Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,712)

Search Parameters:
Keywords = physical–chemical characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7009 KB  
Article
Engineered Porosity in Microcrystalline Diamond-Reinforced PLLA Composites: Effects of Particle Concentration on Thermal and Structural Properties
by Mateusz Ficek, Franciszek Skiba, Marcin Gnyba, Gabriel Strugała, Dominika Ferneza, Tomasz Seramak, Konrad Szustakiewicz and Robert Bogdanowicz
Materials 2025, 18(19), 4606; https://doi.org/10.3390/ma18194606 (registering DOI) - 4 Oct 2025
Abstract
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration [...] Read more.
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration industries. We investigate diamond–polymer composites with concentrations from 5 to 75 wt% using freeze-drying methodology, employing two particle sizes: 0.125 μm and 1.00 μm diameter particles. Systematic porosity control ranges from 11.4% to 32.8%, with smaller particles demonstrating reduction from 27.3% at 5 wt% to 11.4% at 75 wt% loading. Characterization through infrared spectroscopy, X-ray computed microtomography, and Raman analysis confirms purely physical diamond–polymer interactions without chemical bonding, validated by characteristic diamond lattice vibrations at 1332 cm−1. Thermal analysis reveals modified crystallization behavior with decreased melting temperatures from 180 to 181 °C to 172 °C. The investigation demonstrates a controllable transition from large-volume interconnected pores to numerous small-volume closed pores with increasing diamond content. These composites provide a quantitative framework for designing hierarchical structures applicable to tissue engineering scaffolds, thermal management systems, and specialized filtration technologies requiring biodegradable materials with engineered porosity and enhanced thermal conductivity. Full article
17 pages, 1052 KB  
Article
Synthesis and Characterization of Imidazolium-Based Ionenes
by Eveline Elisabeth Kanatschnig, Florian Wanghofer, Markus Wolfahrt and Sandra Schlögl
Molecules 2025, 30(19), 3961; https://doi.org/10.3390/molecules30193961 - 2 Oct 2025
Abstract
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles [...] Read more.
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles were synthesized, which were used as monomeric building blocks for the preparation of thermoplastic ionenes by following a Sn2 step growth reaction across organic halides. The structure and molecular weight of the polymers was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) techniques. Once polymerized, anion-exchange reactions were carried out to replace the halides with four other counter-anions. Subsequently, the effect of the nature of the anion and the cation on the polymers’ thermal and hygroscopic properties was studied in detail by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR spectroscopy. Depending on the chemical structures of the polymeric cations and the related anions, tailored polymers with a glass transition temperature (Tg) in the range of 30 °C to 131 °C and a thermal stability varying between 170 °C and 385 °C were obtained. Full article
Show Figures

Figure 1

18 pages, 1770 KB  
Article
Adapted Kefir Grains in Aqueous Extract of Licuri (Syagrus coronata): Development and Characterization of a Novel Non-Dairy Probiotic Beverage
by Elis dos Reis Requião, Janaina de Carvalho Alves, Suelen Neris Almeida Viana, Isadora Santana Araújo da Silva, Jéssica Maria Rio Branco dos Santos Ferro, Mariana Ferreira de Brito, Carolina Oliveira de Souza, Joselene Conceição Nunes Nascimento and Mariana Nougalli Roselino
Fermentation 2025, 11(10), 572; https://doi.org/10.3390/fermentation11100572 - 2 Oct 2025
Abstract
Fermented beverages have been highlighted for their beneficial effects on health, especially due to the presence of probiotic microorganisms. This study aimed to develop and characterize a beverage fermented from the aqueous extract of licuri (Syagrus coronata) with grains of milk [...] Read more.
Fermented beverages have been highlighted for their beneficial effects on health, especially due to the presence of probiotic microorganisms. This study aimed to develop and characterize a beverage fermented from the aqueous extract of licuri (Syagrus coronata) with grains of milk kefir and water kefir. Physical–chemical properties, microbial viability, storage stability, and in vitro resistance to the gastrointestinal tract (GIT), as well as microbiological safety and identification of isolated bacteria, were evaluated. The grains were fermented in licuri for 24 and 48 h, and the samples were compared with their respective controls. The analyses revealed that the licuri drink favored the growth of kefir grains, maintaining adequate microbial viability (>7 log CFU mL−1 for lactic acid bacteria and >4 log CFU mL−1 for yeasts), with good resistance to GIT (>60%) and physical–chemical properties for 20 days. The bacterial isolate was identified as Lacticaseibacillus paracasei, with a satisfactory safety profile. Licuri extract is therefore a promising matrix for the development of non-dairy functional beverages with potential probiotic properties. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

16 pages, 3652 KB  
Article
Preliminary Study of Cellulose and Polycaprolactone-Based Materials for Enhancing Bacteriological and Physicochemical Quality of Contaminated Water
by Belkis Sulbarán-Rangel, Hasbleidy Palacios-Hinestroza, Anahí Arreaga-Cancino, Edgar Mauricio Santos-Ventura, Orlando Hernández-Cristóbal and Florentina Zurita
Environments 2025, 12(10), 355; https://doi.org/10.3390/environments12100355 - 1 Oct 2025
Abstract
As water scarcity and pollution increase in rural communities in some parts of developing countries, there is a need to find simple ways to improve the quality of contaminated water. In this research, bagasse-based cellulose membranes were prepared and evaluated in a simple [...] Read more.
As water scarcity and pollution increase in rural communities in some parts of developing countries, there is a need to find simple ways to improve the quality of contaminated water. In this research, bagasse-based cellulose membranes were prepared and evaluated in a simple filtration system and compared with polycaprolactone membranes (PCL) and bagasse-based cellulose/PCL membranes for the removal of total coliform bacteria, Escherichia coli and other physical and chemical contaminants from contaminated water. Cellulose offers many opportunities in filtration technology due to its physical and chemical characteristics that allow its use in the design of membranes with flexible capabilities and specific applications. The membranes were characterized physically, chemically and mechanically, finding similarity in mechanical properties and differences in porosity. The membranes were tested in a filtration system and PCL membranes were more effective in removing turbidity (94.5%), color removal (70%) and phosphorus removal (50%), while cellulose membranes were better at retaining fecal coliforms (84.5%) and E. coli (90.8%). Statistical analysis (one-way ANOVA, p < 0.05) confirmed significant differences among the three membrane types for turbidity, apparent color, and nitrate, while no significant differences were observed for pH, conductivity, and phosphorus. These results suggest that the use of the membranes could help to improve the quality of polluted water and more studies are needed in order to improve their efficiencies. Full article
(This article belongs to the Special Issue Advanced Research on the Removal of Emerging Pollutants)
Show Figures

Figure 1

22 pages, 2391 KB  
Article
Improving Nitrogen Availability and Crop Productivity Using Bioameliorants in Maize–Soybean Intercropping on Suboptimal Land
by Wahyu Astiko, Mohamad Taufik Fauzi, Lolita Endang Susilowati, Lalu Zulkifli and Fahrurozi
Nitrogen 2025, 6(4), 89; https://doi.org/10.3390/nitrogen6040089 - 1 Oct 2025
Abstract
Suboptimal land conditions, characterized by limited nutrient availability and poor soil physical properties, restrict the growth and productivity of maize–soybean intercropping systems. Bioameliorants containing beneficial microorganisms, such as mycorrhizae, offer a sustainable strategy to enhance soil fertility and nutrient uptake efficiency. This study [...] Read more.
Suboptimal land conditions, characterized by limited nutrient availability and poor soil physical properties, restrict the growth and productivity of maize–soybean intercropping systems. Bioameliorants containing beneficial microorganisms, such as mycorrhizae, offer a sustainable strategy to enhance soil fertility and nutrient uptake efficiency. This study evaluated the effects of different bioameliorant compositions on nitrogen availability, plant growth, and yield in maize–soybean intercropping on suboptimal land. A randomized complete block design with four replicates tested five treatments: F0 (control, no bioameliorant), F1 (10% compost + 10% rice husk charcoal + 10% manure + 70% mycorrhizal biofertilizer), F2 (15% each of compost, manure, charcoal + 55% biofertilizer), F3 (20% each + 40% biofertilizer), and F4 (25% each component). Results showed that the balanced F4 bioameliorant markedly improved nitrogen availability, soil health, and yields in maize–soybean intercropping on sandy soils. These findings highlight its potential as a sustainable strategy to enhance productivity, reduce reliance on chemical fertilizers, and strengthen agroecosystem resilience on suboptimal land. The optimized F4 formulation therefore represents a practical approach to improving nutrient availability and plant performance in maize–soybean intercropping systems under marginal soil conditions. Full article
Show Figures

Figure 1

19 pages, 2193 KB  
Article
Recycling of Cement-Based and Biomass Ashes Waste Powders as Alternative Fillers for Hot Mix Asphalts: A Preliminary Laboratory Evaluation
by Piergiorgio Tataranni, Giulia Tarsi, Yunfei Guo, Paolino Caputo, Manuel De Rose, Cesare Oliviero Rossi and Rosolino Vaiana
Sustainability 2025, 17(19), 8799; https://doi.org/10.3390/su17198799 - 30 Sep 2025
Abstract
The construction sector has a prominent role in raw materials consumption and environmental depletion due to waste and emissions connected to the production of construction materials and construction/demolition operations. Thus, research is pushing to develop sustainable construction materials, mainly recycling waste and by-products. [...] Read more.
The construction sector has a prominent role in raw materials consumption and environmental depletion due to waste and emissions connected to the production of construction materials and construction/demolition operations. Thus, research is pushing to develop sustainable construction materials, mainly recycling waste and by-products. Following this trend, the present study explores the possible use of two different blends of cement-based waste powder and biomass ashes as filler for the production of asphalt concretes. The materials have been tested following the EN 13043 standard requirements for fillers for bituminous mixtures. Still, the basic performances of hot mix asphalts produced with the recycled materials have been evaluated on a laboratory scale. The physical, chemical, and mechanical characterization of the waste fillers and the bituminous mixtures showed advantages and downsides in the use of the recycled powders for hot mix asphalt production. Despite final performances in line with traditional hot mix asphalt, the chemical composition of the proposed fillers has a negative influence mainly on the water susceptibility of the mixture. However, the findings of the study open new perspectives on future possible applications of the recycled fillers in the road pavements sector. Full article
Show Figures

Figure 1

25 pages, 11406 KB  
Article
Experimental Optimization, Scaling Up, and Characterization for Continuous Aragonite Synthesis from Lime Feedstock Using Magnesium Chloride as Chemical Inducer
by Mohammad Ghaddaffi M. Noh, Nor Yuliana Yuhana, Mohammad Hafizuddin Hj Jumali, Mohammad Syazwan Onn and Ruzilah Sanum
Processes 2025, 13(10), 3142; https://doi.org/10.3390/pr13103142 - 30 Sep 2025
Abstract
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in [...] Read more.
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in food additives using MgCl2 as a chemical inducer. The outcome of this literature review provides the outlook of the available research whitespace opportunity in optimizing the current process parameters and in ensuring that sustainable and economically feasible continuous production of aragonite products could be achieved. One of the major improvements proposed in this study is to investigate the methods of synthesizing aragonite crystalline particles using a continuous mineral carbonation reactor system and optimizing the operating parameters. An experimental design was established to identify all the main effects to maximize aragonite production. The three main effects investigated are the effect of feedstock or reactant concentration, the effect of reaction temperature, and the effect of reaction time towards aragonite yield in the final products synthesized. An optimized operating parameter for maximum aragonite yield at 95% purity was proposed at the reaction temperature T of 90 °C, reaction time t of 10 min, and feedstock ratio Mg-to-Ca of 0.4. Subsequently, the continuous reactor system was designed, operated, and tested for at least 50 h operation, where the lime CaO(s) feed was successfully converted into aragonite products with purity between 75 and 81%. The properties and quality of the aragonite produced were analytically characterized from the following laboratory methods which include the thermalgravimetric analysis, TGA; X-Ray Diffraction, XRD; scanning electron microscopy, SEM; and induction coupled plasma, ICP. TGA mass balance after decomposition suggests that 44% of the mass balance represents the weight of CO2 sequestered in the aragonite crystalline carbonates. Hence, the aragonite crystalline carbonates can be labeled as a green product which sequesters 0.44 kg of CO2 per 1 kg of precipitated aragonite products synthesized. Interestingly, SEM microscopy characterization results revealed that the aragonite precipitate has a physical morphology of needle-like shape with a good aspect ratio (length/diameter) AR of between 8.67 micron and 11.35 micron. The properties were found to be suitable for paper making fillers, medical, personal care, and food additive applications. Full article
35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

16 pages, 2288 KB  
Article
Controlled Crystallization Enables Facile Fine-Tuning of Physical–Chemical Properties of Nicergoline Toward Easier Processability
by Barbora Blahová Prudilová, Roman Gabriel, Michal Otyepka and Eva Otyepková
Pharmaceuticals 2025, 18(10), 1465; https://doi.org/10.3390/ph18101465 - 29 Sep 2025
Abstract
Background/Objectives: Crystallization is a key process in the manufacturing of active pharmaceutical ingredients (APIs), as it significantly affects the physical and chemical properties of the final product. Nicergoline, a clinically relevant ergot derivative, was chosen as a model compound to investigate how [...] Read more.
Background/Objectives: Crystallization is a key process in the manufacturing of active pharmaceutical ingredients (APIs), as it significantly affects the physical and chemical properties of the final product. Nicergoline, a clinically relevant ergot derivative, was chosen as a model compound to investigate how different crystallization strategies affect particle attributes. The objective of this study was to compare controlled and uncontrolled crystallization techniques and evaluate their impact on the physicochemical properties of nicergoline. Methods: Nicergoline was crystallized using controlled methods, including sonication-induced and seeding-induced crystallization, and uncontrolled methods, namely cubic and linear cooling, as well as acetone evaporation. The resulting powders were characterized by using a range of physicochemical techniques to assess particle morphology, size distribution, agglomeration behavior, and surface properties. Results: Uncontrolled crystallization methods produced particles prone to agglomeration, resulting in a broader particle size distribution ranging from 8 to 720 µm and heterogeneous surface characteristics. In contrast, controlled crystallization generated more uniform particles with reduced agglomeration and narrower particle size distributions. Among the evaluated methods, sonocrystallization provided the most effective control over particle size and morphology, demonstrated by a narrow size distribution ranging from 16 to 39 µm which correlated with improved flowability and surface energy. Conclusions: The study demonstrates that the choice of crystallization method significantly influences the structural and physicochemical properties of nicergoline. These findings highlight the importance of method selection for tailoring API properties to enhance downstream processing and product quality. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

18 pages, 1805 KB  
Article
Adsorption of Ammonium by Coal and Coal Fly Ash Derived from Hawthorn Tree from Aquatic Systems
by Jonathan Suazo-Hernández, Nicol Burgos, María de Los Ángeles Sepúlveda-Parada, Jorge Castro-Rojas, Patricia Poblete-Grant, Carmen Castro-Castillo, Rawan Mlih, Cristian Urdiales, Tomás Schoffer, Collin G. Joseph and Antonieta Ruiz
Processes 2025, 13(10), 3118; https://doi.org/10.3390/pr13103118 - 29 Sep 2025
Abstract
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ [...] Read more.
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ from aqueous systems through batch adsorption–desorption studies. Both adsorbents were physically and chemically characterized, while Fourier-transform infrared spectroscopy and zeta potential were used to understand the surface functional groups and surface charge characteristics. CFA showed a higher pH, BET specific surface area, electrical conductivity and higher % values for CaO and MgO than C. Kinetic studies of NH4+ adsorption at pH = 4.5 for both materials fitted the pseudo-second-order model giving the r2 of 0.970–0.983 and the χ2 of 0.008–0.005 and at pH = 6.5 only for C with the r2 of 0.986 and the χ2 of 0.013. Meanwhile, the adsorption isotherm data at pH = 4.5 for both materials and 6.5 for CFA complied with the Freundlich model (r2 > 0.965 and χ2 < 0.012), suggesting that NH4+ adsorption onto both adsorbents at those pH values occurred through the formation of a multilayer adsorption on heterogeneous surfaces. This indicates that the dominant adsorption of both adsorbents was physisorption with no site-specific interaction. Based on these results, CFA is proposed as a promising and economical material for the removal of NH4+ from aqueous systems. Full article
(This article belongs to the Special Issue Natural Low-Cost Adsorbents in Water Purification Processes)
Show Figures

Figure 1

15 pages, 2431 KB  
Article
One-Pot Synthesis for Doped Amorphous Carbon-Based Compounds: Influence of ZnO Dopant on the Charge Transfer Efficiency
by Bernardo Alberto Vargas-Vidal, Esperanza Baños-López, María del Rosario Munguía-Fuentes, Yazmín Mariela Hernández-Rodríguez and Oscar Eduardo Cigarroa-Mayorga
Nanomaterials 2025, 15(19), 1486; https://doi.org/10.3390/nano15191486 - 29 Sep 2025
Abstract
Amorphous carbon (a-C) materials have attracted significant attention for environmental remediation due to their chemical stability and high surface area; however, their photocatalytic activity remains limited by rapid electron–hole recombination. In this study, ZnO-doped amorphous carbon (a-C@ZnO) composites were synthesized via a one-pot [...] Read more.
Amorphous carbon (a-C) materials have attracted significant attention for environmental remediation due to their chemical stability and high surface area; however, their photocatalytic activity remains limited by rapid electron–hole recombination. In this study, ZnO-doped amorphous carbon (a-C@ZnO) composites were synthesized via a one-pot hydrothermal method to enhance charge separation and photocatalytic performance. The synthesis involved the carbonization of glucose and the incorporation of zinc species under controlled conditions, resulting in composites with varying ZnO contents. The physical and chemical properties of the materials were thoroughly characterized by SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy, confirming the successful integration of ZnO within the carbon matrix and the formation of Zn–O–C chemical bonds. Photocatalytic tests, evaluated through the degradation of rhodamine 6G under UV irradiation, demonstrated that ZnO doping significantly improved photocatalytic efficiency, with the a-C@ZnO0.75 sample achieving a 72% degradation rate and the highest kinetic rate constant. The enhancement was attributed to improved charge transfer and reactive oxygen species generation facilitated by the ZnO–a-C interface. These findings highlight the potential of ZnO-doped amorphous carbon composites as effective, low-cost photocatalysts for water purification applications. Full article
Show Figures

Graphical abstract

21 pages, 1451 KB  
Article
Selection of a Bacterial Conditioner to Improve Wheat Production Under Salinity Stress
by Ramila Fares, Abdelhamid Khabtane, Noreddine Kacem Chaouche, Miyada Ouanes, Beatrice Farda, Rihab Djebaili and Marika Pellegrini
Microorganisms 2025, 13(10), 2273; https://doi.org/10.3390/microorganisms13102273 - 28 Sep 2025
Abstract
This study investigated the isolation and formulation of a bacterial conditioner as a biostimulant for Triticum durum (durum wheat) under salinity stress. An Algerian alkaline–saline soil was sampled, characterized for its physical and chemical characteristics and its culturable and total microbial community (16S [...] Read more.
This study investigated the isolation and formulation of a bacterial conditioner as a biostimulant for Triticum durum (durum wheat) under salinity stress. An Algerian alkaline–saline soil was sampled, characterized for its physical and chemical characteristics and its culturable and total microbial community (16S rRNA gene metabarcoding). Three bacterial strains showing high 16S rRNA gene similarity to Pseudomonas putida, Bacillus proteolyticus, and Niallia nealsonii were selected for their plant growth-promoting (PGP) traits under different salinity levels, including phosphate solubilisation (194 µg mL−1), hormone production (e.g., gibberellin up to 56 µg mL−1), and good levels of hydrocyanic acid, ammonia, and siderophores. N. nealsonii maintained high indole production under saline conditions, while B. proteolyticus displayed enhanced indole synthesis at higher salt concentrations. Siderophore production remained stable for P. putida and N. nealsonii, whereas for B. proteolyticus a complete inhibition was registered in the presence of salt stress. The consortium density and application were tested under controlled conditions using Medicago sativa as a model plant. The effective biostimulant formulation was tested on Triticum durum under greenhouse experiments. Bacterial inoculation significantly improved plant growth in the presence of salt stress. Root length increased by 91% at 250 mM NaCl. Shoot length was enhanced by 112% at 500 mM NaCl. Total chlorophyll content increased by 208% at 250 mM NaCl. The chlorophyll a/b ratio increased by 117% at 500 mM. Also, reduced amounts of plant extracts were necessary to scavenge 50% of radicals (−22% at 250 mM compared to the 0 mM control). Proline content increased by 20% at both 250 mM and 500 mM NaCl. These results demonstrate the potential of beneficial bacteria as biostimulants to mitigate salt stress and enhance plant yield in saline soils. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

28 pages, 9915 KB  
Article
Mechanism of Herbaceous Plant Root Disturbance on Yongning Fortress Rammed Earth Heritage: A Case Study
by Xudong Chu, Xinliang Ji and Weicheng Han
Buildings 2025, 15(19), 3491; https://doi.org/10.3390/buildings15193491 - 27 Sep 2025
Abstract
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating [...] Read more.
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating the disturbance mechanisms and environmental impacts induced by the root systems of five representative herbaceous species on rammed earth structures. The results demonstrated distinct, species-specific disturbance patterns. Melica roots created three-dimensional network damage, Artemisia capillaris primarily caused deep root penetration, Fallopia aubertii exhibited coupled physical–chemical effects, Convolvulus arvensis induced shallow horizontal expansion damage, while Cirsium formed a heterogeneous structure characterized by dense taproots and loose lateral roots. Environmental conditions, particularly moisture content, significantly influenced disturbance intensity. All root activities led to common deterioration processes, including particle rounding, gradation degradation, and formation of organic–mineral composites. Notably, vegetation markedly altered soluble salt distribution patterns, with Cirsium increasing total salt content to 3.7 times that of undisturbed rammed earth (0.48%), while sulfate ion concentration (1.16 × 10−3) approached hazardous thresholds. The study established a theoretical framework linking plant traits, disturbance mechanisms, and environmental response, and proposed risk-based zoning strategies for preservation. These outcomes provide significant theoretical foundations and practical guidance for the scientific conservation of rammed earth heritage sites. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 5766 KB  
Article
Physicomechanical Properties of Recycled Gypsum Composites with Polyvinyl Acetate Emulsion and Treated Short Green Coconut Fibers
by Sandra Cunha Gonçalves, Milton Ferreira da Silva Junior, Marcelo Tramontin Souza, Nilson Santana de Amorim Júnior and Daniel Véras Ribeiro
Buildings 2025, 15(19), 3490; https://doi.org/10.3390/buildings15193490 - 26 Sep 2025
Abstract
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, [...] Read more.
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, and chemically treated short green coconut fibers, and characterized by physical and mechanical analyses. The addition of PVA improved paste workability, extended setting time, and reduced porosity, while fiber pretreatment enhanced adhesion and tensile performance. XRD, FTIR, and TGA-DTA confirmed modifications in crystallinity, bonding, and thermal stability due to the combined action of PVA and fibers. Compared with the recycled gypsum reference (RG), the optimized composite (R50C50P5F10) exhibited a 69.1% reduction in sorptivity (from 5440 × 10−4 to 1680 × 10−4 kg/m2·s0.5), a 27.9% increase in flexural tensile strength (from 2.65 to 3.39 MPa), and a 15.1% increase in compressive strength (from 6.18 to 7.12 MPa). Surface hardness values remained statistically equivalent to RG but complied with normative requirements, maintaining all formulations within the moderate hardness category (55–80 Shore C). The results demonstrate the technical feasibility of incorporating recycled gypsum and agro-industrial fibers into gypsum composites, providing a sustainable route for developing more durable construction materials. Full article
Show Figures

Figure 1

Back to TopTop