Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = photovoltaic water pumping system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1752 KB  
Article
Economics of Renewables Versus Fossil Fuels 2022–2036: Case Study of an Individual House Applying Investment Project Evaluation Methods
by Robert Uberman and Wojciech Naworyta
Energies 2025, 18(23), 6282; https://doi.org/10.3390/en18236282 (registering DOI) - 29 Nov 2025
Viewed by 79
Abstract
This paper presents a comprehensive economic comparison between renewable and fossil-fuel-based heating systems for a newly constructed residential building in Kraków, Poland, over the period 2022–2030. The analysis introduces the concept of Corrected Final Energy Consumption (CFEC) as a harmonized measure for comparing [...] Read more.
This paper presents a comprehensive economic comparison between renewable and fossil-fuel-based heating systems for a newly constructed residential building in Kraków, Poland, over the period 2022–2030. The analysis introduces the concept of Corrected Final Energy Consumption (CFEC) as a harmonized measure for comparing various energy sources and applies the Present Value of Total Lifecycle Cost (PVTLC) as an appropriate financial metric for non-commercial residential investments. Four heating options were examined: district heating system (DHS), gas boiler, air-to-water heat pump, and heat pump combined with photovoltaic (PV) panels. Based on real tariffs and standardized data from the Energy Performance Certificate (EPC), the DHS option demonstrated the lowest lifecycle cost, while the air-to-water heat pump—despite environmental advantages—proved the most expensive without substantial subsidies. Sensitivity analyses confirmed the strong influence of investment subsidies and fuel price fluctuations on the competitiveness of alternative systems. The findings highlight the methodological shortcomings of conventional annual-cost approaches and propose PVTLC as a more reliable decision-making tool for residential energy planning. The study also discusses regulatory, climatic, and behavioral factors affecting investment outcomes and emphasizes the need to integrate financial, environmental, and social criteria when evaluating household-level energy solutions. Full article
Show Figures

Figure 1

28 pages, 3917 KB  
Article
A Hybrid System That Integrates Renewable Energy for Groundwater Pumping with Battery Storage, Innovative in Rural Communities
by Daniel Icaza Alvarez, Jorge Rojas Espinoza, Carlos Flores-Vázquez and Andrés Cárdenas
Energies 2025, 18(22), 5976; https://doi.org/10.3390/en18225976 - 14 Nov 2025
Viewed by 386
Abstract
This article presents the design and evaluation of a hybrid groundwater pumping system with battery storage, implemented in the Puntahacienda community of Quingeo, Ecuador, as a sustainable alternative for energy supply in isolated rural areas. The system integrates solar photovoltaic, wind, and a [...] Read more.
This article presents the design and evaluation of a hybrid groundwater pumping system with battery storage, implemented in the Puntahacienda community of Quingeo, Ecuador, as a sustainable alternative for energy supply in isolated rural areas. The system integrates solar photovoltaic, wind, and a backup diesel generator, whose operation was analyzed using HOMER Pro software. The simulation allowed for component sizing, technical performance evaluation, and operating costs estimation, prioritizing the use of renewable sources and reducing dependence on fossil fuels. The results show that solar and wind energy can cover a large portion of the demand, while the diesel generator ensures resilience during critical periods. The battery bank optimizes stability and continuous supply, ensuring the availability of water for human and agricultural consumption. Furthermore, a significant reduction in greenhouse gas emissions and an improvement in economic sustainability compared to the exclusive use of diesel were evident. The final results show that the levelized cost was $0.186/kWh, making it competitive for an isolated rural community. It was also determined that the renewable energy fraction (RES) was 83.70%, the unmet demand was 0.42%, and CO2 emissions were 14,850 kg/year when including a diesel generator in the hybrid system. This study demonstrates the viability of hybrid renewable solutions as a tool to strengthen water and energy security in rural communities, constituting a replicable model in similar contexts in Latin America. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

23 pages, 1897 KB  
Article
Environmental Evaluation of Residential Heating: Comparative Life Cycle Assessment of Two Heating Systems
by Janez Turk, Andreea Oarga Mulec, Patricija Ostruh and Andraž Ceket
Buildings 2025, 15(21), 3977; https://doi.org/10.3390/buildings15213977 - 4 Nov 2025
Viewed by 559
Abstract
The purpose of the study is to evaluate the environmental performance of two systems for space heating and hot water provision in a residential building. In both cases, a ground-source heat pump is used. In the baseline system, the heat pump is driven [...] Read more.
The purpose of the study is to evaluate the environmental performance of two systems for space heating and hot water provision in a residential building. In both cases, a ground-source heat pump is used. In the baseline system, the heat pump is driven by electrical power from the grid. In the alternative system, photovoltaic thermal collectors are integrated into the building for domestic hot water preparation and the production of electricity. Excess heat produced in the summer is introduced to the borehole and extracted later, in the cooler part of the year. Environmental benchmarking of the two systems was conducted using the Life Cycle Assessment method. A cradle-to-grave approach was applied, taking into account all life cycle stages of the system and its operation over 20 years. Results show that the alternative system yields significantly lower impacts in terms of Global Warming Potential (36% decrease) and Resources (36% decrease). In terms of Human Health, the decrease is minor (6%). However, in terms of Ecosystem, the alternative system shows a 47% higher impact than the baseline system. This increase is primarily attributed to the additional components required in the alternative configuration. Full article
Show Figures

Figure 1

39 pages, 5498 KB  
Article
Energy Performance Upgrade of Municipal and Public Buildings and Facilities
by Dimitris Al. Katsaprakakis, George M. Stavrakakis, Nikos Savvakis, Eirini Dakanali, Yiannis Yiannakoudakis, George Zidianakis, Aristotelis Tsekouras, Efi Giannopoulou and Sofia Yfanti
Energies 2025, 18(21), 5798; https://doi.org/10.3390/en18215798 - 3 Nov 2025
Viewed by 399
Abstract
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, [...] Read more.
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, the Natural History Museum of Crete, Pancretan Stadium, the municipal swimming pool of the municipality of Minoa Pediadas, the indoor sports hall in Leros, primary schools, high schools and a cultural center. Each one of the aforementioned buildings has a distinct use, thus covering almost all different categories of municipal or public buildings and facilities. The applied energy performance upgrade process in general terms is: (1) Mapping of the current situation, regarding the existing infrastructure and final energy consumption. (2) Formulation and sizing of the proposed passive measures and calculation of the new indoor heating and cooling loads. (3) Selection, sizing and siting of the proposed active measures and calculation of the new expecting energy sources consumption. (4) Sizing and siting of power and heat production systems from renewable energy sources (RES). Through the work accomplished and presented in this article, practically all the most technically and economically feasible passive and active measures were studied: insulation of opaque surfaces, opening overhangs, natural ventilation, replacement of openings, daylighting solar tubes, open-loop geo-exchange plants, refrigerant or water distribution networks, air-to-water heat pumps, solar thermal collectors, lighting systems, automation systems, photovoltaics etc. The main results of the research showed energy savings through passive and active systems that can exceed 70%, depending mainly on the existing energy performance of the facility. By introducing photovoltaic plants operating under the net-metering mode, energy performance upgrades up to zero-energy facilities can be achieved. The payback periods range from 12 to 45 years. The setup budgets of the presented projects range from a few hundred thousand euros to 7 million euros. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
Show Figures

Figure 1

31 pages, 4560 KB  
Article
Cost-Optimized Energy Management for Urban Multi-Story Residential Buildings with Community Energy Sharing and Flexible EV Charging
by Nishadi Weerasinghe Mudiyanselage, Asma Aziz, Bassam Al-Hanahi and Iftekhar Ahmad
Sustainability 2025, 17(21), 9717; https://doi.org/10.3390/su17219717 - 31 Oct 2025
Viewed by 286
Abstract
Multi-story residential buildings present distinct challenges for demand-side management due to shared infrastructure, diverse occupant behaviors, and complex load profiles. Although demand-side management strategies are well established in industrial sectors, their application in high-density residential communities remains limited. This study proposes a cost-optimized [...] Read more.
Multi-story residential buildings present distinct challenges for demand-side management due to shared infrastructure, diverse occupant behaviors, and complex load profiles. Although demand-side management strategies are well established in industrial sectors, their application in high-density residential communities remains limited. This study proposes a cost-optimized energy management framework for urban multi-story apartment buildings, integrating rooftop solar photovoltaic (PV) generation, shared battery energy storage, and flexible electric vehicle (EV) charging. A Mixed-Integer Linear Programming (MILP) model is developed to simulate 24 h energy operations across nine architecturally identical apartments equipped with the same set of smart appliances but exhibiting varied usage patterns to reflect occupant diversity. A Mixed-Integer Linear Programming (MILP) model is developed to simulate 24 h energy operations across nine architecturally identical apartments equipped with the same set of smart appliances but exhibiting varied usage patterns to reflect occupant diversity. EVs are modeled as flexible common loads under strata ownership, alongside shared facilities such as hot water systems and pool pumps. The optimization framework ensures equitable access to battery storage and prioritizes energy allocation from the most cost-effective source solar, battery, or grid on an hourly basis. Two seasonal scenarios, representing summer (February) and spring (September), are evaluated using location-specific irradiance data from Joondalup, Western Australia. The results demonstrate that flexible EV charging enhances solar utilization, mitigates peak grid demand, and supports fairness in shared energy usage. In the high-solar summer scenario, the total building energy cost was reduced to AUD 29.95/day, while in the spring scenario with lower solar availability, the cost remained moderate at AUD 31.92/day. At the apartment level, energy bills were reduced by approximately 34–38% compared to a grid-only baseline. Additionally, the system achieved solar export revenues of up to AUD 4.19/day. These findings underscore the techno-economic effectiveness of the proposed optimization framework in enabling cost-efficient, low-carbon, and grid-friendly energy management in multi-residential urban settings. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

24 pages, 2790 KB  
Article
Application of Renewable Energy in Agriculture of the Republic of Uzbekistan
by Takhir Majidov, Nazir Ikramov, Gulom Bekmirzaev, Mustafo Berdiev, Bakhtiyar Buvabekov, Faxriddin Majidov and Farruxbek Hikmatov
Water 2025, 17(21), 3074; https://doi.org/10.3390/w17213074 - 28 Oct 2025
Viewed by 609
Abstract
Among the Central Asian republics, Uzbekistan is unique in that approximately 80% of its territory lies within a plain, characterized by an arid geographic zone and dry climate. Agricultural production in these regions is possible only through artificial irrigation. In recent years, global [...] Read more.
Among the Central Asian republics, Uzbekistan is unique in that approximately 80% of its territory lies within a plain, characterized by an arid geographic zone and dry climate. Agricultural production in these regions is possible only through artificial irrigation. In recent years, global climate change and challenges related to transboundary water use have led to a reduction in water availability. The average annual water allocation to Uzbekistan is estimated at 51–53 billion m3, of which 90–91% is consumed by the agricultural sector. Due to the uneven distribution of water resources and the complex topography of irrigated lands, water supply is supported by numerous pumping stations operated by the state, water users associations, farms, and clusters. Additionally, well-based pumping systems are employed to maintain groundwater levels and ensure irrigation. On average, these facilities consume around 8.0 billion kWh of electricity annually. The agricultural sector faces several critical challenges, including crop water deficits caused by water shortages, slow adoption of water-saving technologies, and limited implementation of drip irrigation on household plots, dachas, and greenhouses that play a key role in food supply. Moreover, the delivery of water to fertile lands situated far from main power lines and water sources remains problematic. This article aims to explore the integration of solar energy solutions to support drip irrigation in both large-scale agricultural lands (ω = 1.0–100.0 ha and above) and small-scale areas such as homestead plots, dachas, and greenhouses (ω = 0.01–1.0 ha), as well as their application in small- to medium-sized pumping stations. Based on the research and experimental design work carried out, three mobile photovoltaic units—MPPU-8-500-4000, MPPU-2-550-1100, and MPPU-4-500-2000—were developed and implemented to address water and energy shortages in agriculture. Full article
(This article belongs to the Special Issue Advances in Water-Based Solar Systems)
Show Figures

Figure 1

20 pages, 3174 KB  
Article
Techno-Economic Optimization of a Grid-Connected Hybrid-Storage-Based Photovoltaic System for Distributed Buildings
by Tao Ma, Bo Wang, Cangbin Dai, Muhammad Shahzad Javed and Tao Zhang
Electronics 2025, 14(19), 3843; https://doi.org/10.3390/electronics14193843 - 28 Sep 2025
Viewed by 501
Abstract
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected [...] Read more.
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected photovoltaic (PV) system integrated with pumped hydro storage (PHS) and battery storage for residential applications. A novel optimization algorithm is employed to achieve techno-economic optimization of the hybrid system. The results indicate a remarkably short payback period of about 5 years, significantly outperforming previous studies. Additionally, a threshold is introduced to activate pumping and water storage during off-peak nighttime electricity hours, strategically directing surplus power to either the pump or battery according to system operation principles. This nighttime water storage strategy not only promises considerable cost savings for residents, but also helps to mitigate grid stress under time-of-use pricing schemes. Overall, this study demonstrates that, through optimized system sizing, costs can be substantially reduced. Importantly, with the nighttime storage strategy, the payback period can be shortened even further, underscoring the novelty and practical relevance of this research. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

25 pages, 5414 KB  
Article
Adaptive Droop Control for Power Distribution of Hybrid Energy Storage Systems in PV-Fed DC Microgrids
by Ģirts Staņa and Kaspars Kroičs
Energies 2025, 18(19), 5137; https://doi.org/10.3390/en18195137 - 26 Sep 2025
Viewed by 791
Abstract
The increasing deployment of stand-alone photovoltaic (PV) power supply systems is driven by their capability to convert solar irradiance into electrical energy. A typical application of such systems is solar-powered water pumping. However, since solar irradiance varies throughout the day, the maximum power [...] Read more.
The increasing deployment of stand-alone photovoltaic (PV) power supply systems is driven by their capability to convert solar irradiance into electrical energy. A typical application of such systems is solar-powered water pumping. However, since solar irradiance varies throughout the day, the maximum power output of PV panels may be lower than the load demand. A viable solution to this issue is the integration of hybrid energy storage systems (HESSs) combining batteries and supercapacitors (SCs). In this work, HESS charging and discharging control strategies were developed based on adaptive droop control, which regulates the power distribution between the SC and the battery and limits DC grid voltage deviations. In the developed method, the SC droop coefficient is adaptively adjusted in a stepwise manner depending on the SC state of charge (SoC), while the battery droop coefficient remains constant. The performance of the proposed strategies was evaluated through simulations, showing SC-battery internal loss minimization by up to 50% compared with the scenario without droop control when the SC is discharged first, and only then is the battery engaged. Step response of the converter was investigated experimentally, showing less than a 2 ms response time, and no undesired influence from the proposed control method was detected. Full article
Show Figures

Figure 1

20 pages, 2810 KB  
Article
Simulation and Performance Evaluation of a Photovoltaic Water Pumping System with Hybrid Maximum Power Point Technique (MPPT) for Remote Rural Areas
by Fatima Id Ouissaaden, Hamza Kamel and Said Dlimi
Processes 2025, 13(9), 2867; https://doi.org/10.3390/pr13092867 - 8 Sep 2025
Cited by 1 | Viewed by 1222
Abstract
This study presents the simulation of a standalone photovoltaic (PV) water pumping system that is made for use in rural areas and off-grid applications. The system contains a 174 W PV panel, a DC-DC boost converter, a DC motor, and a centrifugal pump. [...] Read more.
This study presents the simulation of a standalone photovoltaic (PV) water pumping system that is made for use in rural areas and off-grid applications. The system contains a 174 W PV panel, a DC-DC boost converter, a DC motor, and a centrifugal pump. To optimize energy extraction, three maximum power point techniques (MPPT), Perturb and Observe (P&O), incremental conductance (INC), and a Hybrid P&O–INC algorithm, were implemented and evaluated. Unlike most prior studies focusing on large-scale systems, this work targets low-power configurations with load dynamics specific to motor–pump assemblies. The hybrid algorithm is finely tuned using conservative step sizes and adaptive switching thresholds. Simulation results under varying irradiance levels show that the hybrid MPPT achieves the best trade-off, combining high tracking efficiency with reduced power ripple, particularly under challenging low-irradiance conditions. Moreover, the approach offers a favorable balance between performance and implementation cost, positioning it as a viable and scalable solution for sustainable water supply in remote communities. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3300 KB  
Article
Electro-Thermal Transient Characteristics of Photovoltaic–Thermal (PV/T)–Heat Pump System
by Wenlong Zou, Gang Yu and Xiaoze Du
Energies 2025, 18(17), 4513; https://doi.org/10.3390/en18174513 - 25 Aug 2025
Viewed by 966
Abstract
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of [...] Read more.
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of step perturbations: solar irradiance reduction, compressor operation, condenser water flow rate variations, and thermal storage tank volume changes. This study highlights the thermal storage tank’s critical role. For Vtank = 2 m3, water tank volume significantly suppresses the water tank and PV/T collector temperature fluctuations caused by solar irradiance reduction. PV/T collector temperature fluctuation suppression improved by 46.7%. For the PV/T heat pump system in this study, the water tank volume was selected between 1 and 1.5 m3 to optimize the balance of thermal inertia and cost. Despite PV cell electrical efficiency gains from PV cell temperature reductions caused by solar irradiance reduction, power recovery remains limited. Compressor dynamic performance exhibits asymmetry: the hot water temperature drop caused by speed reduction exceeds the rise from speed increase. Load fluctuations reveal heightened risk: load reduction triggers a hot water 7.6 °C decline versus a 2.2 °C gain under equivalent load increases. Meanwhile, water flow rate variation in condenser identifies electro-thermal time lags (100 s thermal and 50 s electrical stabilization), necessitating predictive compressor control to prevent temperature and compressor operation oscillations caused by system condition changes. These findings advance hybrid renewable systems by resolving transient coupling mechanisms and enhancing operational resilience, offering actionable strategies for PV/T–heat pump deployment in building energy applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

10 pages, 769 KB  
Proceeding Paper
Smart Irrigation Based on Soil Moisture Sensors with Photovoltaic Energy for Efficient Agricultural Water Management: A Systematic Literature Review
by Abdul Rasyid Sidik, Akbar Tawakal, Gumilar Surya Sumirat and Panji Narputro
Eng. Proc. 2025, 107(1), 17; https://doi.org/10.3390/engproc2025107017 - 25 Aug 2025
Cited by 1 | Viewed by 4869
Abstract
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, [...] Read more.
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, while soil moisture sensors provide real-time data that is used to automatically manage irrigation according to plant needs. This technology not only increases the efficiency of water and energy use but also supports environmental conservation by reducing dependence on fossil fuels. This research was conducted using a Systematic Literature Review (SLR) approach guided by the PRISMA framework to analyze trends, benefits, and challenges in implementing this technology. The analysis results show that this system offers various advantages, including energy efficiency, reduced carbon emissions, and ease of management through the integration of Internet of Things (IoT) technology. Several challenges remain, such as high initial investment costs, limited network access, and obstacles. Technical matters related to installation and maintenance. Various solutions have been proposed, including providing subsidies for small farmers, implementing radiofrequency modules, and using modular designs to simplify implementation. This study contributes to the development of a conceptual framework that can be adapted to various geographic and socio-economic conditions. Potential further developments include the integration of artificial intelligence and additional sensors to increase efficiency and support the sustainability of the agricultural sector globally. Full article
Show Figures

Figure 1

28 pages, 1918 KB  
Article
Environmental and Economic Optimisation of Single-Family Buildings Thermomodernisation
by Anna Sowiżdżał, Michał Kaczmarczyk, Leszek Pająk, Barbara Tomaszewska, Wojciech Luboń and Grzegorz Pełka
Energies 2025, 18(16), 4372; https://doi.org/10.3390/en18164372 - 16 Aug 2025
Viewed by 1073
Abstract
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of [...] Read more.
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of building insulation, were analysed using energy performance certification methods. Results show that, from an energy perspective, the most advantageous scenarios are those utilising brine-to-water or air-to-water heat pumps supported by photovoltaic systems, reaching final energy demands as low as 43.5 kWh/m2year and primary energy demands of 41.1 kWh/m2year. Biomass boilers coupled with solar collectors delivered the highest renewable energy share (up to 99.2%); however, they resulted in less notable reductions in primary energy. Environmentally, all heat pump options removed local particulate emissions, with CO2 reductions of up to 87.5% compared to the baseline; biomass systems attained 100% CO2 reduction owing to renewable fuels. Economically, biomass boilers had the lowest unit energy production costs, while PV-assisted heat pumps faced the highest overall costs despite their superior environmental benefits. The findings highlight the trade-offs between ecological advantages, energy efficiency, and investment costs, offering a decision-making framework for the modernisation of sustainable residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

31 pages, 6551 KB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 4179
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

28 pages, 2340 KB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 - 4 Aug 2025
Viewed by 831
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

21 pages, 1558 KB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 983
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop