Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = photocatalytic prototype system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5100 KB  
Article
Improvement of Buildings’ Air Quality and Energy Consumption Using Air Purifying Paints
by Thomas Maggos, Vassiliοs Binas, Panagiotis Panagopoulos, Evangelia Skliri, Konstantinos Theodorou, Aristotelis Nikolakopoulos, George Kiriakidis, Effrosyni Giama, Georgios Chantzis and Agis Papadopoulos
Appl. Sci. 2024, 14(14), 5997; https://doi.org/10.3390/app14145997 - 9 Jul 2024
Cited by 4 | Viewed by 2430
Abstract
Among the existing techniques to mitigate the problem of contamination in the indoor environment, photocatalytic technology is considered to be the most promising solution in terms of effectiveness and cost. To that end, in the frame of the LIFEVISIONS project, a novel photocatalytic [...] Read more.
Among the existing techniques to mitigate the problem of contamination in the indoor environment, photocatalytic technology is considered to be the most promising solution in terms of effectiveness and cost. To that end, in the frame of the LIFEVISIONS project, a novel photocatalytic powder (photo-powder) was mixed in paints’ matrix, producing a photocatalytic building material (photo-paint) able to improve indoor air quality (IAQ), upon its application, without downgrading paint physical properties. As a result, of IAQ improvement, less energy will be needed from ventilation systems, addressing not only health issues related to air quality but also energy reduction targets. Many powder formulae were synthesized using different synthetic pathways, concentration of dopants, and TiO2 particles’ size. They were tested in a photocatalytic reactor (lab-scale tests), according to EN 16980-1:2021, under visible light and the results showed that the most promising photocatalytic performance degrades 85.4% and 32.4% of nitrogen oxide (NO) and toluene, respectively. This one was used for the production of two different kinds of paints, organic (with organic binder) and inorganic (with potassium silicate binder), in an industrial scale. Both were tested in the Demo Houses’ prototype demonstrator (real-scale tests) with an ultimate scope to estimate their effectiveness to degrade air pollutants under real-world conditions. In addition, the reduced energy consumption as a result of less ventilation needs was calculated in Demo Houses. More specifically, the energy reduction based on simulation results on Demo Houses was more than 7%. Although lab-scale tests showed better photocatalytic performance than the real scale, the efficiency of the paints under a more complicated environment was very promising. Full article
(This article belongs to the Special Issue Air Quality Monitoring and Improvement: Latest Advances and Prospects)
Show Figures

Figure 1

22 pages, 4246 KB  
Article
Solvothermally Grown Oriented WO3 Nanoflakes for the Photocatalytic Degradation of Pharmaceuticals in a Flow Reactor
by Mirco Cescon, Claudia Stevanin, Matteo Ardit, Michele Orlandi, Annalisa Martucci, Tatiana Chenet, Luisa Pasti, Stefano Caramori and Vito Cristino
Nanomaterials 2024, 14(10), 860; https://doi.org/10.3390/nano14100860 - 15 May 2024
Cited by 1 | Viewed by 1649
Abstract
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. [...] Read more.
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

2 pages, 130 KB  
Abstract
Pulsed Corona Discharge Plasma Combined with Photocatalytic Oxidation Technology for the Degradation of Volatile Organic Compounds in Air
by Juri Bolobajev, Kristen Altof, Marina Krichevskaya and Sergei Preis
Proceedings 2023, 92(1), 81; https://doi.org/10.3390/proceedings2023092081 - 24 Jan 2024
Viewed by 924
Abstract
The anthropogenic impact on the environment has long been known to negatively affect the quality of air. Volatile organic compounds (VOCs) are widely used in domestic and industrial applications, generally as solvents. They are mobile in both gaseous and aqueous phases, and thus [...] Read more.
The anthropogenic impact on the environment has long been known to negatively affect the quality of air. Volatile organic compounds (VOCs) are widely used in domestic and industrial applications, generally as solvents. They are mobile in both gaseous and aqueous phases, and thus their spread in environment could have massive effect with dramatically negative consequences. Pulsed corona discharge (PCD) and photocatalytic oxidation (PCO) are considered as efficient and eco-friendly methods for the energy-efficient abatement of gaseous hazardous pollutants. One of the main problems of PCD application in air treatment, however, is residual ozone, a side product of air ionization considered as secondary air pollution. Photocatalytic processes are known to degrade ozone extending simultaneously the photocatalyst lifetime. Thus, combining PCD and PCO in a two-step treatment system could solve the problem of the presence of residual ozone and complement each other’s strengths. In this study, experiments were conducted in separate systems, i.e. photocatalysis and plasma, making a prerequisite for the progress in the combined PCD/PCO applications. A prototype PCO reactor was built and tested with ozone and 2-methoxyethanol (2ME) in combinations. 2ME was chosen as a hazardous model VOC used in industry in solvents and paints. For the PCD experiments xylene was tested. Being refractory air pollutant, extensively studied for its removal, xylene provides a basis for the comparison of its abatement methods. The PCD treatment showed unequalled energy efficiencies in gaseous xylene oxidation. With respect to PCO experiments, the degradation of 2ME and ozone was 40% and 95%, respectively. High ozone degradation performed by PCO confirms the expediency of proposed air cleaning combination. Full article
(This article belongs to the Proceedings of International Conference EcoBalt 2023 "Chemicals & Environment")
14 pages, 3144 KB  
Article
Development of Efficient Photocatalyst MIL-68(Ga)_NH2 Metal-Organic Framework for the Removal of Cr(VI) and Cr(VI)/RhB from Wastewater under Visible Light
by Lei Wu, Doudou Qin, Fan Fang, Weifeng Wang and Wenying Zhao
Materials 2022, 15(11), 3761; https://doi.org/10.3390/ma15113761 - 24 May 2022
Cited by 6 | Viewed by 2920
Abstract
Severe environmental pollution is caused by the massive discharge of complex industrial wastewater. The photocatalytic technology has been proved as an effective way to solve the problem, while an efficient photocatalyst is the most critical factor. Herein, a new photocatalyst MIL-68(Ga)_NH2 was [...] Read more.
Severe environmental pollution is caused by the massive discharge of complex industrial wastewater. The photocatalytic technology has been proved as an effective way to solve the problem, while an efficient photocatalyst is the most critical factor. Herein, a new photocatalyst MIL-68(Ga)_NH2 was obtained by hydrothermal synthesis and were characterized by PXRD, FTIR, 1H NMR, and TGA systematically. The result demonstrates that MIL-68(Ga)_NH2 crystallized in orthorhombic system and Cmcm space group with the unit cell parameters: a = 36.699 Å, b = 21.223 Å, c = 6.75 Å, V = 5257.6 Å3, which sheds light on the maintenance of the crystal structure of the prototype material after amino modification. The conversion of Cr(VI) and binary pollutant Cr(VI)/RhB in wastewater under visible light stimulation was characterized by the UV-vis DRS. Complementary experimental results indicate that MIL-68(Ga)_NH2 exhibits remarkable photocatalytic activity for Cr(VI) and the degradation rate reaches as high as 98.5% when pH = 2 and ethanol as hole-trapping agent under visible light irradiation with good reusability and stability. Owing to the synergistic effect between Cr(VI) and RhB in the binary pollutant system, MIL-68(Ga)_NH2 exhibits excellent catalytic activity for both the pollutants, the degradation efficiency of Cr(VI) and RhB was up to 95.7% and 94.6% under visible light irradiation for 120 min, respectively. The possible removal mechanism of Cr(VI)/RhB based on MIL-68(Ga)_NH2 was explored. In addition, Ga-based MOF was applied in the field of photocatalytic treatment of wastewater for the first time, which broadened the application of MOF materials in the field of photocatalysis. Full article
Show Figures

Figure 1

12 pages, 1872 KB  
Article
Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation
by Minyeong Je, Eun Seob Sim, Jungwook Woo, Heechae Choi and Yong-Chae Chung
Catalysts 2020, 10(5), 469; https://doi.org/10.3390/catal10050469 - 25 Apr 2020
Cited by 10 | Viewed by 4609
Abstract
Charge separation is the most important factor in determining the photocatalytic activity of a 2D/2D heterostructure. Despite the exclusive advantages of 2D/2D heterostructure semiconductor systems such as large surface/volume ratios, their use in photocatalysis is limited due to the low efficiency of charge [...] Read more.
Charge separation is the most important factor in determining the photocatalytic activity of a 2D/2D heterostructure. Despite the exclusive advantages of 2D/2D heterostructure semiconductor systems such as large surface/volume ratios, their use in photocatalysis is limited due to the low efficiency of charge separation and high recombination rates. As a remedy for the weak interlayer binding and low carrier transport efficiency in 2D/2D heterojunctioned semiconductors, we suggested an impurity intercalation method for the 2D/2D interface. PtS2/C3N4, as a prototype heterojunction material, was employed to investigate the effect of anion intercalation on the charge separation efficiency in a 2D/2D system using density functional theory. With oxygen intercalation at the PtS2/C3N4 interface, a reversed and stronger localized dipole moment and a built-in electric field were induced in the vertical direction of the PtS2/C3N4 interface. This theoretical work suggests that the anion intercalation method can be a way to control built-in electric fields and charge separation in designs of 2D/2D heterostructures that have high photocatalytic activity. Full article
Show Figures

Figure 1

32 pages, 9254 KB  
Review
Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms
by Mohan Sakar, Ravikumar Mithun Prakash and Trong-On Do
Catalysts 2019, 9(8), 680; https://doi.org/10.3390/catal9080680 - 9 Aug 2019
Cited by 128 | Viewed by 19683
Abstract
Photocatalysis is a multifunctional phenomenon that can be employed for energy applications such as H2 production, CO2 reduction into fuels, and environmental applications such as pollutant degradations, antibacterial disinfection, etc. In this direction, it is not an exaggerated fact that TiO [...] Read more.
Photocatalysis is a multifunctional phenomenon that can be employed for energy applications such as H2 production, CO2 reduction into fuels, and environmental applications such as pollutant degradations, antibacterial disinfection, etc. In this direction, it is not an exaggerated fact that TiO2 is blooming in the field of photocatalysis, which is largely explored for various photocatalytic applications. The deeper understanding of TiO2 photocatalysis has led to the design of new photocatalytic materials with multiple functionalities. Accordingly, this paper exclusively reviews the recent developments in the modification of TiO2 photocatalyst towards the understanding of its photocatalytic mechanisms. These modifications generally involve the physical and chemical changes in TiO2 such as anisotropic structuring and integration with other metal oxides, plasmonic materials, carbon-based materials, etc. Such modifications essentially lead to the changes in the energy structure of TiO2 that largely boosts up the photocatalytic process via enhancing the band structure alignments, visible light absorption, carrier separation, and transportation in the system. For instance, the ability to align the band structure in TiO2 makes it suitable for multiple photocatalytic processes such as degradation of various pollutants, H2 production, CO2 conversion, etc. For these reasons, TiO2 can be realized as a prototypical photocatalyst, which paves ways to develop new photocatalytic materials in the field. In this context, this review paper sheds light into the emerging trends in TiO2 in terms of its modifications towards multifunctional photocatalytic applications. Full article
(This article belongs to the Special Issue Emerging Trends in TiO2 Photocatalysis and Applications)
Show Figures

Figure 1

Back to TopTop