Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,550)

Search Parameters:
Keywords = photography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4657 KB  
Article
Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling
by Luís Gustavo Macêdo West, André Jackson Ramos Simões, Leandro do Rozário Teixeira, Igor Silva Moreira dos Anjos, Antônio Samuel Bacelar de Freitas Devesa, Lucas Ramalho Oliveira, Juliane Grasiela de Carvalho Gomes, Leonardo Rafael Teixeira Cotrim Gomes, Lucas Gomes Pereira, Luiz Carlos Simões Soares Junior, Germano Pinto Guedes, Geydison Gonzaga Demetino, Marcus Vinícius Santos da Silva, Vitor Leão Filardi, Vitor Pinheiro Ferreira, André Luiz Andrade Simões, Luciano Matos Queiroz and Iuri Muniz Pepe
Fluids 2025, 10(9), 223; https://doi.org/10.3390/fluids10090223 - 26 Aug 2025
Viewed by 38
Abstract
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and [...] Read more.
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and the Reynolds-Averaged Navier–Stokes (RANS) equations were employed. Optical instrumentation and high-speed photography detected the two-phase flow generated by water vaporization, revealing a mean decay pattern. Irradiance fluctuations and photographic evidence provided results about the light transmission dynamics through cavitating jets. Pressure fluctuations exhibited similar growth and decay, supporting optical instrumentation as a viable method for assessing cavitation intensity. Experimental data showed a strong relationship between irradiance and flow rate (R2 = 0.998). This enabled the correlation of the standard deviation of instantaneous pressure measurements and normalized flow rate (R2 = 0.977). Furthermore, vapor volume fraction and normalized flow rate reached a correlation coefficient of 0.999. On the simulation side, the SSG-RSM turbulence mode showed better agreement with experimental data, with relative deviations ranging from 2.1% to 6.6%. The numerical results suggest that vapor jet length is related to vapor fraction through a power law, enabling the development of new equations. These results demonstrated that anisotropic turbulence modeling is essential to reproduce experimental observations compared to mean flow properties. Based on the agreement between the numerical model and the experimental data for mean flow quantities, a formulation is proposed to estimate the jet length originating from the nozzle, offering a predictive approach for cavitating jet behavior. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

18 pages, 6259 KB  
Article
Wind-Induced Bending Characteristics of Crop Leaves and Their Potential Applications in Air-Assisted Spray Optimization
by Zhouming Gao, Jing Ma, Wei Hu, Kaiyuan Wang, Kuan Liu, Jian Chen, Tao Wang, Xiaoya Dong and Baijing Qiu
Horticulturae 2025, 11(9), 1002; https://doi.org/10.3390/horticulturae11091002 - 23 Aug 2025
Viewed by 166
Abstract
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined [...] Read more.
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined with high-speed photography and digital image analysis were conducted to systematically investigate the curvature and flexibility distributions of three typical crop leaves: walnut, peach, and pepper, across a range of wind speeds. The results indicate that with increasing wind speed, all three types of leaves gradually transition from smooth, uniform bending to a multi-peak pattern of pronounced local curvature, with increasingly prominent nonlinear deformation characteristics. Moreover, once the wind speed exceeds the critical threshold of 6 m/s, the primary deformation region generally shifts from the leaf base to the tip. For example, the maximum curvature of walnut leaves increased from 0.018 mm−1 to 0.047 mm−1, and that of pepper leaves from 0.031 mm−1 to 0.101 mm−1, both more than double their original values. In addition, all three types of leaves demonstrated a distinct structural gradient characterized by strong basal rigidity and high apical flexibility. The tip flexibility values exceeded 1.5 × 10−5, 4 × 10−4, and 5.6 × 10−4 mm−2·mN−1 for walnut, peach, and pepper leaves, respectively. These findings elucidate the mechanical response mechanisms of non-uniform flexible crop leaves under wind-induced bending and provide a theoretical basis and data support for the optimization of air-assisted spraying parameters. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

35 pages, 4053 KB  
Article
Assessing the Effectiveness of 3D-Printed Ceramic Structures for Coral Restoration: Growth, Survivorship, and Biodiversity Using Visual Surveys and eDNA
by Vriko Yu, Alison D. Corley, Horace Lau, Philip D. Thompson, Zhongyue Wilson Wan, Jane C. Y. Wong, Zoe Kwan Ting Wong, Louise Wai Hung Li, Shelby E. McIlroy and David M. Baker
J. Mar. Sci. Eng. 2025, 13(9), 1605; https://doi.org/10.3390/jmse13091605 - 22 Aug 2025
Viewed by 129
Abstract
Coral reef degradation has spurred the development of artificial structures to mitigate losses in coral cover. These structures serve as substrates for coral transplantation, with the expectation that growing corals will attract reef-associated taxa—while the substrate’s ability to directly support biodiversity is often [...] Read more.
Coral reef degradation has spurred the development of artificial structures to mitigate losses in coral cover. These structures serve as substrates for coral transplantation, with the expectation that growing corals will attract reef-associated taxa—while the substrate’s ability to directly support biodiversity is often neglected. We evaluated a novel 3D-printed modular tile made of porous terra cotta, designed with complex surface structures to enhance micro- and cryptic biodiversity, through a restoration project in Hong Kong. Over four years, we monitored 378 outplanted coral fragments using diver assessments and photography, while biodiversity changes were assessed through visual surveys and eDNA metabarcoding. Coral survivorship was high, with 88% survival after four years. Visual surveys recorded seven times more fish and almost 60% more invertebrates at the restoration site compared to a nearby unrestored area. eDNA analyses revealed a 23.5% higher eukaryote ASV richness at the restoration site than the unrestored site and 13.3% greater richness relative to a natural reference coral community. This study highlights the tiles’ dual functionality: (1) supporting coral growth and (2) enhancing cryptic biodiversity, an aspect often neglected in traditional reef restoration efforts. Our findings underscore the potential of 3D-printed ceramic structures to improve both coral restoration outcomes and broader reef ecosystem recovery. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

28 pages, 11764 KB  
Article
Study on Cavitation Flow Structure Evolution in the Hump Region of Water-Jet Pumps Under the Valley Condition
by Yingying Zheng, Yun Long, Min Liu, Hanqiao Han, Kai Wang, Jinqing Zhong and Yun Long
J. Mar. Sci. Eng. 2025, 13(8), 1598; https://doi.org/10.3390/jmse13081598 - 21 Aug 2025
Viewed by 138
Abstract
During the hydraulic performance experiment, significant vibration and noise were observed in the mixed-flow pump operating in the hump region. Cavitation occurrence in the impeller flow channels was confirmed through the transparent chamber. To analyze cavitation flow structure evolution in the mixed-flow pump, [...] Read more.
During the hydraulic performance experiment, significant vibration and noise were observed in the mixed-flow pump operating in the hump region. Cavitation occurrence in the impeller flow channels was confirmed through the transparent chamber. To analyze cavitation flow structure evolution in the mixed-flow pump, this paper integrates numerical and experimental approaches, capturing cavitation flow structures under the valley condition through high-speed photography technology. During the various stages of cavitation development, the cavitation forms are mostly vortex cavitation, cloud cavitation, and perpendicular vortex cavitation. Impeller rotation induces downstream transport of shedding cloud cavitation shedding structures. Flow blockage occurs when cavitation vortexes obstruct specific passages, accelerating cavitation growth that culminates in head reduction through energy dissipation mechanisms. Vortex evolution analysis revealed enhanced density of small-scale vortex structures with stronger localized core intensity in the impeller and diffuser. Despite larger individual vortex scales, reduced core intensity persists throughout the full flow domain. Concurrently, velocity profile characteristics across flow rates and blade sections (spanwise from tip to root) indicate heightened predisposition to flow separation, recirculation zones, and low-velocity regions during off-design operation. This study provides scientific guidance for enhancing anti-cavitation performance in the hump region. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 5591 KB  
Article
The Evolution Mechanism and Stability Prediction of the Wanshuitian Landslide, an Oblique-Dip Slope Wedge Landslide in the Three Gorges Reservoir Area
by Chu Xu, Chang Zhou and Wei Huang
Appl. Sci. 2025, 15(16), 9194; https://doi.org/10.3390/app15169194 - 21 Aug 2025
Viewed by 243
Abstract
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, [...] Read more.
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, based on the Wanshuitian landslide. Following four heavy rainfall events from 3 to 13 July 2024, this landslide exhibited significant deformation on the 17th and was completely destroyed within 40 min. The dimensions of the landslide were 350 m in length, 160 m in width, and 20 m in thickness, with a volume estimated at 8.0 × 105 m3. The characteristics of landslide deformation and the changes in moisture content within the shallow slide body were ascertained using unmanned aerial vehicles, moisture meters, and mobile phone photography. The landslide was identified to have occurred within the weathered residual layer of mudstone, situated between two sandstone layers, with the eastern boundary defined by an inclined rock layer. Upon transitioning into the accelerated deformation stage, the landslide initially exhibited uniform overall sliding deformation, culminating in accelerated deformation destruction. The dip structure created terrain disparities, resulting in a step-like terrain on the left bank and gentler slopes on the right bank, with interbedded soil and rock in a shallow layer, because the interlayered soft and hard geological conditions caused varied weathering and erosion patterns on the riverbank slopes. The interbedded weak–hard stratum layer fostered the development of the oblique-dip slope wedge landslide. Based on the improved Green–Ampt model, we developed a stability prediction methodology for an oblique-dip slope wedge landslide and determined the rainfall infiltration depth threshold of the Wanshuitian landslide (9.8 m). This study aimed not merely to sharpen the evolution mechanism and stability prediction of the Wanshuitian landslide but also to formulate more effective landslide-monitoring strategies and emergency management measures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 7241 KB  
Article
RICNET: Retinex-Inspired Illumination Curve Estimation for Low-Light Enhancement in Industrial Welding Scenes
by Chenbo Shi, Xiangyu Zhang, Delin Wang, Changsheng Zhu, Aiping Liu, Chun Zhang and Xiaobing Feng
Sensors 2025, 25(16), 5192; https://doi.org/10.3390/s25165192 - 21 Aug 2025
Viewed by 361
Abstract
Feature tracking is essential for welding crawler robots’ trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld [...] Read more.
Feature tracking is essential for welding crawler robots’ trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld seam feature extraction and trajectory anomaly detection accuracy. To address this, we propose a Retinex-based low-light enhancement network tailored for cladding scenarios. The network features an illumination curve estimation module and requires no paired or unpaired reference images during training, alleviating the need for cladding-specific datasets. It adaptively adjusts brightness, restores image details, and effectively suppresses noise. Extensive experiments on public (LOLv1 and LOLv2) and self-collected weld datasets show that our method outperformed existing approaches in PSNR, SSIM, and LPIPS. Additionally, weld seam segmentation under low-light conditions achieved 95.1% IoU and 98.9% accuracy, confirming the method’s effectiveness for downstream tasks in robotic welding. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

28 pages, 8325 KB  
Article
Tunnel Rapid AI Classification (TRaiC): An Open-Source Code for 360° Tunnel Face Mapping, Discontinuity Analysis, and RAG-LLM-Powered Geo-Engineering Reporting
by Seyedahmad Mehrishal, Junsu Leem, Jineon Kim, Yulong Shao, Il-Seok Kang and Jae-Joon Song
Remote Sens. 2025, 17(16), 2891; https://doi.org/10.3390/rs17162891 - 20 Aug 2025
Viewed by 679
Abstract
Accurate and efficient rock mass characterization is essential in geotechnical engineering, yet traditional tunnel face mapping remains time consuming, subjective, and potentially hazardous. Recent advances in digital technologies and AI offer automation opportunities, but many existing solutions are hindered by slow 3D scanning, [...] Read more.
Accurate and efficient rock mass characterization is essential in geotechnical engineering, yet traditional tunnel face mapping remains time consuming, subjective, and potentially hazardous. Recent advances in digital technologies and AI offer automation opportunities, but many existing solutions are hindered by slow 3D scanning, computationally intensive processing, and limited integration flexibility. This paper presents Tunnel Rapid AI Classification (TRaiC), an open-source MATLAB-based platform for rapid and automated tunnel face mapping. TRaiC integrates single-shot 360° panoramic photography, AI-powered discontinuity detection, 3D textured digital twin generation, rock mass discontinuity characterization, and Retrieval-Augmented Generation with Large Language Models (RAG-LLM) for automated geological interpretation and standardized reporting. The modular eight-stage workflow includes simplified 3D modeling, trace segmentation, 3D joint network analysis, and rock mass classification using RMR, with outputs optimized for Geo-BIM integration. Initial evaluations indicate substantial reductions in processing time and expert assessment workload. Producing a lightweight yet high-fidelity digital twin, TRaiC enables computational efficiency, transparency, and reproducibility, serving as a foundation for future AI-assisted geotechnical engineering research. Its graphical user interface and well-structured open-source code make it accessible to users ranging from beginners to advanced researchers. Full article
Show Figures

Figure 1

24 pages, 4012 KB  
Article
Copyright Protection and Trusted Transactions for 3D Models Based on Smart Contracts and Zero-Watermarking
by Ruigang Nan, Liming Zhang, Jianing Xie, Yan Jin, Tao Tan, Shuaikang Liu and Haoran Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 317; https://doi.org/10.3390/ijgi14080317 - 20 Aug 2025
Viewed by 280
Abstract
With the widespread application of 3D models derived from oblique photography, the need for copyright protection and trusted transactions has risen significantly. Traditional transactions often depend on third parties, making it difficult to balance copyright protection with transaction credibility and to safeguard the [...] Read more.
With the widespread application of 3D models derived from oblique photography, the need for copyright protection and trusted transactions has risen significantly. Traditional transactions often depend on third parties, making it difficult to balance copyright protection with transaction credibility and to safeguard the rights and interests of both parties. To address these challenges, this paper proposes a novel trusted-transaction scheme that integrates smart contracts with zero-watermarking technology. Firstly, the skewness of the oblique-photography 3D model data is employed to construct a zero-watermark identifier, which is stored in the InterPlanetary File System (IPFS) alongside encrypted data for trading. Secondly, smart contracts are designed and deployed. Lightweight information, such as IPFS data addresses, is uploaded to the blockchain by invoking these contracts, and transactions are conducted accordingly. Finally, the blockchain system automatically records the transaction process and results on-chain, providing verifiable transaction evidence. The experimental results show that the proposed zero-watermarking algorithm resists common attacks. The trusted-transaction framework not only ensures the traceability and trustworthiness of the entire transaction process but also safeguards the rights of both parties. This approach effectively protects copyright while ensuring the reliability of the transactions. Full article
Show Figures

Figure 1

21 pages, 1192 KB  
Article
Video Stabilization Algorithm Based on View Boundary Synthesis
by Wenchao Shan, Hejing Zhao, Xin Li, Qian Huang, Chuanxu Jiang, Yiming Wang, Ziqi Chen and Yao Tong
Symmetry 2025, 17(8), 1351; https://doi.org/10.3390/sym17081351 - 19 Aug 2025
Viewed by 333
Abstract
Video stabilization is a critical technology for enhancing visual content quality in dynamic shooting scenarios, especially with the widespread adoption of mobile photography devices and Unmanned Aerial Vehicle (UAV) platforms. While traditional digital stabilization algorithms can improve frame stability by modeling global motion [...] Read more.
Video stabilization is a critical technology for enhancing visual content quality in dynamic shooting scenarios, especially with the widespread adoption of mobile photography devices and Unmanned Aerial Vehicle (UAV) platforms. While traditional digital stabilization algorithms can improve frame stability by modeling global motion trajectories, they often suffer from excessive cropping or boundary distortion, leading to a significant loss of valid image regions. To address this persistent challenge, we propose the View Out-boundary Synthesis Algorithm (VOSA), a symmetry-aware spatio-temporal consistency framework. By leveraging rotational and translational symmetry principles in motion dynamics, VOSA realizes optical flow field extrapolation through an encoder–decoder architecture and an iterative boundary extension strategy. Experimental results demonstrate that VOSA enhances conventional stabilization by increasing content retention by 6.3% while maintaining a 0.943 distortion score, outperforming mainstream methods in dynamic environments. The symmetry-informed design resolves stability–content conflicts and outperforms mainstream methods in dynamic environments, establishing a new paradigm for full-frame stabilization. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Image Processing and Computer Vision)
Show Figures

Figure 1

28 pages, 9030 KB  
Article
UAV Path Planning via Semantic Segmentation of 3D Reality Mesh Models
by Xiaoxinxi Zhang, Zheng Ji, Lingfeng Chen and Yang Lyu
Drones 2025, 9(8), 578; https://doi.org/10.3390/drones9080578 - 14 Aug 2025
Viewed by 460
Abstract
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality [...] Read more.
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality mesh models to enhance efficiency and accuracy in complex scenarios. The scene is segmented into buildings, vegetation, ground, and water bodies. Lightweight polygonal surfaces are extracted for buildings, while planar segments in non-building regions are fitted and projected into simplified polygonal patches. These photography targets are further decomposed into point, line, and surface primitives. A multi-resolution image acquisition strategy is adopted, featuring high-resolution coverage for buildings and rapid scanning for non-building areas. To ensure flight safety, a Digital Surface Model (DSM)-based shell model is utilized for obstacle avoidance, and sky-view-based Real-Time Kinematic (RTK) signal evaluation is applied to guide viewpoint optimization. Finally, a complete weighted graph is constructed, and ant colony optimization is employed to generate a low-energy-cost flight path. Experimental results demonstrate that, compared with traditional oblique photogrammetry, the proposed method achieves higher reconstruction quality. Compared with the commercial software Metashape, it reduces the number of images by 30.5% and energy consumption by 37.7%, while significantly improving reconstruction results in both architectural and non-architectural areas. Full article
Show Figures

Figure 1

17 pages, 3246 KB  
Article
A Citizen Science Approach for Documenting Mass Coral Bleaching in the Western Indian Ocean
by Anderson B. Mayfield
Environments 2025, 12(8), 276; https://doi.org/10.3390/environments12080276 - 11 Aug 2025
Viewed by 605
Abstract
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from [...] Read more.
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from NOAA’s Coral Reef Watch tend to underestimate severity of bleaching in the Indian Ocean, as was evident in March 2024 when corals began bleaching after only experiencing 1–2 degree-heating weeks. To characterize the impacts of this event, I conducted citizen science-style surveys at 22 sites along a 600-km stretch of the Kenyan coastline. Thereafter, I trained an artificial intelligence (AI) to extract coral abundance and bleaching data from 2300 coral reef images spanning 11–12 hectares of reef area to estimate both coral cover and bleaching prevalence. The AI’s accuracy was >80%, though it was prone to false-positive bleaching classifications. Bleaching severity varied significantly across sites, as well as over time, as seawater continued to warm over the duration of the study period; on average, over 75% of all reef-building scleractinians had bleached. Across the 22 sites, the mean healthy coral cover was only 7–8%, vs. >30% at sites in the same areas in the late 1990s. Whether these corals can recover, and then withstand such heatwaves in the future, will be known all too soon. Full article
Show Figures

Figure 1

26 pages, 10835 KB  
Article
Detonation Dynamics and Damage Behavior of Segmented Tunnel Charges with Shaped Liners
by Zhuo Li, Xiaojun Zhang, Zhenye Zhu, Yongbo Wu, Hongbing Yu, Wenxue Gao and Ben Lv
Buildings 2025, 15(16), 2815; https://doi.org/10.3390/buildings15162815 - 8 Aug 2025
Viewed by 232
Abstract
To precisely control the tunnel smooth blasting effect, this study conducts both model experiments and numerical simulations to investigate the impact of shaped charge jet initiation on emulsion explosives and surrounding rock damage fractal characteristics under different ratios of the main-to-secondary charge lengths [...] Read more.
To precisely control the tunnel smooth blasting effect, this study conducts both model experiments and numerical simulations to investigate the impact of shaped charge jet initiation on emulsion explosives and surrounding rock damage fractal characteristics under different ratios of the main-to-secondary charge lengths (L1/L2). The study also includes field validation. The results indicate the following: (1) The Arbitrary Lagrangian–Eulerian (ALE) method can accurately reproduce the formation, motion, impact, initiation, and dynamic damage evolution of a shaped charge jet inside a blast hole, with a deviation of less than 6.4% compared to high-speed photography observations. (2) Under the working conditions in this study, when an axial aluminum energetic liner and two-stage air-segmented charge in the peripheral holes are used, the fractal dimension (Df) initially increases from 1.57 to 1.66 and then decreases to 1.41 as the L1/L2 ratio increases. (3) Field test results demonstrate that, when using a two-segment explosive charge with a 20 cm gap between segments and an L1/L2 ratio of 2, the average over- or under-excavation is controlled within 7 cm, with the maximum deviation not exceeding 12 cm. The corresponding average fragment size (d50) is minimized, resulting in an excellent smooth blasting effect and effectively controlling the fragmentation of the smooth blasting layer. The conclusions of this study provide valuable insights for the development of advanced shaped charge blasting techniques. Full article
(This article belongs to the Special Issue Dynamic Response of Civil Engineering Structures under Seismic Loads)
Show Figures

Figure 1

19 pages, 9147 KB  
Article
Evaluating Forest Canopy Structures and Leaf Area Index Using a Five-Band Depth Image Sensor
by Geilebagan, Takafumi Tanaka, Takashi Gomi, Ayumi Kotani, Genya Nakaoki, Xinwei Wang and Shodai Inokoshi
Forests 2025, 16(8), 1294; https://doi.org/10.3390/f16081294 - 8 Aug 2025
Viewed by 370
Abstract
The objective of the study was to develop and validate a ground-based method using a depth image sensor equipped with depth, visible red, green, blue (RGB), and near-infrared bands to measure the leaf area index (LAI) based on the relative illuminance of foliage [...] Read more.
The objective of the study was to develop and validate a ground-based method using a depth image sensor equipped with depth, visible red, green, blue (RGB), and near-infrared bands to measure the leaf area index (LAI) based on the relative illuminance of foliage only. The method was applied in a Itajii chinkapin (Castanopsis sieboldii (Makino) Hatus. ex T.Yamaz. & Mashiba )forest in Aichi Prefecture, Japan, and validated by comparing estimates with conventional methods (LAI-2200 and fisheye photography). To apply the 5-band sensor to actual forests, a methodology is proposed for matching the color camera and near-infrared camera in units of pixels, along with a method for widening the exposure range through multi-step camera exposure. Based on these advancements, the RGB color band, near-infrared band, and depth band are converted into several physical properties. Employing these properties, each pixel of the canopy image is classified into upper foliage, lower foliage, sky, and non-assimilated parts (stems and branches). Subsequently, the LAI is calculated using the gap-fraction method, which is based on the relative illuminance of the foliage. In comparison with existing indirect LAI estimations, this technique enabled the distinction between upper and lower canopy layers and the exclusion of non-assimilated parts. The findings indicate that the plant area index (PAI) ranged from 2.23 to 3.68 m2 m−2, representing an increase from 33% to 34% compared to the LAI calculated after excluding non-assimilating parts. The findings of this study underscore the necessity of distinguishing non-assimilated components in the estimation of LAI. The PAI estimates derived from the depth image sensor exhibited moderate to strong agreement with the LAI-2200, contingent upon canopy rings (R2 = 0.48–0.98), thereby substantiating the reliability of the system’s performance. The developed approaches also permit the evaluation of the distributions of leaves and branches at various heights from the ground surface to the top of the canopy. The novel LAI measurement method developed in this study has the potential to provide precise, reliable foundational data to support research in ecology and hydrology related to complex tree structures. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 3629 KB  
Article
Chlorography or Chlorotyping from the Decomposition of Chlorophyll and Natural Pigments in Leaves and Flowers as a Natural Alternative for Photographic Development
by Andrea D. Larrea Solórzano, Iván P. Álvarez Lizano, Pablo R. Morales Fiallos, Carolina E. Maldonado Cherrez and Carlos S. Suárez Naranjo
J. Zool. Bot. Gard. 2025, 6(3), 41; https://doi.org/10.3390/jzbg6030041 - 7 Aug 2025
Viewed by 422
Abstract
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous [...] Read more.
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous Salasaka people. In this context, this experimental project on natural photography is oriented toward the conservation of the ancestral knowledge of this community and the understanding of the native flora of Ecuador. We investigated the application of the contact image transfer technique with positive transparencies on leaves and flowers of 30 different species that grow in the Ecuadorian highlands, including leaves of vascular plants, as well as rose petals. The results showed that the clarity and contrast of chlorography depended on the plant species and exposure time. It was observed that fruit-bearing species produced more visible images than the leaves of other plants and rose petals, with species from the Passifloraceae family proving particularly effective. We interpreted these findings within the framework of plant photophysical mechanisms, proposing an inverse relationship between development efficiency and species’ non-photochemical quenching (NPQ) capacity. Furthermore, we interpreted the findings in relation to the photobleaching of pigments and compared chlorography with other natural photographic processes such as anthotypes. Key factors influencing the process were identified, such as the type of leaf, the intensity and duration of light, and the hydration of the plant material. It is concluded that chlorography is a viable, non-toxic, and environmentally friendly photographic alternative with potential applications in art, education, and research, although it presents challenges in terms of image permanence and reproducibility. Full article
Show Figures

Figure 1

16 pages, 53970 KB  
Article
UNet–Transformer Hybrid Architecture for Enhanced Underwater Image Processing and Restoration
by Jie Ji and Jiaju Man
Mathematics 2025, 13(15), 2535; https://doi.org/10.3390/math13152535 - 6 Aug 2025
Viewed by 338
Abstract
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across [...] Read more.
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across diverse underwater conditions, such as varying turbidity levels and lighting. This paper proposes a novel hybrid UNet–Transformer architecture based on MaxViT blocks, which effectively combines local feature extraction with global contextual modeling to address challenges including low contrast, color distortion, and detail degradation. Extensive experiments on two benchmark datasets, UIEB and EUVP, demonstrate the superior performance of our method. On UIEB, our model achieves a PSNR of 22.91, SSIM of 0.9020, and CCF of 37.93—surpassing prior methods such as URSCT-SESR and PhISH-Net. On EUVP, it attains a PSNR of 26.12 and PCQI of 1.1203, outperforming several state-of-the-art baselines in both visual fidelity and perceptual quality. These results validate the effectiveness and robustness of our approach under complex underwater degradation, offering a reliable solution for real-world underwater image enhancement tasks. Full article
Show Figures

Figure 1

Back to TopTop