Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = permeable sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4770 KB  
Article
Salt Equilibria and Protein Glycation in Young Child Formula
by Wenfu Chen, Wenzhu Yin, Xiumei Tao, Dasong Liu, Thom Huppertz, Xiaoming Liu and Peng Zhou
Foods 2025, 14(19), 3445; https://doi.org/10.3390/foods14193445 - 8 Oct 2025
Abstract
Young child formula (YCF) products are important sources of nutrients for children 1–3 years of age. Salt equilibria and protein glycation are two of the crucial aspects affecting nutritional properties and digestive behaviors of YCF, but detailed insights into these two aspects of [...] Read more.
Young child formula (YCF) products are important sources of nutrients for children 1–3 years of age. Salt equilibria and protein glycation are two of the crucial aspects affecting nutritional properties and digestive behaviors of YCF, but detailed insights into these two aspects of YCF products remains limited. This study analyzed the distribution of salts and the level of protein glycation in 25 commercial YCF products from the retail market in China. The YCF products were reconstituted (12 g of powder per 100 g of water) and the distribution of calcium and phosphorus between the sedimentable (at 200× g), protein-associated and soluble (10 kDa-permeable) fractions were determined. Blocked lysine and 5-hydroxymethylfurfural were analyzed using reversed-phase high-performance liquid chromatography. Varying proportions of calcium (3.0–39.3%) and phosphorus (1.2–29.8%) were sedimentable for the products. Notable proportions of calcium (28.9–62.7%) and phosphorus (27.4–57.9%) were associated with the proteins. The remainder of the calcium (24.9–41.4%) and phosphorus (34.2–62.1%) were soluble. When expressing the protein-associated calcium as a function of casein, i.e., casein mineralization, large differences (~1.7 fold) were found among products. Variation in blocked lysine (7.4–19.2% of total lysine) and 5-hydroxymethylfurfural contents (3.0–7.0 mg/100 g protein) among products was also observed, suggesting notable differences in heat-load during processing. This study revealed notable variation in salt distribution and protein glycation among the YCF products. These findings underscore the critical need for manufacturers to optimize formulation and processing approaches, e.g., using milk with a low level of casein mineralization and using milk protein sources as concentrated liquid rather than powder to reduce protein glycation, to improve nutritional properties of the products. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

14 pages, 3309 KB  
Article
Experimental Study on the Mechanism of Steam Flooding for Heavy Oil in Pores of Different Sizes
by Dong Zhang, Li Zhang, Yan Wang, Jiyu Zhou, Peng Sun and Kuo Zhan
Processes 2025, 13(10), 3083; https://doi.org/10.3390/pr13103083 - 26 Sep 2025
Viewed by 260
Abstract
Nowadays, most of the heavy oil fields around the world have entered difficult exploiting stages, with problems regarding high viscosity and poor fluidity. However, there has been little previous research on the accurate identification and distribution of remaining oil with different levels of [...] Read more.
Nowadays, most of the heavy oil fields around the world have entered difficult exploiting stages, with problems regarding high viscosity and poor fluidity. However, there has been little previous research on the accurate identification and distribution of remaining oil with different levels of steam dryness. Therefore, this paper proposes a new nuclear magnetic resonance (NMR) interpretation method, as well as a new samples analysis method for remaining oil in the core. We conducted core displacement experiments using different methods. The nuclear magnetic resonance (NMR) tests and analysis of core thin sections after steam flooding were used to study the effect of different steam dryness levels on the migration and sedimentation mechanisms of heavy oil components. The results showed that the viscosity of crude oil and the permeability of rock cores are both sensitive to steam dryness; therefore, the improvement of steam dryness is beneficial for improving oil recovery. Heavy oil is mainly distributed in the medium pores of 10–50 μm and the small pores of 1–10 μm. However, with the decrease in steam dryness, the dynamic amount of crude oil in both medium and small pores decreases, and the bitumen in crude oil stays in the pores in the form of stars, patches, and envelopes, which leads to a decline in oil displacement efficiency. Thus, our study provides a micro-level understanding of remaining oil which lays the foundation for the further enhancement of oil recovery in heavy oilfields. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 1777 KB  
Article
Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments
by Hee-Eun Woo, Valianto Rojulun Afif, Seongsik Park, Maheshkumar Prakash Patil, Ilwon Jeong, In-Cheol Lee, Jong-Oh Kim and Kyunghoi Kim
J. Mar. Sci. Eng. 2025, 13(9), 1723; https://doi.org/10.3390/jmse13091723 - 6 Sep 2025
Viewed by 451
Abstract
Fine-grained intertidal sediments are typically characterized by low hydraulic conductivity and high nutrient loads, conditions that hinder biogeochemical recovery and exacerbate eutrophication. This study examined the feasibility of calcium-rich steel slag (SS) as a multifunctional capping material for improving both physical and chemical [...] Read more.
Fine-grained intertidal sediments are typically characterized by low hydraulic conductivity and high nutrient loads, conditions that hinder biogeochemical recovery and exacerbate eutrophication. This study examined the feasibility of calcium-rich steel slag (SS) as a multifunctional capping material for improving both physical and chemical properties of cohesive sediments. Short-term (24 h) column experiments with two slag dosages (25 g and 50 g) revealed that the higher dosage (SS50) increased sediment hydraulic conductivity by 113.2%, likely through Ca2+-mediated flocculation and enhanced pore connectivity. Phosphate (PO4-P) in pore water decreased by up to 64.1%, and effluent dissolved inorganic nitrogen (DIN) declined by 62.8%, indicating combined effects of Ca-driven precipitation, adsorption, and enhanced flushing. However, SS addition also raised pore water pH (to 11.8) and lowered redox potential, leading to transient phosphate release at the effluent boundary under reducing conditions. Cation analysis confirmed Ca2+ stability and Na+ reduction, suggesting improved sediment structural integrity. The results suggest that steel slag is a promising reactive capping material capable of enhancing permeability and controlling nutrient release in cohesive coastal sediments, yet further investigation into long-term ecological effects and dosage optimization is necessary. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 48492 KB  
Article
Analysis of the Temporal and Spatial Evolution Behavior of Earth Pressure in the Shield Chamber and the Ground Settlement Behavior During Shield Tunneling in Water-Rich Sand Layers
by Hongzhuan Ren, Jie Chen, Haitao Wang, Yonglin He, Xuancheng Fang and Liwu Wang
Buildings 2025, 15(16), 2935; https://doi.org/10.3390/buildings15162935 - 19 Aug 2025
Viewed by 330
Abstract
Earth Pressure Balance (EPB) shield machines have been widely used in subway construction due to their versatility and safety. During the shield tunneling process, the earth pressure in the shield machine chamber is crucial for controlling ground settlement and ensuring the safety of [...] Read more.
Earth Pressure Balance (EPB) shield machines have been widely used in subway construction due to their versatility and safety. During the shield tunneling process, the earth pressure in the shield machine chamber is crucial for controlling ground settlement and ensuring the safety of surrounding buildings. However, current research on the temporal and spatial evolution of earth pressure in water-rich sand layers and its relationship with ground settlement is relatively insufficient. This study focuses on the shield tunneling project between Liuzhou East Road and Puzhou Road on Nanjing Metro Line 11. First, laboratory and on-site tests were conducted to optimize the slump properties of the sediment. Then, based on Terzaghi’s theory and statistical methods, the temporal and spatial evolution trends of the earth pressure in the shield chamber under water-rich sand conditions were explored. Finally, by adjusting earth pressure control parameters on-site and monitoring ground settlement, the impact of earth pressure changes on ground settlement was analyzed. Results showed a linear correlation between the actual earth pressure and shield burial depth. For water-rich sand with medium permeability, the theoretical earth pressure was calculated using Terzaghi’s water-soil combined method in shallow sections, and the average of combined and separated methods in deep sections. The decay envelope showed an exponential downward trend, with rapid decay initially and slower decay later. As earth pressure control values increased, pre-consolidation settlement increased, instantaneous settlement decreased, pre-consolidation settlement rate slightly increased, and instantaneous settlement rate decreased. When excavation pressure was below theoretical pressure, higher instantaneous settlement rates could threaten surface structures. This research offers vital theoretical and data references for shield tunneling in water-rich sand layers and supports related EPB shield machine theory studies. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

46 pages, 9391 KB  
Article
Multifactorial Controls on Carbonate–Clastic Sedimentation in Rift Basins: Integrated Foraminiferal, Sequence Stratigraphic, and Petrophysical Analysis, Gulf of Suez, Egypt
by Haitham M. Ayyad, Hatem E. Semary, Mohamed Fathy, Ahmed Hassan Ismail Hassan, Anis Ben Ghorbal and Mohamed Reda
Minerals 2025, 15(8), 864; https://doi.org/10.3390/min15080864 - 15 Aug 2025
Viewed by 578
Abstract
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and [...] Read more.
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and reservoir implications through (1) foraminiferal-based paleoenvironmental reconstruction; (2) integrated sequence stratigraphic–petrophysical analysis for sweet spot identification; and (3) synthesis of lateral facies controls. This study uniquely integrates foraminiferal paleoenvironmental proxies, sequence stratigraphy, and petrophysical analyses to understand the multifactorial controls on spatial variability and its implications for reservoir characterization. Middle Miocene sea surface temperatures, reconstructed between 19.2 and 21.2 °C, align with warm conditions favorable for carbonate production across the basin. Foraminiferal data indicate consistent bathyal depths (611–1238 m) in the eastern region, further inhibited in photic depths by clastic influx from the nearby Nubian Shield, increasing turbidity and limiting carbonate factory growth. Conversely, the western shelf, at depths of less than 100 m, supports thriving carbonate platforms. In the sequence stratigraphy analysis, we identify two primary sequences: LA.SQ1 (15.12–14.99 Ma), characterized by evaporitic Feiran Member deposits, and LA.SQ2 (14.99–14.78 Ma), dominated by clastic deposits. The primary reservoir comprises highstand systems tract (HST) sandstones with effective porosity ranging from 17% to 22% (calculated via shale-corrected neutron density cross-plots) and hydrocarbon saturation of 33%–55% (computed using Archie’s equation). These values, validated in Wells 112-58 (ϕe = 19%, Shc = 55%) and 113M-81 (ϕe = 17%, Shc = 33%), demonstrate the primary reservoir potential. Authigenic dolomite cement and clay content reduce permeability in argillaceous intervals, while quartz dissolution in clean sands enhances porosity. This research emphasizes that bathymetry, sediment availability, and syn-sedimentary tectonics, rather than climate, govern carbonate depletion in the eastern region, providing predictive parameters for identifying reservoir sweet spots in clastic-dominated rift basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

22 pages, 4772 KB  
Article
Integrated Statistical Analysis and Spatial Modeling of Gas Hydrate-Bearing Sediments in the Shenhu Area, South China Sea
by Xin Feng and Lin Tan
Appl. Sci. 2025, 15(16), 8857; https://doi.org/10.3390/app15168857 - 11 Aug 2025
Viewed by 487
Abstract
Gas hydrate-bearing sediments in marine environments represent both a future energy source and a geohazard risk, prompting increasing international research attention. In the Shenhu area of the South China Sea, a large volume of drilling and laboratory data has been acquired in recent [...] Read more.
Gas hydrate-bearing sediments in marine environments represent both a future energy source and a geohazard risk, prompting increasing international research attention. In the Shenhu area of the South China Sea, a large volume of drilling and laboratory data has been acquired in recent years, yet a comprehensive framework for evaluating the characteristics of key reservoir parameters remains underdeveloped. This study presents a spatially integrated and statistically grounded framework that captures regional-scale heterogeneity using multi-source in situ datasets. It incorporates semi-variogram modeling to assess spatial variability and provides statistical reference values for geological and geotechnical properties across the Shenhu Area. By synthesizing core sampling results, acoustic logging, and triaxial testing data, representative probability distributions and variability scales of hydrate saturation, porosity, permeability, and mechanical strength are derived, which are essential for numerical simulations of gas production and slope stability. Our results support the development of site-specific reservoir models and improve the reliability of early-phase hydrate exploitation assessments. This work facilitates the rapid screening of hydrate reservoirs, contributing to the efficient selection of potential production zones in hydrate-rich continental margins. Full article
Show Figures

Figure 1

16 pages, 5939 KB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 630
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 6478 KB  
Article
Numerical Simulation of Multi-Cluster Fracture Propagation in Marine Natural Gas Hydrate Reservoirs
by Lisha Liao, Youkeren An, Jinshan Wang, Yiqun Zhang, Lerui Liu, Meihua Chen, Yiming Gao and Jiayi Han
J. Mar. Sci. Eng. 2025, 13(7), 1224; https://doi.org/10.3390/jmse13071224 - 25 Jun 2025
Viewed by 369
Abstract
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, [...] Read more.
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, we developed a three-dimensional (3D) fluid–solid coupling model for hydraulic fracturing in NGH reservoirs based on cohesive elements to analyze the effects of sediment plasticity, hydrate saturation, fracturing fluid viscosity, and injection rate, as well as the stress interference mechanisms in multi-cluster simultaneous fracturing under different cluster spacings. Results show that selecting low-plastic reservoirs with high hydrate saturation (SH > 50%) and adopting an optimal combination of fracturing fluid viscosity and injection rate can achieve the co-optimization of stimulated reservoir volume (SRV) and cross-layer risk. In multi-cluster fracturing, inter-fracture stress interference promotes the propagation of fractures along the fracture plane while suppressing it in the normal direction of the fracture plane, and this effect diminishes significantly till 9 m cluster spacing. This study provides valuable insights for the selection of optimal multi-cluster fracturing parameters for marine NGH reservoirs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 2366 KB  
Article
Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel
by Gal Carmeli, Abraham Abbey Paul, Kathelina Kristollari, Evgeni Eltzov, Albert Batushansky and Robert S. Marks
Biosensors 2025, 15(7), 404; https://doi.org/10.3390/bios15070404 - 22 Jun 2025
Viewed by 3280
Abstract
Sediments are key players in the optimum functioning of ecosystems; however, they also represent the largest known repository of harmful contaminants. The vast variety of these sediment-associated contaminants may exert harmful effects on marine communities and can impair ecosystem functioning. Whole-cell biosensors are [...] Read more.
Sediments are key players in the optimum functioning of ecosystems; however, they also represent the largest known repository of harmful contaminants. The vast variety of these sediment-associated contaminants may exert harmful effects on marine communities and can impair ecosystem functioning. Whole-cell biosensors are a rapid and biologically relevant tool for assessing environmental toxicity. Therefore, in this study, we developed a bioassay-based toxicity measurement system using genetically modified bacteria to create a whole-cell optical biosensor. Briefly, reporter bacteria were integrated and immobilized using a calcium alginate matrix on fiber-optic tips connected to a photon counter placed inside a light-proof, portable case. The calcium alginate matrix acts as a semi-permeable membrane that protects the reporter-encapsulated optical fiber tips and allows the inward passage of toxicant(s) to induce a dose-dependent response in the bioreporter. The samples were tested by directly submerging the fiber tip with immobilized bacteria into vials containing either water or suspended sediment samples, and the subsequent bioluminescent responses were acquired. In addition to bioavailable sediment toxicity assessments, conventional chemical methods, such as liquid chromatography–mass spectroscopy (LC-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES), were used for comprehensive evaluation. The results demonstrated the efficacy of the biosensor in detecting various toxicity levels corresponding to identified contaminants, highlighting its potential integration into environmental monitoring frameworks for enhanced sediment and water quality assessments. Despite its utility, this study notes the system’s operational challenges in field conditions, recommending future enhancements for improved portability and usability in remote locations. Full article
(This article belongs to the Special Issue Optical Biosensors for Environmental Monitoring)
Show Figures

Figure 1

21 pages, 4887 KB  
Article
The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects
by Yukai Qi, Zongquan Hu, Jingyi Wang, Fushun Zhang, Xinnan Wang, Hanwen Hu, Qichao Wang and Hanzhou Wang
Appl. Sci. 2025, 15(13), 6984; https://doi.org/10.3390/app15136984 - 20 Jun 2025
Viewed by 750
Abstract
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated [...] Read more.
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated topic in petroleum geology. Recent advances in exploration techniques and geological understanding have challenged conventional views, confirming the presence of viable clastic reservoirs at such depths. Findings reveal that reservoir quality in ultra-deep strata is preserved and enhanced through the interplay of sedimentary, diagenetic, and tectonic processes. Key controlling factors include (1) high-energy depositional environments promoting primary porosity development, (2) proximity to hydrocarbon source rocks enabling multi-phase hydrocarbon charging, (3) overpressure and low geothermal gradients reducing cementation and compaction, and (4) late-stage tectonic fracturing that significantly improves permeability. Additionally, dissolution porosity and fracture networks formed during diagenetic and tectonic evolution collectively enhance reservoir potential. The identification of favorable reservoir zones under the sedimentation–diagenesis-tectonics model provides critical insights for future hydrocarbon exploration in ultra-deep clastic sequences. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

13 pages, 806 KB  
Review
Diagnostic Challenges and Risk Stratification of Periprosthetic Joint Infection in Patients with Inflammatory Arthritis
by Paweł Kasprzak, Wiktoria Skała, Mariusz Gniadek, Adam Kobiernik, Łukasz Pulik and Paweł Łęgosz
J. Clin. Med. 2025, 14(12), 4302; https://doi.org/10.3390/jcm14124302 - 17 Jun 2025
Viewed by 871
Abstract
Background/Objectives: Accurate detection of periprosthetic joint infection (PJI) in patients with inflammatory arthritis (IA), including rheumatoid arthritis (RA), remains challenging due to overlapping inflammatory parameters and the influence of immunosuppressive regimens. Methods: A narrative review was conducted using PubMed/MEDLINE (2010–2025). Search terms included [...] Read more.
Background/Objectives: Accurate detection of periprosthetic joint infection (PJI) in patients with inflammatory arthritis (IA), including rheumatoid arthritis (RA), remains challenging due to overlapping inflammatory parameters and the influence of immunosuppressive regimens. Methods: A narrative review was conducted using PubMed/MEDLINE (2010–2025). Search terms included “periprosthetic joint infection”, “inflammatory arthritis”, “rheumatoid arthritis”, “diagnosis”, “biomarkers”, “synovial fluid”, and “immunosuppression”. Eventually, 50 studies were included. Results: IA patients diagnosed with PJI are more frequently younger, female, and present with a higher burden of comorbidities and an increased rate of false-positive histological findings and culture-negative infections. Standard biomarkers, such as serum C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), as well as synovial fluid white blood cell count and polymorphonuclear leukocyte percentage, have a low to moderate value for diagnosing PJI in patients with IA. Optimal thresholds for these tests differ from those recommended by the Musculoskeletal Infection Society (MSIS). Alpha-defensin has demonstrated superior diagnostic performance among synovial fluid biomarkers included in MSIS criteria. Novel markers, such as serum bactericidal permeability-increasing protein (BPI) and neutrophil elastase-2 (ELA-2), as well as synovial C-reactive protein and calprotectin, along with molecular techniques like polymerase chain reaction (PCR), are showing increasing potential. Conclusions: Disease and treatment-related confounders hinder PJI diagnosis in IA. Adjusted thresholds and IA-specific approaches are needed. Further research should validate emerging biomarkers, among which BPI, ELA-2, and synovial CRP show the greatest diagnostic potential and guide perioperative immunosuppressive strategies. Full article
Show Figures

Figure 1

14 pages, 2477 KB  
Article
Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran
by Pejman Dalir, Ramin Naghdi, Sanaz Jafari and Petros A. Tsioras
Forests 2025, 16(6), 1013; https://doi.org/10.3390/f16061013 - 17 Jun 2025
Viewed by 493
Abstract
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible [...] Read more.
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible mitigating action for runoff and soil erosion in harvested sites. Plots measuring 2 m × 3 m were set up with three species—alder (Alnus glutinosa (L.) Gaertn.), medlar (Mespilus germanica L.) and hawthorn (Crataegus monogyna Jacq.)—on the slopes of forest roads. Within each plot, root abundance, root density, canopy percentage, canopy height, herbaceous cover percentage, and selected soil characteristics were measured and analyzed. Root frequency and Root Area Ratio (the ratio between the area occupied by roots in a unit area of soil) measurements were conducted by excavating 50 × 50 cm soil profiles at a 10-cm distance from the base of each plant in the four cardinal directions. The highest root abundance and RAR values were found in hawthorn, followed by alder and medlar in both cases. The same order of magnitude was evidenced in runoff (255.42 mL m−2 in hawthorn followed by 176.81 mL m−2 in alder and 67.36 mL m−2 in medlar) and the reverse order in terms of soil erosion (8.23 g m−2 in hawthorn compared to 22.5 g m−2 in alder and 50.24 g m−2 in medlar). The results of the study confirm that using plant species with dense and deep roots, especially hawthorn, significantly reduces runoff and erosion, offering a nature-based solution for sustainable forest road management. These results highlight the need for further research under diverse ecological and soil conditions to optimize species selection and improve erosion mitigation strategies. Full article
(This article belongs to the Special Issue New Research Developments on Forest Road Planning and Design)
Show Figures

Figure 1

22 pages, 5761 KB  
Article
Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)
by Cornelis Kasse and Oeki Verhage
Quaternary 2025, 8(2), 29; https://doi.org/10.3390/quat8020029 - 6 Jun 2025
Viewed by 1134
Abstract
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial [...] Read more.
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial channel initiation. During the Würm Last Glacial Maximum (c. 20 ka), the Ain valley in eastern France transformed into a large proglacial lake. Following deglaciation, new drainage channels initiated on the drained lake floor. Extensive morphological and sedimentological mapping and lithogenetic interpretation of the valley fill enable to determine the forcing factors of fluvial channel initiation. The location of the postglacial channels is determined by the initial topography of the lake floor and lithological variability of the sediments. Tributary channels of the Ain preferentially initiated in depressions of gently sloping former delta bottomsets, which prograded from different directions. In addition, the location of channels is determined by the presence of low-permeability, glacio-lacustrine deposits, that favored overland flow and erosion, compared to the highly permeable terrace deposits on the former lake floor. The differences in erodibility of the fine-grained and coarse-grained deposits resulted in relief inversion. Full article
Show Figures

Figure 1

17 pages, 3680 KB  
Article
Engineering Characteristics of Dredged Sediment Solidified by MSWI FA and Cement Under Different Curing Conditions
by Shucheng Zhang, Haoqing Xu, Xinmiao Shi, Wenyang Zhang and Jinyuan Xu
Materials 2025, 18(11), 2622; https://doi.org/10.3390/ma18112622 - 3 Jun 2025
Viewed by 612
Abstract
Traditional landfill cover materials have low strength and poor dry–wet durability. Municipal solid waste incineration fly ash (MSWI FA) can be used to partially replace cement solidification dredging sediment (DS). This article investigates the possibility of using MSWI FA and ordinary Portland cement [...] Read more.
Traditional landfill cover materials have low strength and poor dry–wet durability. Municipal solid waste incineration fly ash (MSWI FA) can be used to partially replace cement solidification dredging sediment (DS). This article investigates the possibility of using MSWI FA and ordinary Portland cement (OPC) composite cured DS as a covering material. The mechanical properties, permeability, and wet–dry durability of the cured system were investigated under the conditions of MSWI FA content ranging from 0% to 60% and OPC content ranging from 10% to 15%. The microscopic mechanism was analyzed by scanning electron microscopy and X-ray diffraction. The results showed that when the OPC and MSWI FA contents were 15% and 20%, respectively, the comprehensive performance of the cured specimens was best after 28 days of natural curing. The unconfined compressive strength reached 1993.9 kPa, and the permeability coefficient decreased to below 1 × 10−7 cm/s, fully meeting the requirements for landfill coverage. C-S-H gel is the main strength source of the solidified body, while Friedel salt and ettringite enhance the compactness of the matrix. An excessive moisture environment promotes the water absorption of soluble salts produced by MSWI FA hydration, leading to sample expansion and reduced strength. MSWI FA and OPC cured DS exhibit good compression performance in the intermediate cover system of landfills, and can maintain good engineering performance under periodic dry–wet cycles. This dual strategic synergy solves the hazardous disposal problem of MSWI FA and the resource utilization demand of DS, demonstrating enormous application potential. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

35 pages, 7887 KB  
Article
Triaxial Experimental Study of Natural Gas Hydrate Sediment Fracturing and Its Initiation Mechanisms: A Simulation Using Large-Scale Ice-Saturated Synthetic Cubic Models
by Kaixiang Shen, Yanjiang Yu, Hao Zhang, Wenwei Xie, Jingan Lu, Jiawei Zhou, Xiaokang Wang and Zizhen Wang
J. Mar. Sci. Eng. 2025, 13(6), 1065; https://doi.org/10.3390/jmse13061065 - 28 May 2025
Viewed by 500
Abstract
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional [...] Read more.
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional reservoirs. This study presents a comprehensive triaxial experimental investigation of the fracturing behavior and fracture initiation mechanisms of NGH-bearing sediments, using large-scale ice-saturated synthetic cubic models. The experiments systematically explore the effects of key parameters, including the injection rate, fluid viscosity, ice saturation, perforation patterns, and in situ stress, on fracture propagation and morphology. The results demonstrate that at low fluid viscosities and saturation levels, transverse and torsional fractures dominate, while longitudinal fractures are more prominent at higher viscosities. Increased injection rates enhance fracture propagation, generating more complex fracture patterns, including transverse, torsional, and secondary fractures. A detailed analysis reveals that the perforation design significantly influences the fracture direction, with 90° helical perforations inducing vertical fractures and fixed-plane perforations resulting in transverse fractures. Additionally, a plastic fracture model more accurately predicts fracture initiation pressures compared to traditional elastic models, highlighting a shift from shear to tensile failure modes as hydrate saturation increases. This research provides new insights into the fracture mechanisms of NGH-bearing sediments and offers valuable guidance for optimizing hydraulic fracturing strategies to enhance resource extraction in hydrate reservoirs. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

Back to TopTop