Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = phenol–cresol–formaldehyde resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5955 KB  
Article
Study of Road Bitumen Operational Properties Modified with Phenol–Cresol–Formaldehyde Resin
by Yuriy Demchuk, Volodymyr Gunka, Iurii Sidun, Bohdan Korchak, Myroslava Donchenko, Iryna Drapak, Ihor Poliuzhyn and Serhiy Pyshyev
Resources 2025, 14(6), 91; https://doi.org/10.3390/resources14060091 - 28 May 2025
Cited by 3 | Viewed by 1867
Abstract
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of [...] Read more.
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of the regulatory document for bitumens modified with adhesive additives. Research on the operational properties of these modified bitumens as a binding material for asphalt concrete is described. It has been proven that modified bitumen can store stable properties during its application (resistance to aging). The interaction of bitumens modified by PhCR-F with the surfaces of mineral materials, which occurs during the creation of asphalt concrete coatings, was studied. It was shown that adding 1.0 wt.% PhCR-F to road bitumen significantly improves the adhesion of the binder to the mineral material and increases the hydrophobicity of such a coating. The production of effective bitumen modifiers from non-target coking products of coal will not only make it possible to use new resources in road construction but will also increase the depth of decarbonization of the coking industry. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

26 pages, 8699 KB  
Article
Environmentally Friendly o–Cresol–Furfural–Formaldehyde Resin as an Alternative to Traditional Phenol–Formaldehyde Resins for Paint Industry
by Marta Depta, Sławomir Napiórkowski, Katarzyna Zielińska, Katarzyna Gębura, Daria Niewolik and Katarzyna Jaszcz
Materials 2024, 17(13), 3072; https://doi.org/10.3390/ma17133072 - 22 Jun 2024
Cited by 3 | Viewed by 1408
Abstract
This paper describes studies on the preparation of an o–cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. [...] Read more.
This paper describes studies on the preparation of an o–cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. Such resins are not described in the literature and also are not available on the market. The obtained resin based on furfural, which can be obtained from agricultural waste, had a low minimum content of free o–cresol < 1 wt.%, furfural < 0.1 wt.%, and formaldehyde < 0.1 wt.%. The resin structure was characterized by mass spectrometry (ESI-MS), FT-IR, and NMR spectroscopy, which showed the presence of hydroxymethylene groups in the resin before modification and alkyl groups derived from n-butanol and 2-ethylhexanol after modification. The etherified resins had a lower viscosity and were more flexible (DSC) than the resin before modification and they can be used as an environmentally friendly, safe, and sustainable alternative to traditional phenol–formaldehyde resins in the paint industry. They demonstrate the ability to create a protective coating with good adherence to metal substrates and an excellent balance of flexibility and hardness. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Figure 1

Back to TopTop