks with a maximum length of 128.29 μm and a maximum depth of 31.10 μm were formed, indicating severe fatigue wear. Additionally, the thickness of the plastic deformation layer increased with the wear time and contact stress. The surface hardness was dependent on the thickness of this layer. After 10 h of wear under the minimum and maximum contact stresses, hardening rates of 0.39 and 0.48 were achieved, respectively. Full article
(This article belongs to the Special Issue Metallic Materials Behaviour Under Applied Load)
Show Figures

Figure 1

Back to TopTop