Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = permissions analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 833 KB  
Article
Comparative Analysis of Chemical Composition and Food Safety of Commercial Fish Sauces from Four Asian Countries
by Yu-Ru Huang, Pei-Chuan Wu, Chi-Jen Lo, Yi-Chen Lee and Yung-Hsiang Tsai
Foods 2025, 14(17), 3134; https://doi.org/10.3390/foods14173134 - 8 Sep 2025
Viewed by 227
Abstract
This study evaluated chemical safety indicators in 38 commercial fish sauces from Thailand, South Korea, Taiwan, and Vietnam sold in Taiwan. We quantified key nitrogenous compounds, biogenic amines, preservatives, and sodium levels, and further characterized metabolite profiles using untargeted 1H nuclear magnetic [...] Read more.
This study evaluated chemical safety indicators in 38 commercial fish sauces from Thailand, South Korea, Taiwan, and Vietnam sold in Taiwan. We quantified key nitrogenous compounds, biogenic amines, preservatives, and sodium levels, and further characterized metabolite profiles using untargeted 1H nuclear magnetic resonance (1H-NMR) spectroscopy. Vietnamese fish sauces exhibited the highest total nitrogen content and lowest pH, indicating superior fermentation quality. Sodium concentrations ranged from 5037 to 12,637 mg/100 mL, and nearly 40% of products, particularly Thai and Korean, exceeded the permitted labeling tolerance (≤120%), highlighting substantial labeling inaccuracies. Preservative analysis revealed the unauthorized or excessive use of benzoates and sorbates in several samples, indicating regulatory non-compliance. Preservative analysis revealed that three of seven Taiwanese samples contained dehydroacetic acid above the regulatory limit of 1 g/kg, with sample C6 both mislabeled and showing the highest concentration (3.22 g/kg). Among the ten Vietnamese samples, two exceeded the permissible limits for combined preservative use, and samples D2–D5 contained triacetin, a non-listed food additive, in violation of current regulations. Notably, South Korean fish sauces contained histamine concentrations up to 539.85 ± 318.88 ppm, with several samples surpassing the Taiwanese regulatory limit of 400 ppm, raising significant food safety concerns. Metabolomic analysis differentiated products by country, with formic acid, acetate, branched-chain amino acids, and alanine contributing to the distinct profiles of Thai and Taiwanese fish sauces. Collectively, our results provide critical insights into the quality and safety of fish sauce products, highlighting the importance of monitoring biogenic amines and ensuring accurate labeling to comply with food safety regulations. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Graphical abstract

18 pages, 1459 KB  
Article
Rapid and Efficient Magnetic Nanoparticle-Based Method for Cd Determination in Brazilian Cachaça Using Flame Atomic Absorption Spectrometry
by Saulo Alves de Souza, Cristiane dos Reis Feliciano, Grazielle Cabral de Lima, Ítalo Agnis da Silva Gomes, Nathália Carvalho Costa, Bruno Alves Rocha and Mariane Gonçalves Santos
Analytica 2025, 6(3), 33; https://doi.org/10.3390/analytica6030033 - 8 Sep 2025
Viewed by 111
Abstract
The contamination of food and beverages with heavy metals, such as Cd, presents significant health risks, underscoring the need for reliable and sensitive analytical methods. This study introduces the development of a rapid, cost-effective, and environmentally friendly method for Cd determination in cachaça, [...] Read more.
The contamination of food and beverages with heavy metals, such as Cd, presents significant health risks, underscoring the need for reliable and sensitive analytical methods. This study introduces the development of a rapid, cost-effective, and environmentally friendly method for Cd determination in cachaça, a traditional Brazilian sugarcane spirit. Magnetic nanoparticles (Fe3O4) functionalized with tetraethyl orthosilicate are synthesized and employed as adsorbents in a dispersive magnetic solid-phase extraction procedure. The extracted Cd is quantified using flame atomic absorption spectrometry. A full factorial experimental design is used to optimize key parameters, including the sorbent mass, adsorption time, desorption time, and acid concentration. The method demonstrates excellent analytical performance, with a linear calibration range (R2 = 0.99), detection limit of 0.0046 mg L−1, and quantification limit of 0.0200 mg L−1. Moreover, validation results show high precision (coefficient of variation < 9.10%) and accuracy (recovery rates between 92.00% and 120.00%). When analyzing commercial cachaça samples, cadmium was detected in all five specimens. Notably, in one sample the cadmium concentration exceeded Brazil’s maximum permissible limit of 0.0200 mg kg−1, underscoring the importance of this work for ensuring food safety. The proposed method offers a sensitive, reproducible, and sustainable approach for analysis of potentially toxic trace metals in alcoholic beverages, reinforcing its potential for routine monitoring and regulatory compliance. Full article
(This article belongs to the Special Issue Feature Papers in Analytica)
Show Figures

Figure 1

18 pages, 2832 KB  
Article
Elemental Analysis and Chemometric Assessment of Edible Part and Peel of Mango Fruits (Mangifera indica L.)
by Michaela Zeiner, Ema Mihalić, Iva Juranović Cindrić, Ivan Nemet and Heidelore Fiedler
Foods 2025, 14(17), 3096; https://doi.org/10.3390/foods14173096 - 3 Sep 2025
Viewed by 528
Abstract
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. [...] Read more.
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. However, it can also contain potentially toxic elements, which justifies the need of properly investigating this food product. Commercially available samples of dried mango, as well as the mesocarp and peel of fresh mango, were analysed. Prior to the multi-element analysis by inductively coupled plasma mass spectrometry (ICP-MS), the microwave-assisted sample digestion method using various reagents and reagent mixtures was optimised, showing that a mixture of nitric acid and hydrogen peroxide gave the best recoveries. The results obtained were processed by chemometric methods. The content of elements in the peel was higher than in the mesocarp. The macroelements Ca, K, Mg, and Na were found in the largest proportion, and the micronutrients present in significant quantities were Cu, Zn, and Mn (>3 mg/kg), while toxic elements, which according to the guidelines of The European Food Safety Authority) would represent a danger to human health, were not found in mass fractions above the permissible values. Full article
Show Figures

Figure 1

24 pages, 7537 KB  
Article
A Mathematical Methodology for the Detection of Rail Corrugation Based on Acoustic Analysis: Toward Autonomous Operation
by César Ricardo Soto-Ocampo, Juan David Cano-Moreno, Joaquín Maroto and José Manuel Mera
Mathematics 2025, 13(17), 2815; https://doi.org/10.3390/math13172815 - 1 Sep 2025
Viewed by 350
Abstract
In autonomous railway systems, where there is no driver acting as the primary fault detector, annoying interior noise caused by track defects can go unnoticed for long periods. One of the main contributors to this phenomenon is rail corrugation, a recurring defect that [...] Read more.
In autonomous railway systems, where there is no driver acting as the primary fault detector, annoying interior noise caused by track defects can go unnoticed for long periods. One of the main contributors to this phenomenon is rail corrugation, a recurring defect that generates vibrations and acoustic emissions, directly affecting passenger comfort and accelerating infrastructure deterioration. This work presents a methodology for the automatic detection of corrugated track sections, based on the mathematical modeling of the spectral content of onboard-recorded acoustic signals. The hypothesis is that these defects produce characteristic peaks in the frequency domain, whose position depends on speed but whose wavelength remains constant. The novelty of the proposed approach lies in the formulation of two functional spectral indices—IIAPD (permissive) and EWISI (restrictive)—that combine power spectral density (PSD) and fast Fourier transform (FFT) analysis over spatial windows, incorporating adaptive frequency bands and dynamic prominence thresholds according to train speed. This enables robust detection without manual intervention or subjective interpretation. The methodology was validated under real operating conditions on a commercially operated metro line and compared with two reference techniques. The results show that the proposed approach achieved up to 19% higher diagnostic accuracy compared to the best-performing reference method, maintaining consistent detection performance across all evaluated speeds. These results demonstrate the robustness and applicability of the method for integration into autonomous trains as an onboard diagnostic system, enabling reliable, continuous monitoring of rail corrugation severity using reproducible mathematical metrics. Full article
Show Figures

Figure 1

21 pages, 6783 KB  
Article
The Uptake and Translocation of Lead, Chromium, Cadmium, and Zinc by Tomato Plants Grown in Nutrient and Contaminated Nutrient Solutions: Implications for Food Safety
by Radmila Milačič Ščančar, Katarina Kozlica, Stefan Marković, Pia Leban, Janja Vidmar, Ester Heath, Nina Kacjan Maršić, Špela Železnikar and Janez Ščančar
Toxics 2025, 13(9), 738; https://doi.org/10.3390/toxics13090738 - 31 Aug 2025
Viewed by 420
Abstract
The uptake and translocation of Pb, Cr, Cd, and Zn in tomato plants (Solanum lycopersicum L. Rally) were investigated. Tomato seedlings were grown for five weeks in pots containing 40 L of Hoagland nutrient solution (pH 7) or contaminated nutrient solutions at [...] Read more.
The uptake and translocation of Pb, Cr, Cd, and Zn in tomato plants (Solanum lycopersicum L. Rally) were investigated. Tomato seedlings were grown for five weeks in pots containing 40 L of Hoagland nutrient solution (pH 7) or contaminated nutrient solutions at two concentration levels for each element: Cr (100 and 1000 ng/mL), Zn (100 and 1000 ng/mL), Pb (100 and 500 ng/mL), and Cd (50 and 500 ng/mL). The solutions were replenished weekly to maintain a volume of 40 L (pH 7), and 10 mL samples were collected for elemental analysis. After five weeks, the plants were harvested and separated into roots, stems, leaves, and fruits. These samples underwent microwave-assisted digestion, and the element concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). The results revealed that the elements were mainly accumulated in the roots, with much lower concentrations determined in the fruits. Pb and Cr accumulated only minimally in fruits, with Pb levels of 0.0009 mg/kg wet weight at LI and 0.003 mg/kg wet weight at LII, and Cr levels of 0.028 mg/kg wet weight at LI and 0.031 mg/kg wet weight at LII. The Pb levels did not exceed the permissible limits set by EC regulations (0.05 mg/kg wet weight). Zn exhibited the highest accumulation in fruits, with 2.17 mg/kg wet weight at LI and 4.8 mg/kg wet weight at LII. By contrast, the Cd concentrations in fruits (0.25 mg/kg wet weight at LI and 1.1 mg/kg wet weight at LII) exceeded the EC regulatory limit of 0.02 mg/kg wet weight. The uptake of other essential elements into the tomato plant remained largely unaffected by the presence of contaminants. These results provide valuable insights into food safety. Laser ablation (LA)-ICP-MS imaging revealed an even distribution of Cd and Zn in the leaves of plants grown in contaminated nutrient solutions. By contrast, Cr and Pb were predominantly localized in the leaf veins and at the leaf apex, suggesting different transport mechanisms for these elements from the roots to the aerial parts of the plant. Full article
Show Figures

Graphical abstract

20 pages, 2544 KB  
Article
A Lunar Landing Pad from IRSU Materials: Design and Validation of a Structural Element
by A. Pastore, M. Agozzino and C. G. Ferro
Aerospace 2025, 12(9), 781; https://doi.org/10.3390/aerospace12090781 - 29 Aug 2025
Viewed by 285
Abstract
A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether [...] Read more.
A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether Ketone (PEEK). The proposed manufacturing approach involves mechanically blending regolith with PEEK granules, compacting the mixture in a mold, and thermally processing it to induce polymer melting and binding. Experimental analysis indicates that a modest binder fraction (15 wt. % PEEK) yields a robust composite with a flexural strength of 14.6 MPa, although exhibiting inherently brittle characteristics. Compaction pressure emerges as a crucial factor influencing material performance. Utilizing these findings, hexagonal modular tiles were designed as the fundamental LLP elements, specifically engineered to optimize manufacturing simplicity, mechanical robustness, stackability for redundancy, and ease of replacement or repair. The tile geometry strategically mitigates brittleness-induced vulnerabilities by avoiding stress concentrations. Explicit finite element analyses validated tile performance under simulated lunar landing conditions corresponding to the European Large Logistic Lander specifications. Results demonstrated safe landing velocities between 0.1 and 0.7 m/s, governed by the binder content and compaction pressure. A clearly identified linear correlation between the binder fraction and permissible impact velocity enables predictive tailoring of the material composition, confirming the suitability and scalability of thermoplastic–regolith composites for future lunar infrastructure development. Full article
(This article belongs to the Special Issue Lunar Construction)
Show Figures

Figure 1

33 pages, 1400 KB  
Article
Nitrates and Nitrites in Vegetables and the Health Risk
by Ana Maria Dodocioiu, Gilda-Diana Buzatu and Mihai Botu
Foods 2025, 14(17), 3037; https://doi.org/10.3390/foods14173037 - 29 Aug 2025
Viewed by 763
Abstract
The research investigates nitrate and nitrite concentrations in vegetables sold at agri-food markets in Craiova, Dolj County. Vegetable samples were purchased from markets and sourced from the primary agricultural regions of Dolj County, ensuring a representative selection. A total of 300 samples were [...] Read more.
The research investigates nitrate and nitrite concentrations in vegetables sold at agri-food markets in Craiova, Dolj County. Vegetable samples were purchased from markets and sourced from the primary agricultural regions of Dolj County, ensuring a representative selection. A total of 300 samples were collected, with 20 samples taken from each of 15 vegetable species at commercial maturity. This research also aimed to estimate the contribution of each type of vegetable to the intake of nitrates/nitrites ingested through consumption, as well as to carry out an assessment of the risk to human health associated with the consumption of these vegetables. Our analysis showed that only three vegetables (tomatoes, eggplants, and bell peppers) exceeded the maximum permissible nitrate levels (MPL). The MPL for nitrite content was exceeded in several vegetables, including eggplant, green bean, lettuce, cabbage, dill, spinach, and lovage. For nitrates, the Hazard Risk Index (HRI) was consistently below 1 across all samples, with the sole exception of children’s consumption scenario. The HRI for nitrite was also below 1 for all samples, suggesting an absence of exposure risk. The findings from this study suggest that the consumption of vegetable products poses an insignificant risk in terms of nitrate and nitrite intake. Full article
Show Figures

Figure 1

14 pages, 338 KB  
Article
Does the Biblical Injunction Against Marriage with “Outsiders” (Ezra 9:1–2) Still Bind Catholics Today?
by Grzegorz Marcin Bzdyrak and Przemysław Kubisiak
Religions 2025, 16(9), 1121; https://doi.org/10.3390/rel16091121 - 28 Aug 2025
Viewed by 613
Abstract
This publication marks yet another interdisciplinary contribution by the authors: a canon lawyer and a biblical theologian. They undertake a joint canonical and exegetical analysis of Ezra 9:1–2, reflecting on whether this passage might be counted among the biblical foundations that have informed [...] Read more.
This publication marks yet another interdisciplinary contribution by the authors: a canon lawyer and a biblical theologian. They undertake a joint canonical and exegetical analysis of Ezra 9:1–2, reflecting on whether this passage might be counted among the biblical foundations that have informed the Catholic Church’s doctrine on mixed marriages and the diriment impediment arising from disparity of religion. Already, the title poses the research problem framed as a question, “Does the Biblical Injunction against Marriage with ‘Outsiders’ (Ezra 9:1–2) still Bind Catholics Today?” As a first step, the authors undertake an examination of the biblical pericope with a particular focus on the problem of intermarriage, contextualized within its historical setting and the reform initiated by Ezra. Special attention is given to Deuteronomy 7:3–4, which is considered a fundamental underpinning of Ezra’s position. Subsequently, the authors trace the historical evolution of the concepts of impedimentum disparitatis cultus and impedimentum mixtae religionis. The authors move on to discuss the contemporary teaching of the Catholic Church concerning mixed marriages and the granting of dispensations from the diriment impediment of disparity of cult. Particular attention is given to the prerequisites for obtaining the permission of the local ordinary and the aforesaid dispensation, nuanced from the perspective of the Catholic party and non-Catholic one. In the final section, the authors articulate the conclusions of their inquiry. Given the interdisciplinary nature of the study, their research methodology integrated scholarly sources from both biblical sciences and the canonical legal tradition. Full article
15 pages, 2330 KB  
Article
The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC)
by Maria Wesołowska and Daniel Liczkowski
Materials 2025, 18(17), 3967; https://doi.org/10.3390/ma18173967 - 25 Aug 2025
Viewed by 550
Abstract
The use of single-layer aerated concrete walls in residential construction has a tradition of over 60 years. Its main advantage is thermal insulation. It is the most advantageous among construction materials used for the construction of external walls. The possibility of modifying the [...] Read more.
The use of single-layer aerated concrete walls in residential construction has a tradition of over 60 years. Its main advantage is thermal insulation. It is the most advantageous among construction materials used for the construction of external walls. The possibility of modifying the dimensions of the blocks leads to meeting subsequent restrictive values of the heat transfer coefficient U. The high dimensional accuracy of the blocks allows the use of dry vertical joints and thin joints with a thickness of 1–3 mm, the thermal influence of which is omitted. However, the thermal uniformity of such a wall is strictly dependent on the quality of workmanship. The main objective of the analysis is to assess the impact of moisture on the Uwall of walls as a function of vertical joint spacing and horizontal joint thickness. It should be said that the effect of humidity and manufacturing accuracy on the thermal properties of aerated concrete walls has not been sufficiently studied. Further study of these patterns is necessary. Particular attention should be paid to the thin-bed mortar, which depends on the manufacturing accuracy. The separation of AAC masonry elements that occurs during bricklaying significantly affects the thermal insulation of walls. This issue has not yet been analysed. The scientific objective of this article is to develop a procedure for determining the thermal properties of a small, irregular air space created as a result of the separation of masonry elements and the impact of this separation on the thermal insulation of the wall. Based on the analysis of the thermal conductivity of voids and masonry elements, it was determined that this impact is visible at low AAC densities. A detailed analysis taking into account both these joints and horizontal joints, as well as different moisture levels, made it possible to determine the permissible separation of AAC blocks, at which the high thermal insulation requirements applicable in most European countries are met. The analysis showed that it is possible to meet the thermal protection requirements for 42 cm wide blocks intended for single-layer walls with a maximum vertical contact width of 3 mm and a joint thickness of up to 2 mm. AAC moisture content plays a major role in thermal insulation. Insulation requirements can be met for AAC in an air-dry state, as specified by ISO 10456. Full article
Show Figures

Figure 1

21 pages, 763 KB  
Article
A Blockchain-Enabled Decentralized Autonomous Access Control Scheme for Data Sharing
by Kunyang Li, Heng Pan, Yaoyao Zhang, Bowei Zhang, Ying Xing, Yuyang Zhan, Gaoxu Zhao and Xueming Si
Mathematics 2025, 13(17), 2712; https://doi.org/10.3390/math13172712 - 22 Aug 2025
Viewed by 396
Abstract
With the rapid development of artificial intelligence, multi-party collaboration based on data sharing has become an inevitable trend. However, in practical applications, shared data often originate from multiple providers. Therefore, achieving secure and efficient data sharing while protecting the rights and interests of [...] Read more.
With the rapid development of artificial intelligence, multi-party collaboration based on data sharing has become an inevitable trend. However, in practical applications, shared data often originate from multiple providers. Therefore, achieving secure and efficient data sharing while protecting the rights and interests of each data provider is a key challenge currently faced. Existing access control methods have the following shortcomings in multi-owner data scenarios. Most methods rely on centralized management, which makes it difficult to solve conflicts caused by inconsistent permission policies among multiple owners. There are problems such as poor consistency of permission management, low security, and lack of protection for the autonomous will of each owner. To this end, our paper proposes a fine-grained decentralized autonomous access control scheme based on blockchain, which includes three core stages: formulation, deployment, and execution of access control policies. In the access control policy formulation stage, the scheme constructs a multi-owner data policy matrix and introduces a benefit function based on a Stackelberg game to balance conflicting attributes to form a unified access policy. Secondly, in the access control policy deployment stage based on smart contracts, all data owners vote on the access control policy by calculating their own benefits to achieve a consensus on joint decision-making on the policy. Finally, in the policy execution and joint authorization phase, a decentralized authorization method based on threshold passwords is used to distribute access keys to each owner, ensuring that data is only granted after receiving authorization from a sufficient number of owners, thereby ensuring the ultimate control of each owner and the fine-grained access control. Finally, we verified the feasibility of the solution through case analysis and experiments. Full article
(This article belongs to the Special Issue Advances in Blockchain and Intelligent Computing)
Show Figures

Figure 1

22 pages, 1908 KB  
Article
AI-Blockchain Integration for Real-Time Cybersecurity: System Design and Evaluation
by Sam Goundar and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 59; https://doi.org/10.3390/jcp5030059 - 14 Aug 2025
Viewed by 1022
Abstract
This paper proposes and evaluates a novel real-time cybersecurity framework integrating artificial intelligence (AI) and blockchain technology to enhance the detection and auditability of cyber threats. Traditional cybersecurity approaches often lack transparency and robustness in logging and verifying AI-generated decisions, hindering forensic investigations [...] Read more.
This paper proposes and evaluates a novel real-time cybersecurity framework integrating artificial intelligence (AI) and blockchain technology to enhance the detection and auditability of cyber threats. Traditional cybersecurity approaches often lack transparency and robustness in logging and verifying AI-generated decisions, hindering forensic investigations and regulatory compliance. To address these challenges, we developed an integrated solution combining a convolutional neural network (CNN)-based anomaly detection module with a permissioned Ethereum blockchain to securely log and immutably store AI-generated alerts and relevant metadata. The proposed system employs smart contracts to automatically validate AI alerts and ensure data integrity and transparency, significantly enhancing auditability and forensic analysis capabilities. To rigorously test and validate our solution, we conducted comprehensive experiments using the CICIDS2017 dataset and evaluated the system’s detection accuracy, precision, recall, and real-time responsiveness. Additionally, we performed penetration testing and security assessments to verify system resilience against common cybersecurity threats. Results demonstrate that our AI-blockchain integrated solution achieves superior detection performance while ensuring real-time logging, transparency, and auditability. The integration significantly strengthens system robustness, reduces false positives, and provides clear benefits for cybersecurity management, especially in regulated environments. This paper concludes by outlining potential avenues for future research, particularly extending blockchain scalability, privacy enhancements, and optimizing performance for high-throughput cybersecurity applications. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

21 pages, 1369 KB  
Article
Economic Risk and Cryptocurrency: What Drives Global Digital Asset Adoption?
by Vyacheslav Stupak
J. Risk Financial Manag. 2025, 18(8), 453; https://doi.org/10.3390/jrfm18080453 - 14 Aug 2025
Viewed by 1399
Abstract
Cryptocurrency is often viewed as a hedge against economic instability, yet the extent to which economic risk drives digital asset adoption remains unclear. This study asks to what extent does economic risk shape global cryptocurrency adoption? To address this question, the research investigates [...] Read more.
Cryptocurrency is often viewed as a hedge against economic instability, yet the extent to which economic risk drives digital asset adoption remains unclear. This study asks to what extent does economic risk shape global cryptocurrency adoption? To address this question, the research investigates how variables such as inflation, corruption, unemployment, and exchange rate volatility influence adoption patterns. Using panel data from 41 countries between 2019 and 2024, the study employs country fixed-effects regression models and Principal Component Analysis. A novel Regulatory Permissiveness Index is introduced to evaluate the role of national regulatory environments. The findings show that cryptocurrency adoption is primarily associated with structural enablers such as GDP per capita, internet penetration, and regulatory clarity. Among the economic risk indicators, higher corruption and lower unemployment significantly predict adoption. Other economic factors, such as inflation and exchange rate volatility, are not consistently significant. The results suggest that economic development and digital infrastructure, rather than reactive responses to economic crises, are the main drivers of cryptocurrency adoption. Nonetheless, the significance of corruption highlights the role of institutional dissatisfaction in adoption behaviour, even in economically stable settings. Full article
(This article belongs to the Special Issue Institutional Investors and Cryptocurrency)
Show Figures

Figure 1

30 pages, 1486 KB  
Article
A Comprehensive Analysis of Evolving Permission Usage in Android Apps: Trends, Threats, and Ecosystem Insights
by Ali Alkinoon, Trung Cuong Dang, Ahod Alghuried, Abdulaziz Alghamdi, Soohyeon Choi, Manar Mohaisen, An Wang, Saeed Salem and David Mohaisen
J. Cybersecur. Priv. 2025, 5(3), 58; https://doi.org/10.3390/jcp5030058 - 14 Aug 2025
Viewed by 707
Abstract
The proper use of Android app permissions is crucial to the success and security of these apps. Users must agree to permission requests when installing or running their apps. Despite official Android platform documentation on proper permission usage, there are still many cases [...] Read more.
The proper use of Android app permissions is crucial to the success and security of these apps. Users must agree to permission requests when installing or running their apps. Despite official Android platform documentation on proper permission usage, there are still many cases of permission abuse. This study provides a comprehensive analysis of the Android permission landscape, highlighting trends and patterns in permission requests across various applications from the Google Play Store. By distinguishing between benign and malicious applications, we uncover developers’ evolving strategies, with malicious apps increasingly requesting fewer permissions to evade detection, while benign apps request more to enhance functionality. In addition to examining permission trends across years and app features such as advertisements, in-app purchases, content ratings, and app sizes, we leverage association rule mining using the FP-Growth algorithm. This allows us to uncover frequent permission combinations across the entire dataset, specific years, and 16 app genres. The analysis reveals significant differences in permission usage patterns, providing a deeper understanding of co-occurring permissions and their implications for user privacy and app functionality. By categorizing permissions into high-level semantic groups and examining their application across distinct app categories, this study offers a structured approach to analyzing the dynamics within the Android ecosystem. The findings emphasize the importance of continuous monitoring, user education, and regulatory oversight to address permission misuse effectively. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

20 pages, 8336 KB  
Article
Exploring Biodegradable Polymeric Nanocomposite Films for Sustainable Food Packaging Application
by Nikolay Estiven Gomez Mesa, Alis Yovana Pataquiva-Mateus and Youhong Tang
Polymers 2025, 17(16), 2207; https://doi.org/10.3390/polym17162207 - 13 Aug 2025
Viewed by 794
Abstract
In this study, a bio-nanocomposite integrating calcium caseinate, modified starch, and bentonite nanoclay was formulated and synthesized into film form via solution casting. Glycerol was incorporated for plasticization, and polyvinyl alcohol (PVA) was used to enhance the structural and chemical attributes of the [...] Read more.
In this study, a bio-nanocomposite integrating calcium caseinate, modified starch, and bentonite nanoclay was formulated and synthesized into film form via solution casting. Glycerol was incorporated for plasticization, and polyvinyl alcohol (PVA) was used to enhance the structural and chemical attributes of the material. The addition of PVA and bentonite notably improved the mechanical strength of the casein-based matrix, showing up to a 30% increase in tensile strength compared to similar biopolymer formulations. Water vapor permeability was significantly reduced when compared to previously reported casein–starch formulations, evidencing the barrier-positive effects of bentonite nanostructures. The microbial analysis confirmed that the quantity of bacterial colonies remained within permissible levels for non-antimicrobial biodegradable films; however, further antibacterial evaluations are advised. Biodegradability testing showed a consistent degradation trend, with full disintegration extrapolated to occur around 13 weeks under natural soil conditions. This study offers exploratory insight into the development of functional and biodegradable films using biopolymer blends and nanoclay suspensions, highlighting their potential in sustainable food packaging applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

27 pages, 12670 KB  
Article
Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions
by Yousra Tligui, El Khalil Cherif, Wafae Lechhab, Touria Lechhab, Ali Laghzal, Nordine Nouayti, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and Farida Salmoun
Water 2025, 17(16), 2393; https://doi.org/10.3390/w17162393 - 13 Aug 2025
Viewed by 852
Abstract
Groundwater quality in arid and semi-arid regions of Morocco is under increasing pressure due to both anthropogenic influences and climatic variability. This study investigates the physicochemical and heavy metal characteristics of groundwater across four Moroccan regions (Tangier-Tetouan-Al Hoceima, Oriental, Souss-Massa, and Marrakech-Safi) known [...] Read more.
Groundwater quality in arid and semi-arid regions of Morocco is under increasing pressure due to both anthropogenic influences and climatic variability. This study investigates the physicochemical and heavy metal characteristics of groundwater across four Moroccan regions (Tangier-Tetouan-Al Hoceima, Oriental, Souss-Massa, and Marrakech-Safi) known for being argan tree habitats. Thirteen groundwater samples were analyzed for twenty-five parameters, including major ions, nutrients, and trace metals. Elevated levels of ammonium, turbidity, electrical conductivity, and dissolved oxygen were observed in multiple samples, surpassing Moroccan water quality standards and indicating significant quality deterioration. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) detected arsenic concentrations exceeding permissible limits in sample AW11 alongside widespread lead contamination in most samples except AW5 and AW9. Spatial patterns of contamination were characterized using Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), K-means clustering, and GIS-based Inverse Distance Weighted (IDW) interpolation. These multivariate approaches revealed marked spatial heterogeneity and highlighted the dual influence of geogenic processes and anthropogenic activities on groundwater quality. To assess consumption suitability, a Water Quality Index (WQI) and Human Health Risk Assessment were applied. As a result, 31% of samples were rated “Fair” and 69% as “Good”, but with notable non-carcinogenic risks, particularly to children, attributable to nitrate, lead, and arsenic. The findings underscore the urgent need for systematic groundwater monitoring and management strategies to safeguard water resources in Morocco’s vulnerable dryland ecosystems, particularly in regions where groundwater sustains vital socio-ecological species such as argan forests. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop