Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = photon-counting CT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2910 KB  
Case Report
Perforator-Sparing Microsurgical Clipping of Tandem Dominant-Hemisphere Middle Cerebral Artery Aneurysms: Geometry-Guided Reconstruction of a Wide-Neck Bifurcation and Dorsal M1 Fusiform Lesion
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Diagnostics 2025, 15(21), 2678; https://doi.org/10.3390/diagnostics15212678 - 23 Oct 2025
Abstract
Background and Clinical Significance: Tandem pathology at the dominant-hemisphere middle cerebral artery (MCA)—combining a wide-neck bifurcation aneurysm that shares the neck with both M2 origins and a short dorsal M1 fusiform dilation embedded in the lenticulostriate belt—compresses the therapeutic margin and complicates device-first [...] Read more.
Background and Clinical Significance: Tandem pathology at the dominant-hemisphere middle cerebral artery (MCA)—combining a wide-neck bifurcation aneurysm that shares the neck with both M2 origins and a short dorsal M1 fusiform dilation embedded in the lenticulostriate belt—compresses the therapeutic margin and complicates device-first pathways. We aimed to describe an anatomy-led, microscope-only sequence designed to secure an immediate branch-definitive result at the fork and to remodel dorsal M1 without perforator compromise, and to place these decisions within a pragmatic perioperative framework. Case Presentation: A 37-year-old right-handed man with reproducible, load-sensitive cortical association and capsulostriate signs underwent high-fidelity digital subtraction angiography (DSA) with 3D rotational reconstructions. Through a left pterional approach, vein-respecting Sylvian dissection achieved gravity relaxation. Reconstruction proceeded in sequence: a fenestrated straight clip across the bifurcation neck with the superior M2 encircled to preserve both M2 ostia, followed by a short longitudinal clip parallel to M1 to reshape the fusiform segment while keeping each lenticulostriate mouth visible and free. Temporary occlusion windows were brief (bifurcation 2 min 30 s; M1 < 2 min). No neuronavigation, intraoperative fluorescence, micro-Doppler, or intraoperative angiography was used. No perioperative antiplatelets or systemic anticoagulation were administered and venous thromboembolism prophylaxis followed institutional practice. The bifurcation dome collapsed immediately with round, mobile M2 orifices, and dorsal M1 regained near-cylindrical geometry with patent perforator ostia under direct inspection. Emergence was neurologically intact, headaches abated, and preoperative micro-asymmetries resolved without new deficits. The early course was uncomplicated. Non-contrast CT at three months showed structurally preserved dominant-hemisphere parenchyma without infarction or hemorrhage. Lumen confirmation was scheduled at 12 months. Conclusions: In dominant-hemisphere tandem MCA disease, staged, perforator-sparing clip reconstruction can restore physiologic branch and perforator behavior while avoiding prolonged antiplatelet exposure and device-related branch uncertainty. A future-facing pathway pairs subtle clinical latency metrics with high-fidelity angiography, reports outcomes in branch- and perforator-centric terms, and, where available, incorporates patient-specific hemodynamic simulation and noninvasive lumen surveillance to guide timing, technique, and follow-up. Full article
(This article belongs to the Special Issue Cerebrovascular Lesions: Diagnosis and Management, 2nd Edition)
Show Figures

Figure 1

13 pages, 1588 KB  
Article
Advancing Aortic Dissection Imaging: First Clinical Experience of Photon-Counting CT with Ultra-Fast Spectral Imaging
by Daniel Dillinger, Maria Weiss, Hanns L. Kaatsch, Christian Bauer, Achim Hagen, Matthias F. Froelich, Stephan Waldeck and Daniel Overhoff
Diagnostics 2025, 15(20), 2655; https://doi.org/10.3390/diagnostics15202655 - 21 Oct 2025
Viewed by 171
Abstract
Background: Computed tomography (CT) is the standard of reference for diagnosis and follow-up in aortic dissection (AD). Localizing the entry and identifying false and true lumen are as important as differing post-treatment changes from contrast media extravasations. Photon-counting detector CT (PCDCT) allows [...] Read more.
Background: Computed tomography (CT) is the standard of reference for diagnosis and follow-up in aortic dissection (AD). Localizing the entry and identifying false and true lumen are as important as differing post-treatment changes from contrast media extravasations. Photon-counting detector CT (PCDCT) allows for virtual monoenergetic (VME) reconstructions, which can augment contrast media effects on lower energy levels, and for virtual non-contrast (VNC) reconstructions. The aim of this study was to analyze the influence of VME reconstructions on contrast media effects in different dissection compartments as well as compare true and VNC series in AD patients. Methods: We retrospectively analyzed PCDCT datasets from 28 patients with aortic dissections, with different dissection types and different treatment statuses. Attenuation and standard deviation values of the ascending and descending aorta, as well as CT values of the false lumen, were measured. These measurements were obtained from VME images at energy levels ranging from 40 to 190 keV in 10 keV increments, as well as from non-contrast (NC) and VNC reconstructions. The signal-to-noise ratio (SNR) was calculated. Additionally, subjective values for dissection assessability and native aspects of the images were acquired for different reconstructions. Results: CT values decreased with higher energy levels in VME imaging. Ascending aorta showed higher attenuation values than descending aorta, which was higher than false lumen (e.g., at 70 keV ascending 357 [310; 419] HU, descending 346 [305; 401] HU and false lumen 298 [248; 363] HU). These differences increased on lower VME reconstructions with statistical significance for the comparisons of ascending and descending aorta with the false lumen on all energy levels. In line with this, SNR showed highest values for ascending aorta compared to descending aorta and false lumen on all energy levels. For NC comparisons, VNC and VME at 190 keV reconstructions showed higher CT values than NC reconstructions (e.g., overall data NC 48 [42; 55] HU, VNC 66 [57; 73] HU, 190 keV 97 [89; 105] HU). Subjective ratings were worse with VNC than with NC images. Conclusions: VME reconstructions on lower energy levels can be helpful in differentiating between true and false lumen in aortic dissections. Full article
(This article belongs to the Special Issue Advances in Cardiovascular Diseases: Diagnosis and Management)
Show Figures

Figure 1

11 pages, 649 KB  
Review
A Narrative Review of Photon-Counting CT and Radiomics in Cardiothoracic Imaging: A Promising Match?
by Salvatore Claudio Fanni, Ilaria Ambrosini, Francesca Pia Caputo, Maria Emanuela Cuibari, Domitilla Deri, Alessio Guarracino, Camilla Guidi, Vincenzo Uggenti, Giancarlo Varanini, Emanuele Neri, Dania Cioni, Mariano Scaglione and Salvatore Masala
Diagnostics 2025, 15(20), 2631; https://doi.org/10.3390/diagnostics15202631 - 18 Oct 2025
Viewed by 216
Abstract
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The [...] Read more.
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The ability of PCCT to generate multiple types of datasets, including high-resolution conventional images, iodine maps, and virtual monoenergetic reconstructions, increases the richness of extractable features and potentially enhances radiomics performance. This narrative review investigates the current evidence on the interplay between PCCT and radiomics in cardiothoracic imaging. Phantom studies demonstrate reduced reproducibility between PCCT and conventional CT systems, while intra-scanner repeatability remains high. Nonetheless, PCCT introduces additional complexity, as reconstruction parameters and acquisition settings significantly may affect feature stability. In chest imaging, early studies suggest that PCCT-derived features may improve nodule characterization, but existing machine learning models, such as those applied to interstitial lung disease, may require recalibration to accommodate the new imaging paradigm. In cardiac imaging, PCCT has shown particular promise: radiomic features extracted from myocardial and epicardial tissues can provide additional diagnostic insights, while spectral reconstructions improve plaque characterization. Proof-of-concept studies already suggest that PCCT radiomics can capture myocardial aging patterns and discriminate high-risk coronary plaques. In conclusion, evidence supports a growing synergy between PCCT and radiomics, with applications already emerging in both lung and cardiac imaging. By enhancing the reproducibility and richness of quantitative features, PCCT may significantly broaden the clinical potential of radiomics in computed tomography. Full article
Show Figures

Figure 1

18 pages, 3733 KB  
Article
Dual-Head Pix2Pix Network for Material Decomposition of Conventional CT Projections with Photon-Counting Guidance
by Yanyun Liu, Zhiqiang Li, Yang Wang, Ruitao Chen, Dinghong Duan, Xiaoyi Liu, Xiangyu Liu, Yu Shi, Songlin Li and Shouping Zhu
Sensors 2025, 25(19), 5960; https://doi.org/10.3390/s25195960 - 25 Sep 2025
Viewed by 513
Abstract
Material decomposition in X-ray imaging is essential for enhancing tissue differentiation and reducing the radiation dose, but the clinical adoption of photon-counting detectors (PCDs) is limited by their high cost and technical complexity. To address this, we propose Dual-head Pix2Pix, a PCD-guided deep [...] Read more.
Material decomposition in X-ray imaging is essential for enhancing tissue differentiation and reducing the radiation dose, but the clinical adoption of photon-counting detectors (PCDs) is limited by their high cost and technical complexity. To address this, we propose Dual-head Pix2Pix, a PCD-guided deep learning framework that enables simultaneous iodine and bone decomposition from single-energy X-ray projections acquired with conventional energy-integrating detectors. The model was trained and tested on 1440 groups of energy-integrating detector (EID) projections with their corresponding iodine/bone decomposition images. Experimental results demonstrate that the Dual-head Pix2Pix outperforms baseline models. For iodine decomposition, it achieved a mean absolute error (MAE) of 5.30 ± 1.81, representing an ~10% improvement over Pix2Pix (5.92) and a substantial advantage over CycleGAN (10.39). For bone decomposition, the MAE was reduced to 9.55 ± 2.49, an ~6% improvement over Pix2Pix (10.18). Moreover, Dual-head Pix2Pix consistently achieved the highest MS-SSIM, PSNR, and Pearson correlation coefficients across all benchmarks. In addition, we performed a cross-domain validation using projection images acquired from a conventional EID-CT system. The results show that the model successfully achieved the effective separation of iodine and bone in this new domain, demonstrating a strong generalization capability beyond the training distribution. In summary, Dual-head Pix2Pix provides a cost-effective, scalable, and hardware-friendly solution for accurate dual-material decomposition, paving the way for the broader clinical and industrial adoption of material-specific imaging without requiring PCDs. Full article
Show Figures

Figure 1

23 pages, 5361 KB  
Review
Clinical Applications of Cardiac Computed Tomography: A Focused Review for the Clinical Cardiologists
by Christian Giovanni Camacho-Mondragon, Juan Carlos Ibarrola-Peña, Daniel Lira-Lozano, Carlos Jerjes-Sanchez, Erasmo De la Pena-Almaguer and Jose Gildardo Paredes-Vazquez
J. Cardiovasc. Dev. Dis. 2025, 12(10), 375; https://doi.org/10.3390/jcdd12100375 - 23 Sep 2025
Viewed by 721
Abstract
Cardiac computed tomography (CT) has become a cornerstone in the non-invasive evaluation and management of cardiovascular disease, offering clinicians detailed anatomical and functional information that directly influences patient care. This review focuses on three primary clinical applications: coronary artery calcium (CAC) scoring, coronary [...] Read more.
Cardiac computed tomography (CT) has become a cornerstone in the non-invasive evaluation and management of cardiovascular disease, offering clinicians detailed anatomical and functional information that directly influences patient care. This review focuses on three primary clinical applications: coronary artery calcium (CAC) scoring, coronary CT angiography (CCTA), and preprocedural planning for structural heart interventions. CAC quantification remains one of the most powerful prognostic tools for cardiovascular risk stratification, with robust evidence supporting its use in asymptomatic and selected symptomatic individuals. CCTA provides a high-resolution assessment of coronary anatomy and plaque characteristics, guiding both preventive and acute care strategies. In structural heart disease, CT is indispensable for accurate device sizing, procedural planning, and complication avoidance in interventions such as transcatheter valve replacement or repair. Beyond these core applications, cardiac CT supports the evaluation of pericardial, myocardial, aortic, and congenital heart disease, and plays a role in pulmonary embolism risk assessment. Technological innovations—including artificial intelligence, dual-energy imaging, and photon-counting CT—are enhancing image quality, reducing radiation exposure, and broadening the modality’s prognostic capabilities. Collectively, these advances are solidifying cardiac CT as an integrated diagnostic and planning tool with a significant impact on clinical decision-making and patient outcomes. Full article
(This article belongs to the Special Issue Clinical Applications of Cardiovascular Computed Tomography (CT))
Show Figures

Figure 1

5 pages, 2987 KB  
Interesting Images
Aberrant ICA and Associated Skull Base Foramina Visualized on Photon Counting Detector CT: Interesting Images
by Ahmed O. El Sadaney, John C. Benson, Felix E. Diehn, John I. Lane and Paul J. Farnsworth
Diagnostics 2025, 15(17), 2213; https://doi.org/10.3390/diagnostics15172213 - 31 Aug 2025
Viewed by 620
Abstract
Aberrant internal carotid arteries (ICA) are congenital vascular anomalies that occur from involution of the cervical portion of the ICA, which leads to enlargement of the normally small collateral inferior tympanic and caroticotympanic arteries. The inferior tympanic artery is a branch of the [...] Read more.
Aberrant internal carotid arteries (ICA) are congenital vascular anomalies that occur from involution of the cervical portion of the ICA, which leads to enlargement of the normally small collateral inferior tympanic and caroticotympanic arteries. The inferior tympanic artery is a branch of the external carotid artery, usually the ascending pharyngeal artery, which extends through the inferior tympanic canaliculus (ITC), a small foramen located along the cochlea promontory. Aberrant ICAs can also be associated with a persistent stapedial artery (PSA), which is an abnormal vessel that arises from the petrous ICA and passes through the obturator foramen of the stapes. An aberrant ICA is a very important anomaly to recognize on imaging. Accurately describing its presence is important to help prevent iatrogenic injury during intervention. It is also important to distinguish an aberrant ICA from a lateralized ICA. The improvement of spatial resolution with photon counting detector (PCD)-CT has been proven to provide higher performance in detection of sub-centimeter vascular lesions compared to conventional energy-integrated detector (EID)-CT. PCD-CT also provides superior visualization of small skull-based foramina such as the inferior tympanic canaliculus, which can aid in more accurately characterizing an aberrant ICA (variant course without ITC involvement). Full article
(This article belongs to the Special Issue Photon-Counting CT in Clinical Application)
Show Figures

Figure 1

24 pages, 3795 KB  
Review
Advancements in Acute Pulmonary Embolism Diagnosis and Treatment: A Narrative Review of Emerging Imaging Techniques and Intravascular Interventions
by Michaela Cellina, Matilde Pavan, Niccolò Finardi, Francesco Cicchetti, Maurizio Cè, Pierpaolo Biondetti, Carolina Lanza, Serena Carriero and Gianpaolo Carrafiello
J. Cardiovasc. Dev. Dis. 2025, 12(9), 333; https://doi.org/10.3390/jcdd12090333 - 29 Aug 2025
Cited by 1 | Viewed by 1132
Abstract
Acute pulmonary embolism (APE) represents a significant cause of morbidity and mortality worldwide, requiring rapid and precise diagnosis and effective therapy strategies. Computed Tomography Pulmonary Angiography (CTPA) is currently the gold standard technique for diagnosing PE; however, it presents some disadvantages, including limited [...] Read more.
Acute pulmonary embolism (APE) represents a significant cause of morbidity and mortality worldwide, requiring rapid and precise diagnosis and effective therapy strategies. Computed Tomography Pulmonary Angiography (CTPA) is currently the gold standard technique for diagnosing PE; however, it presents some disadvantages, including limited sensitivity in detecting sub-segmental emboli and contrast-related risks. Recent advancements in imaging technologies, including Dual-Energy Computed Tomography (DECT) and Photon Counting (PC), offer improved sensitivity and specificity for APE and perfusion abnormalities detection. Digital Dynamic Radiography (DDR) perfusion imaging represents a novel imaging that allows pulmonary perfusion assessment without contrast medium administration, able to detect anomalies at the patient’s bedside, representing a promising advancement, particularly for critically ill or contrast-allergic patients. In parallel, interventional radiology has become integral to APE management, particularly for high-risk and intermediate–high-risk patients, with evolving intravascular treatment techniques such as catheter-directed thrombolysis, mechanical thrombectomy, and thrombus aspiration. This narrative review provides an overview of the latest developments in APE diagnostic imaging and interventional radiology, contextualizing them within current guideline recommendations for endovascular treatment. Full article
Show Figures

Figure 1

11 pages, 1500 KB  
Article
Photon-Counting CT Enhances Diagnostic Accuracy in Stable Coronary Artery Disease: A Comparative Study with Conventional CT
by Mitsutaka Nakashima, Toru Miyoshi, Shohei Hara, Ryosuke Miyagi, Takahiro Nishihara, Takashi Miki, Kazuhiro Osawa and Shinsuke Yuasa
J. Clin. Med. 2025, 14(17), 6049; https://doi.org/10.3390/jcm14176049 - 26 Aug 2025
Viewed by 1216
Abstract
Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and [...] Read more.
Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and improved tissue characterization. Methods: In this retrospective, propensity score–matched study, we compared CCTA findings from 820 patients (410 per group) who underwent either EID-CT or PCD-CT for suspected stable CAD. Primary outcomes included stenosis severity, high-risk plaque features, and downstream invasive coronary angiography (ICA) referral and yield. Results: The matched cohorts were balanced in demographics and cardiovascular risk factors (mean age 67 years, 63% male). PCD-CT showed a favorable shift in stenosis severity distribution (p = 0.03). High-risk plaques were detected less frequently with PCD-CT (22.7% vs. 30.5%, p = 0.01). Median coronary calcium scores did not differ (p = 0.60). Among patients referred for ICA, those initially evaluated with PCD-CT were more likely to undergo revascularization (62.5% vs. 44.1%), and fewer underwent potentially unnecessary ICA without revascularization (3.7% vs. 8.0%, p = 0.001). The specificity in diagnosing significant stenosis requiring revascularization was 0.74 with EID-CT and 0.81 with PCD-CT (p = 0.04). Conclusions: PCD-CT improved diagnostic specificity for CAD, reducing unnecessary ICA referrals while maintaining detection of clinically significant disease. This advanced CT technology holds promise for more accurate, efficient, and patient-centered CAD evaluation. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

13 pages, 1969 KB  
Review
Computed Tomography and Coronary Plaque Analysis
by Hashim Alhammouri, Ramzi Ibrahim, Rahmeh Alasmar, Mahmoud Abdelnabi, Eiad Habib, Mohamed Allam, Hoang Nhat Pham, Hossam Elbenawi, Juan Farina, Balaji Tamarappoo, Clinton Jokerst, Kwan Lee, Chadi Ayoub and Reza Arsanjani
Tomography 2025, 11(8), 85; https://doi.org/10.3390/tomography11080085 - 30 Jul 2025
Viewed by 1275
Abstract
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies [...] Read more.
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies offer improved spatial resolution, tissue differentiation, and functional assessment of coronary lesions. Additionally, artificial intelligence has emerged as a powerful tool to automate plaque detection, quantify burden, and refine risk prediction. Collectively, these innovations provide a more comprehensive approach to coronary artery disease evaluation and support personalized management strategies. Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

14 pages, 1060 KB  
Article
Radiomics Signature of Aging Myocardium in Cardiac Photon-Counting Computed Tomography
by Alexander Hertel, Mustafa Kuru, Johann S. Rink, Florian Haag, Abhinay Vellala, Theano Papavassiliu, Matthias F. Froelich, Stefan O. Schoenberg and Isabelle Ayx
Diagnostics 2025, 15(14), 1796; https://doi.org/10.3390/diagnostics15141796 - 16 Jul 2025
Cited by 1 | Viewed by 563
Abstract
Background: Cardiovascular diseases are the leading cause of global mortality, with 80% of coronary heart disease in patients over 65. Understanding aging cardiovascular structures is crucial. Photon-counting computed tomography (PCCT) offers improved spatial and temporal resolution and better signal-to-noise ratio, enabling texture [...] Read more.
Background: Cardiovascular diseases are the leading cause of global mortality, with 80% of coronary heart disease in patients over 65. Understanding aging cardiovascular structures is crucial. Photon-counting computed tomography (PCCT) offers improved spatial and temporal resolution and better signal-to-noise ratio, enabling texture analysis in clinical routines. Detecting structural changes in aging left-ventricular myocardium may help predict cardiovascular risk. Methods: In this retrospective, single-center, IRB-approved study, 90 patients underwent ECG-gated contrast-enhanced cardiac CT using dual-source PCCT (NAEOTOM Alpha, Siemens). Patients were divided into two age groups (50–60 years and 70–80 years). The left ventricular myocardium was segmented semi-automatically, and radiomics features were extracted using pyradiomics to compare myocardial texture features. Epicardial adipose tissue (EAT) density, thickness, and other clinical parameters were recorded. Statistical analysis was conducted with R and a Python-based random forest classifier. Results: The study assessed 90 patients (50–60 years, n = 54, and 70–80 years, n = 36) with a mean age of 63.6 years. No significant differences were found in mean Agatston score, gender distribution, or conditions like hypertension, diabetes, hypercholesterolemia, or nicotine abuse. EAT measurements showed no significant differences. The Random Forest Classifier achieved a training accuracy of 0.95 and a test accuracy of 0.74 for age group differentiation. Wavelet-HLH_glszm_GrayLevelNonUniformity was a key differentiator. Conclusions: Radiomics texture features of the left ventricular myocardium outperformed conventional parameters like EAT density and thickness in differentiating age groups, offering a potential imaging biomarker for myocardial aging. Radiomics analysis of left ventricular myocardium offers a unique opportunity to visualize changes in myocardial texture during aging and could serve as a cardiac risk predictor. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Graphical abstract

11 pages, 1751 KB  
Article
Opportunistic Diagnostics of Dental Implants in Routine Clinical Photon-Counting CT Acquisitions
by Maurice Ruetters, Holger Gehrig, Christian Mertens, Sinan Sen, Ti-Sun Kim, Heinz-Peter Schlemmer, Christian H. Ziener, Stefan Schoenberg, Matthias Froelich, Marc Kachelrieß and Stefan Sawall
J. Imaging 2025, 11(7), 215; https://doi.org/10.3390/jimaging11070215 - 30 Jun 2025
Viewed by 704
Abstract
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental [...] Read more.
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental applications. With growing digitalization and cross-disciplinary integration, using PCCT data from other medical fields is becoming increasingly relevant. Conventional CT scans, such as those of the cervical spine, have so far lacked the resolution to reliably evaluate dental structures or implants. This study evaluates the diagnostic utility of PCCT for visualizing peri-implant structures in routine clinical photon-counting CT acquisitions and assesses the influence of metal artifact reduction (MAR) algorithms on image quality. Ten dental implants were retrospectively included in this IRB-approved study. Standard PCCT scans were reconstructed at multiple keV levels with and without MAR. Quantitative image analysis was performed with respect to contrast and image noise. Qualitative evaluation of peri-implant tissues, implant shoulder, and apex was performed independently by two experienced dental professionals using a five-point Likert scale. Inter-reader agreement was measured using intraclass correlation coefficients (ICCs). PCCT enabled high-resolution imaging of all peri-implant regions with excellent inter-reader agreement (ICC > 0.75 for all structures). Non-MAR reconstructions consistently outperformed MAR reconstructions across all evaluated regions. MAR led to reduced clarity, particularly in immediate peri-implant areas, without significant benefit from energy level adjustments. All imaging protocols were deemed diagnostically acceptable. This is the first in vivo study demonstrating the feasibility of opportunistic dental diagnostics using PCCT in a clinical setting. While MAR reduces peripheral artifacts, it adversely affects image clarity near implants. PCCT offers excellent image quality for peri-implant assessments and enables incidental detection of dental pathologies without additional radiation exposure. PCCT opens new possibilities for opportunistic, three-dimensional dental diagnostics during non-dental CT scans, potentially enabling earlier detection of clinically significant pathologies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

25 pages, 418 KB  
Review
Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment
by Rahul Kumar, Kiran Marla, Kyle Sporn, Phani Paladugu, Akshay Khanna, Chirag Gowda, Alex Ngo, Ethan Waisberg, Ram Jagadeesan and Alireza Tavakkoli
Diagnostics 2025, 15(13), 1648; https://doi.org/10.3390/diagnostics15131648 - 27 Jun 2025
Cited by 1 | Viewed by 1811
Abstract
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a [...] Read more.
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a novel synthesis by unifying recent innovations across multiple diagnostic imaging modalities, such as CT, MRI, and ultrasound, with emerging biochemical, genetic, and digital technologies. While existing reviews typically focus on advances within a single modality or for specific MSK conditions, this paper integrates a broad spectrum of developments to highlight how use of multimodal diagnostic strategies in combination can improve disease detection, stratification, and clinical decision-making in real-world settings. Technological developments in imaging, including photon-counting detector computed tomography, quantitative magnetic resonance imaging, and four-dimensional computed tomography, have enhanced the ability to visualize structural and dynamic musculoskeletal abnormalities with greater precision. Molecular imaging and biochemical markers such as CTX-II (C-terminal cross-linked telopeptides of type II collagen) and PINP (procollagen type I N-propeptide) provide early, objective indicators of tissue degeneration and bone turnover, while genetic and epigenetic profiling can elucidate individual patterns of susceptibility. Point-of-care ultrasound and portable diagnostic devices have expanded real-time imaging and functional assessment capabilities across diverse clinical settings. Artificial intelligence and machine learning algorithms now automate image interpretation, predict clinical outcomes, and enhance clinical decision support, complementing conventional clinical evaluations. Wearable sensors and mobile health technologies extend continuous monitoring beyond traditional healthcare environments, generating real-world data critical for dynamic disease management. However, standardization of diagnostic protocols, rigorous validation of novel methodologies, and thoughtful integration of multimodal data remain essential for translating technological advances into improved patient outcomes. Despite these advances, several key limitations constrain widespread clinical adoption. Imaging modalities lack standardized acquisition protocols and reference values, making cross-site comparison and clinical interpretation difficult. AI-driven diagnostic tools often suffer from limited external validation and transparency (“black-box” models), impacting clinicians’ trust and hindering regulatory approval. Molecular markers like CTX-II and PINP, though promising, show variability due to diurnal fluctuations and comorbid conditions, complicating their use in routine monitoring. Integration of multimodal data, especially across imaging, omics, and wearable devices, remains technically and logistically complex, requiring robust data infrastructure and informatics expertise not yet widely available in MSK clinical practice. Furthermore, reimbursement models have not caught up with many of these innovations, limiting access in resource-constrained healthcare settings. As these fields converge, musculoskeletal diagnostics methods are poised to evolve into a more precise, personalized, and patient-centered discipline, driving meaningful improvements in musculoskeletal health worldwide. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
13 pages, 3883 KB  
Article
Optimizing Imaging Parameters for Assessment of Hepatocellular Carcinoma Using Photon-Counting Detector Computed Tomography—Impact of Reconstruction Kernel and Slice Thickness
by Anna Szelenyi, Philipp Stelzer, Christian Wassipaul, Jakob Kittinger, Andreas Strassl, Victor Schmidbauer, Martin Luther Watzenböck, Florian Lindenlaub, Michael Arnoldner, Michael Weber, Matthias Pinter, Ruxandra-Iulia Milos and Dietmar Tamandl
Tomography 2025, 11(7), 77; https://doi.org/10.3390/tomography11070077 - 27 Jun 2025
Viewed by 968
Abstract
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of [...] Read more.
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of tumors, the liver parenchyma, and the vasculature in patients with HCC using PCD-CT reconstructions at different slice thicknesses and kernels to identify the most appropriate settings for the clinical routine. Methods: CT exams from twenty adult patients with HCC performed with a clinically approved, first-generation PCD-CT scanner (Naeotom Alpha®, Siemens Healthineers), were retrospectively reviewed. For each patient, images were reconstructed at four different sharp kernels, designed for abdominal imaging (Br40; Br44; Br48; Br56) and at three slice thicknesses (0.4 mm; 1 mm; 3 mm). The reconstruction with the Br40 kernel at 3 mm (Br403 mm) was used as a clinical reference. Three readers independently assessed the image quality of different anatomical abdominal structures and hypervascular HCC lesions using a five-point Likert scale. In addition, image sharpness was assessed using line-density profiles. Results: Compared with the clinical reference, the Br441 mm and Br481 mm reconstructions were rated superior for the assessment of the hepatic vasculature (median difference +0.67 [+0.33 to +1.33], p < 0.001 and +1.00 [+0.67 to +1.67], p < 0.001). Reconstructions for Br401 mm (+0.33 [−0.67 to +1.00], p < 0.001), and Br443 mm (+0.0 [0.0 to +1.00], p = 0.030) were scored superior for overall image quality. The noise demonstrated a continuous increase when using sharper kernels and thinner slices than Br403 mm (p < 0.001), leading to a decrease in contrast-to-noise ratio. Although there was a trend toward increased image sharpness using the slope analysis with higher kernels, this was not significantly different compared with the reference standard. Conclusion: PCD-CT reconstruction Br401 mm was the most suitable setting for overall image quality, while reconstructions with sharper kernels (Br441 mm and Br481 mm) can be considered for the assessment of the hepatic vasculature in patients with HCC. Full article
Show Figures

Figure 1

7 pages, 1286 KB  
Brief Report
Photon-Counting Detector CT Scan of Dinosaur Fossils: Initial Experience
by Tasuku Wakabayashi, Kenji Takata, Soichiro Kawabe, Masato Shimada, Takeshi Mugitani, Takuya Yachida, Rikiya Maruyama, Satomi Kanai, Kiyotaka Takeuchi, Tomohiro Kotsuji, Toshiki Tateishi, Hideki Hyodoh and Tetsuya Tsujikawa
J. Imaging 2025, 11(6), 180; https://doi.org/10.3390/jimaging11060180 - 2 Jun 2025
Viewed by 1676
Abstract
Beyond clinical areas, photon-counting detector (PCD) CT is innovatively applied to study paleontological specimens. This study presents a preliminary investigation into the application of PCD-CT for imaging large dinosaur fossils, comparing it with standard energy-integrating detector (EID) CT. The left dentary of Tyrannosaurus [...] Read more.
Beyond clinical areas, photon-counting detector (PCD) CT is innovatively applied to study paleontological specimens. This study presents a preliminary investigation into the application of PCD-CT for imaging large dinosaur fossils, comparing it with standard energy-integrating detector (EID) CT. The left dentary of Tyrannosaurus and the skull of Camarasaurus were imaged using PCD-CT in ultra-high-resolution mode and EID-CT. The PCD-CT and EID-CT image quality of the dinosaurs were visually assessed. Compared with EID-CT, PCD-CT yielded higher-resolution anatomical images free of image deterioration, achieving a better definition of the Tyrannosaurus mandibular canal and the three semicircular canals of Camarasaurus. PCD-CT clearly depicts the internal structure and morphology of large dinosaur fossils without damaging them and also provides spectral information, thus allowing researchers to gain insights into fossil mineral composition and the preservation state in the future. Full article
(This article belongs to the Section Computational Imaging and Computational Photography)
Show Figures

Figure 1

13 pages, 1020 KB  
Article
Low-keV Virtual Monoenergetic Imaging for Bronchial Artery Visualization on Photon-Counting Detector Computed Tomography
by Xuyang Sun, Tetsu Niwa, Takakiyo Nomura, Ryoichi Yoshida, Kazuo Koyanagi and Jun Hashimoto
Diagnostics 2025, 15(11), 1354; https://doi.org/10.3390/diagnostics15111354 - 28 May 2025
Cited by 1 | Viewed by 669
Abstract
Background/Objectives: This study aims to determine the optimal use of virtual monoenergetic imaging (VMI) for visualizing the bronchial artery on photon-counting detector computed tomography (PCD-CT). Methods: We evaluated the visibility of the bronchial artery on PCD-CT in 34 consecutive patients with esophageal cancer [...] Read more.
Background/Objectives: This study aims to determine the optimal use of virtual monoenergetic imaging (VMI) for visualizing the bronchial artery on photon-counting detector computed tomography (PCD-CT). Methods: We evaluated the visibility of the bronchial artery on PCD-CT in 34 consecutive patients with esophageal cancer (twenty-eight men, six women; mean age, 70.2 years) prior to surgery. Region-of-interest measurements were taken at the right bronchial artery at the tracheal bifurcation level, mediastinal fat, and the erector spinae muscles on contrast-enhanced early-phase CT. We compared the CT attenuation of the bronchial artery, image noise, and contrast-to-noise ratio (CNR) across VMI at 40, 50, 60, and 70 keV. Additionally, two radiologists performed a subjective image quality assessment by comparing VMI at 40, 50, and 60 keV with 70 keV, rating bronchial artery enhancement, border clarity, peripheral visibility, and image noise. Results: CT attenuation, image noise, and CNR significantly differed across VMI energy levels (p < 0.00001). Lower-keV VMI demonstrated higher CT attenuation and increased noise but also higher CNR (all p < 0.05). Both radiologists rated bronchial artery enhancement, border clarity, and peripheral visibility higher at 40 and 50 keV than at 70 keV, with the highest scores observed at 40 keV (all p < 0.05). Observer 1 noted slightly increased noise at 40 and 50 keV, while observer 2 observed this effect at 40 keV compared with 70 keV. Conclusions: Low-keV (40–50 keV) VMI on PCD-CT enhances bronchial artery visualization. Full article
Show Figures

Figure 1

Back to TopTop