Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = pelagic species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3670 KB  
Article
Study on Trace Element Characteristics in Otoliths of Pacific Saury (Cololabis saira) in Northwest Pacific Ocean
by Chuanxiang Hua, Jialin He, Qingcheng Zhu and Fei Li
Fishes 2025, 10(9), 425; https://doi.org/10.3390/fishes10090425 (registering DOI) - 1 Sep 2025
Abstract
The Pacific saury (Cololabis saira), widely distributed in the North Pacific Ocean, is a significant pelagic fishery species in China and has been designated as a priority management species by the North Pacific Fisheries Commission (NPFC). This study examined the trace [...] Read more.
The Pacific saury (Cololabis saira), widely distributed in the North Pacific Ocean, is a significant pelagic fishery species in China and has been designated as a priority management species by the North Pacific Fisheries Commission (NPFC). This study examined the trace element characteristics of Pacific saury otoliths and the migration patterns of this species. Based on samples collected from the high seas of the Northwest Pacific Ocean, we estimated their daily age, measured the trace element contents of the otoliths at various life history stages, and analyzed the Sr/Ca, Ba/Ca, Mg/Ca, and Na/Ca values in the otoliths and their relationship with sea surface temperature (SST) changes. The main findings were as follows: (1) Cluster analysis showed significant differences (p < 0.05) in the Sr/Ca, Ba/Ca, Mg/Ca, and Na/Ca values in the core regions of otoliths among the clusters. (2) An analysis of the elemental characteristics across life history stages showed significant differences (p < 0.05) in the Sr/Ca values prior to the juvenile stage (31~90 d) and following the young stage (91~180 d). Significant variations (p < 0.05) in the Ba/Ca values during the juvenile and immature stages imply vertical migration behavior. Additionally, the Mg/Ca and Na/Ca values in adult stages showed significant differences (p < 0.05) to those in early life history stages. (3) GAM fitting and cross-correlation function tests demonstrated a statistically significant (p < 0.05) nonlinear lagged relationship between the otolith Sr/Ca values and SST. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

20 pages, 908 KB  
Article
Diversity and Seasonal Variation in Live Baits Caught in Hann Bay, Dakar, Senegal
by Maryam Keita, Ndiaga Thiam, Fambaye Ngom, Justin Kantoussan, Ismaïla Ndour and Oumar Sadio
Diversity 2025, 17(9), 608; https://doi.org/10.3390/d17090608 - 28 Aug 2025
Viewed by 258
Abstract
Live bait fishing, which was initiated around the 1950s on the coast of Dakar for the exploitation of tropical tunas, remains poorly studied. This study aims to examine the ichthyological diversity in Hann Bay and analyze the seasonal variation in species used as [...] Read more.
Live bait fishing, which was initiated around the 1950s on the coast of Dakar for the exploitation of tropical tunas, remains poorly studied. This study aims to examine the ichthyological diversity in Hann Bay and analyze the seasonal variation in species used as live bait. Ten experimental fishing campaigns were conducted between February and November 2023, using a beach seine and a purse seine. Captured individuals were sorted by species, counted, and weighed. Salinity and temperature drive seasonal changes in live bait fish communities in Hann Bay. Beach seine captured 389,171 individuals from 65 species, representing a biomass of 1743 kg. Purse seine yielded 9408 individuals from 62 species, representing a total of 306 kg. Ten species were identified as live bait, ten of which were caught with beach seine (Engraulis encrasicolus dominated) and eight with purse seine (Sardinella maderensis dominated). Eight of the ten live bait species were caught by both purse seine and beach seine. For beach seine, Shannon’s index was higher during the cold season, indicating a better distribution of species abundance. For purse seine, species abundance was lower in the cold season. Pielou’s evenness index indicated a more balanced assemblage in the cold season for beach seine (0.65) and in the warm season for purse seine (0.74). The number and weight of live baits did not vary significantly between seasons. These results may support the sustainable management of coastal small pelagics, whose juveniles are used as live bait. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

19 pages, 3672 KB  
Article
Analysis of Fishery Resource Distribution and Seasonal Variations in the East China Sea: Utilizing Trawl Surveys, Environmental DNA, and Scientific Echo Sounders
by Sara Lee, Jung Kwan Lee, Guenchang Park, Wooseok Oh and Kyounghoon Lee
Water 2025, 17(16), 2477; https://doi.org/10.3390/w17162477 - 20 Aug 2025
Viewed by 520
Abstract
Assessing fishery resources is crucial for sustainable marine ecosystem management and the operation of fisheries. This study integrates trawl surveys, environmental DNA (eDNA) analysis, and scientific echo sounder techniques to analyze the fishery resource distribution of and seasonal variations in the East China [...] Read more.
Assessing fishery resources is crucial for sustainable marine ecosystem management and the operation of fisheries. This study integrates trawl surveys, environmental DNA (eDNA) analysis, and scientific echo sounder techniques to analyze the fishery resource distribution of and seasonal variations in the East China Sea. Surveys were conducted in April, July, August, and November 2022, utilizing bottom trawl sampling, eDNA metabarcoding, and acoustic data collection. The results revealed temporal differences in species composition, with crustaceans dominating in terms of abundance and fish species in biomass. The integration of eDNA analysis provided broader species detection, including cryptic and pelagic species, while acoustic techniques enabled large-scale resource assessment. However, discrepancies between methods highlighted the need for methodological refinement. Dominant species exhibited seasonal variation, with Portunus trituberculatus prevailing in spring (April), Trachurus japonicus and Scomber japonicus in summer (July–August), and Pampus argenteus in late autumn (November). A comparative analysis revealed that eDNA is sensitive to pelagic and cryptic species, trawl surveys effectively detect demersal fish, and acoustics allow for broad-scale biomass estimation, highlighting the complementary value of method integration. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

16 pages, 13033 KB  
Article
Trophic Ecology of Slender Snipe Eel Nemichthys scolopaceus Richardson, 1848 (Anguilliformes: Nemichthyidae) in the Central Mediterranean Sea
by Andrea Geraci, Andrea Scipilliti, Ylenia Guglielmo, Chiara Lauritano, Adriana Profeta, Roberta Minutoli, Francesca Veneziano, Davide Di Paola, Daniela Massi, Letterio Guglielmo, Pierluigi Carbonara and Antonia Granata
Water 2025, 17(16), 2405; https://doi.org/10.3390/w17162405 - 14 Aug 2025
Viewed by 285
Abstract
The slender snipe eel Nemichthys scolopaceus Richardson, 1848 is cosmopolitan in tropical and temperate seas, inhabiting the mesopelagic and bathypelagic zone between 200 and 1000 m depth. It is known to be an active predator in the DSL (Deep Scattering Layer) and the [...] Read more.
The slender snipe eel Nemichthys scolopaceus Richardson, 1848 is cosmopolitan in tropical and temperate seas, inhabiting the mesopelagic and bathypelagic zone between 200 and 1000 m depth. It is known to be an active predator in the DSL (Deep Scattering Layer) and the NBA (Near Bottom Aggregation), feeding mostly on decapod and euphausiid crustaceans, and playing a central role in carbon fluxes through meso- and bathypelagic ecosystems. Despite its potential importance in the deep trophic web ecosystem, the trophic ecology of Nemichthys scolopaceus is not well known. The aim of this study was to start to fill this knowledge gap. A total of 35 specimens of N. scolopaceus caught through bottom trawling in the Mediterranean Sea were analyzed in the laboratory for stomach content composition. As expected, mainly decapod crustaceans were found, in particular Plesionika martia, Pasiphaea multidentata, Funchalia woodwardi, and Robustosergia robusta species. The degree of digestion of prey in the stomachs was high in all cases. Our findings seem to confirm the specialist diet of Nemichthys scolopaceus based on shrimp-like crustaceans. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

22 pages, 4061 KB  
Article
Increasing Sea Surface Temperatures Driving Widespread Tropicalization in South Atlantic Pelagic Fisheries
by Rodrigo Sant’Ana, Daniel Thá, Lea-Anne Henry, Rafael Schroeder and José Angel Alvarez Perez
Biology 2025, 14(8), 1039; https://doi.org/10.3390/biology14081039 - 13 Aug 2025
Viewed by 465
Abstract
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain [...] Read more.
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain fish. Through the analysis of catch composition data, thermal preferences, and climatic data, we described the temporal variability in the mean temperature of the catch and assessed the role of sea surface temperature and the Brazil Current’s transport volumes as drivers of such variability. We observed a significant increase in the mean temperature of the catches, indicating a transition towards a predominance of warm-water species, especially pronounced on the western side of the South Atlantic Ocean. This shift was further corroborated by a significant rise in the proportion of warm-water species over time. Additionally, this study observes a continuous increase in SST during the entire time series on both sides of the South Atlantic Ocean, with significant positive trends. The analysis of catch composition through ordination methods and estimates of beta diversity reveals a transition from an early scenario characterized by mostly cold-water species to a late scenario, dominated by a greater diversity of species with a prevalence of warm-water affinities. These findings underscore the profound impact of ocean warming on marine biodiversity, with significant implications for fisheries management and ecosystem services. Full article
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Ontogenetic and Sex-Specific Isotopic Niches of Blue Sharks (Prionace glauca) in the Northwestern Pacific
by Pengpeng Ding, Satoshi Katayama, Hiroaki Murakami and Tah Andrew Ryan
Fishes 2025, 10(8), 402; https://doi.org/10.3390/fishes10080402 - 12 Aug 2025
Viewed by 425
Abstract
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal [...] Read more.
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal length (PCL) and stable isotope levels (δ13C, δ15N) in the muscle tissue (n = 52). Mean PCL varied based on the month of sampling (p = 0.034), with the smallest individuals occurring in July (143.0 ± 4.3 cm) and the largest in October (178.0 ± 2.6 cm). Stable isotope analysis (δ13C and δ15N) indicated consistent offshore habitat use (δ13C: from −20.70 to −18.82‰) and significant nitrogen isotopic differences among life history (δ15N: from 10.23 to 15.72‰; Kruskal–Wallis test, p = 0.037). The elevated δ15N values observed in the subadult group (relative to juvenile individuals) are likely due to trophic enrichment associated with morphological development. Females exhibited markedly larger isotopic niches (SEAc = 2.42‰2) than did males (0.57‰2), and niche overlap was greater within each sex (40–52%) than between sexes (<21%). These results revealed sex-specific ecological roles and trophic strategies throughout the life history of P. glauca. Understanding these foraging differences can help with catch reduction and habitat-protection measures in the transboundary pelagic fisheries of the northwestern Pacific. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

17 pages, 2943 KB  
Article
Overview of a Keystone Small Pelagic Fish in the North-Western Black Sea: Biometry, Age and Stock Status of Horse Mackerel Trachurus mediterraneus (Steindachner, 1868)
by Cătălin Păun, Aurelia Țoțoiu, George Țiganov, Mădălina Galațchi, Magda Nenciu and Victor Niță
Fishes 2025, 10(8), 390; https://doi.org/10.3390/fishes10080390 - 7 Aug 2025
Viewed by 376
Abstract
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian [...] Read more.
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian coast for more than 10 years (2014–2024), reporting the following data on its bio-ecological characteristics and stock status: size, age, sex ratio, and estimated biomass. Horse mackerel at the Romanian coast revealed an initially slower growth rate followed by acceleration in later years, which may reflect local ecological influences such as resource availability, environmental conditions, or selective pressure. The spatial distribution of the species along the Romanian shelf indicates a clear pattern of coastal aggregation, highlighting the need for targeted and precautionary fisheries management measures, aiming to ensure a sustainable stock. Full article
Show Figures

Graphical abstract

28 pages, 3909 KB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 544
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

24 pages, 5785 KB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 422
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 11182 KB  
Article
A New Holoplanktonic Nudibranch (Nudibranchia: Phylliroidae) from the Central Mexican Pacific
by Jeimy D. Santiago-Valentín, Eric Bautista-Guerrero, Eva R. Kozak, Gloria Pelayo-Martínez and Carmen Franco-Gordo
Diversity 2025, 17(7), 479; https://doi.org/10.3390/d17070479 - 11 Jul 2025
Viewed by 1603
Abstract
Pelagic nudibranchs exemplify evolutionary convergences towards streamlined, transparent body forms adapted for life in the planktonic environment. Here, we describe a new genera and species, designated as Pleuropyge melaquensis gen. et sp. nov. This species belongs to the family Phylliroidae and is distinguished [...] Read more.
Pelagic nudibranchs exemplify evolutionary convergences towards streamlined, transparent body forms adapted for life in the planktonic environment. Here, we describe a new genera and species, designated as Pleuropyge melaquensis gen. et sp. nov. This species belongs to the family Phylliroidae and is distinguished by key diagnostic characters, including a laterally positioned anus approximately one-third of the body length from the head, the absence of a cephalic disc, and an anterior hepatic caecum that is longer than the intestine. The description of P. melaquensis contributes to the classification of a third genus and a fourth species within the Phylliroidae family. This study offers novel insights into the functional and structural traits that have enabled nudibranchs to transition from benthic to pelagic environments. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

22 pages, 1773 KB  
Article
Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition
by Aurelia Țoțoiu, Elena Stoica, Andreea-Mădălina Ciucă, George-Emanuel Harcotă, Victor Niță and Neculai Patriche
J. Mar. Sci. Eng. 2025, 13(7), 1316; https://doi.org/10.3390/jmse13071316 - 9 Jul 2025
Cited by 1 | Viewed by 550
Abstract
Alosa immaculata Bennett, 1835, commonly referred to as the Danube shad, is an anadromous pelagic species of the Clupeidae family, and plays a significant economic role for countries bordering the Black Sea. This study investigates the occurrence of both parasites and microplastics in [...] Read more.
Alosa immaculata Bennett, 1835, commonly referred to as the Danube shad, is an anadromous pelagic species of the Clupeidae family, and plays a significant economic role for countries bordering the Black Sea. This study investigates the occurrence of both parasites and microplastics in A. immaculata specimens collected from Sfântu Georghe, with the aim of assessing their potential impact on fish health. The overall physiological condition of the fish was evaluated using Fulton’s condition factor (K) to determine whether the presence of parasites or microplastics had any measurable effect. Five parasitic genera were identified, including one ectoparasitic species from the genus Mazocraes, and four endoparasitic species from the genera Pronoprymna, Lecithaster, Hysterotylacium, and Contracaecum. Microplastic analysis showed a dominance of particles measuring 1–5 mm (62.5%), with fibers and foils being the only morphological forms detected. The most common colors were black (45%), transparent (35%), blue (12.5%), and brown (7.5%). The distribution of microplastics was higher in the stomach than intestines. Our findings offer critical insights into the combined effects of parasitic infection and microplastic pollution on this key Black Sea species. The integrated methodology, combining parasite load, microplastic content, and condition factor analysis, marks a novel approach in fish health assessment. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

11 pages, 979 KB  
Article
Gastrointestinal Helminths of Suliformes Birds from the Southern Coast of São Paulo, Brazil
by Beatriz Brener, Guilherme Sena, Magda Antonello, Júlia Piolla, Michelle Fonseca and Marcelo Knoff
Parasitologia 2025, 5(3), 32; https://doi.org/10.3390/parasitologia5030032 - 2 Jul 2025
Viewed by 289
Abstract
Seabirds of the families Fregatidae, Phalacrocoracidae and Sulidae, common on the southeastern coast of Brazil, form colonies and play a bioindicator role in coastal ecosystems due to their ecological habits. This study aimed to identify the prevalence of parasitic helminths in Suliformes birds, [...] Read more.
Seabirds of the families Fregatidae, Phalacrocoracidae and Sulidae, common on the southeastern coast of Brazil, form colonies and play a bioindicator role in coastal ecosystems due to their ecological habits. This study aimed to identify the prevalence of parasitic helminths in Suliformes birds, of the species Fregata magnificens Mathews, 1914, Sula leucogaster Boddaert, 1783 and Nannopterum um Gmelin, 1789, from the Instituto de Pesquisas Cananeia (IPeC) on the southern coast of the State of São Paulo, and to record the diversity and parasitic indices, since reports of helminth prevalence in pelagic birds are scarce in Brazil. From 2018 to 2020, a total of 270 nematode specimens and 271 acanthocephalan parasites were collected from 51 Suliformes birds (20 F. magnificens, 10 N. brasilianum and 21 S. leucogaster). The host species F. magnificens was parasitized by Contracaecum plagiaticium and Contracaecum pelagicum. The host S. leucogaster was parasitized by C. plagiaticium. In the host N. brasilianum, specimens of Contracaecum australe, Contracaecum rudolphii, Contracaecum multipapillatum, Syncuaria squamata and Andracantha tandemtesticulata were found. This is the first report of C. plagiaticium and C. pelagicum in F. magnificens in Brazilian territory, and of A. tandemtesticulata in N. brasilianum in the southeast region of Brazil. Full article
Show Figures

Figure 1

24 pages, 8724 KB  
Article
Transcriptomic Analysis of Trachinotus ovatus Under Flow Velocity Stress
by Jing Zhang, Xixi Liu, Jiayue Dai, Sufang Niu, Xuefeng Wang and Baogui Tang
Animals 2025, 15(13), 1932; https://doi.org/10.3390/ani15131932 - 30 Jun 2025
Viewed by 388
Abstract
Trachinotus ovatus is a euryhaline, warm-water pelagic fish species with strong adaptability, rapid growth, and a high survival rate, making it one of the most important marine aquaculture species in China. In recent years, extensive experience has been accumulated in the cage farming [...] Read more.
Trachinotus ovatus is a euryhaline, warm-water pelagic fish species with strong adaptability, rapid growth, and a high survival rate, making it one of the most important marine aquaculture species in China. In recent years, extensive experience has been accumulated in the cage farming of T. ovatus, but whether it can adapt to deep-sea environments and grow normally remains a current research focus. This study used RNA-Seq sequencing technology to analyze the gene expression changes in the liver of T. ovatus under three conditions: rest (0 cm/s), medium flow velocity (54 cm/s), and high flow velocity (90 cm/s). Through differential expression analysis, Short Time-series Expression Miner (STEM) analysis and protein–protein interaction (PPI) network analysis, a total of 5107 differentially expressed genes (DEGs), three significantly expressed gene profiles (profile6, profile1, and profile5), and 15 hub genes were identified. The results showed that changes in flow speed significantly impacted key biological processes such as energy metabolism, protein homeostasis, and endoplasmic reticulum (ER) stress response. Under moderate and high flow conditions, glycolysis-related genes were upregulated to meet the energy demands of swimming, while the downregulation of the PPARγ-RXRG complex and its downstream genes in the lipid metabolism pathway suggested a limitation in its fatty acid β-oxidation capacity. At the same time, protein synthesis was enhanced, and the unfolded protein response (UPR) was activated to help cope with ER stress. Furthermore, when the flow speed reached 90 cm/s, the expression of UPR- related genes and the anti-apoptotic factor JNK significantly decreased, suggesting that the stress response was nearing its limit and could potentially trigger cell apoptosis. These findings provide new insights into the molecular adaptation mechanisms of T. ovatus to flow speed stress and offer theoretical support for its rational farming in deep-sea cages, suggesting that the water flow speed in farming should not exceed 90 cm/s. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

16 pages, 2230 KB  
Article
The Status of the Early-Stage Fish Resources and Hydrologic Influencing Conditions in the Guiping Section of the Xunjiang River
by Huifeng Li, Weitao Chen, Dapeng Wang, Xiaoyu Lin, Li Yu, Chengdong He, Jie Li and Yuefei Li
Sustainability 2025, 17(13), 5930; https://doi.org/10.3390/su17135930 - 27 Jun 2025
Viewed by 376
Abstract
To investigate the species composition, reproductive dynamics, and hydrological drivers of fish resources in the early stage in the Guiping section of the Xunjiang River, we conducted a two-year survey (2022–2023) downstream of the Datengxia Dam. A total of 22,464 fish eggs and [...] Read more.
To investigate the species composition, reproductive dynamics, and hydrological drivers of fish resources in the early stage in the Guiping section of the Xunjiang River, we conducted a two-year survey (2022–2023) downstream of the Datengxia Dam. A total of 22,464 fish eggs and larvae were collected, representing 6 orders, 17 families, and 67 species, with Cyprinidae (58.2%) as the dominant family. Dominant species included Squaliobarbus curriculus, Gobiidae, Hemiculter leucisculus, and Culter, exhibiting significant interannual variation in abundance. The breeding season peaked from May to September, accounting for 94.6% of annual recruitment. Hydrological conditions strongly influenced reproductive output: the multiple flood pulse periods in 2022 (peak discharge: 29,000 m3/s) yielded 34.997 billion eggs and larvae, whereas reduced flows in 2023 (peak discharge: 12,200 m3/s) led to a 75.4% decline (8.620 billion). Redundancy analysis (RDA) revealed that discharge, water temperature, natural hydrological data, and dissolved oxygen were the primary environmental drivers, explaining 46.11% of variability in larval abundance (p < 0.001). Notably, the proportion of important economic fish, “four major Chinese carps”, plummeted from 4.9% (2022) to less than 0.1% (2023), indicating spawning ground function degradation. Our results demonstrate that flood pulses are essential for sustaining fish recruitment, particularly for pelagic spawning riverine fish like the four major Chinese carps. Their proportion plummeted to less than 0.1% in 2023, highlighting the urgent need for eco-hydrological management in the Xunjiang River. Full article
Show Figures

Figure 1

13 pages, 427 KB  
Article
Impact of Thermal Processing on the Protein Digestibility of Sardines and Sprats
by Ivo Doskocil, Barbora Lampova, Petr Smid and Aneta Kopeć
Foods 2025, 14(12), 2096; https://doi.org/10.3390/foods14122096 - 14 Jun 2025
Viewed by 871
Abstract
Fish are a valuable source of high-quality protein and essential nutrients, making them an integral component of a healthy diet. However, protein digestibility, influenced by preparation methods, is a critical factor in assessing nutritional quality. This study aimed to evaluate the impact of [...] Read more.
Fish are a valuable source of high-quality protein and essential nutrients, making them an integral component of a healthy diet. However, protein digestibility, influenced by preparation methods, is a critical factor in assessing nutritional quality. This study aimed to evaluate the impact of various thermal processing methods on the protein digestibility of two commonly consumed small pelagic fish species: sardines (Sardina pilchardus) and sprats (Sprattus sprattus). Protein digestibility was assessed using two complementary approaches: total protein digestibility and the Digestible Indispensable Amino Acid Score (DIAAS). Fish samples were subjected to different cooking methods, including boiling, steaming, baking, and frying. All thermal treatments enhanced protein digestibility compared to raw fish. Fried samples exhibited the highest total protein digestibility, with sardines reaching 92.4 ± 4.3% and sprats reaching 89.5 ± 4.4%. DIAAS values corroborated these findings, indicating superior protein quality in fried fish. While frying yielded the highest digestibility scores, steaming and boiling provided a favourable balance between improved protein quality and lower potential health risks, with baking achieving comparable results. Full article
Show Figures

Figure 1

Back to TopTop