Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = physiological and ecological characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1753 KB  
Article
Photosynthetic Performance and Phytoremediation Potential of Narrow Crown Black-Cathay Poplar Under Combined Cadmium and Phenol Pollution
by Huimei Tian, Kaixin Zheng, Qiyun Lu, Siyuan Sun, Chuanrong Li and Huicheng Xie
Forests 2025, 16(10), 1531; https://doi.org/10.3390/f16101531 - 30 Sep 2025
Viewed by 203
Abstract
Heavy metal pollutants and organic contaminants often co-exist in the environment, posing significant ecological risks due to their combined toxicity. Phytoremediation, a plant-based biotechnology, offers a promising solution for pollutant removal. This study investigated the potential cadmium (Cd) removal capacity of Narrow Crown [...] Read more.
Heavy metal pollutants and organic contaminants often co-exist in the environment, posing significant ecological risks due to their combined toxicity. Phytoremediation, a plant-based biotechnology, offers a promising solution for pollutant removal. This study investigated the potential cadmium (Cd) removal capacity of Narrow Crown Black-Cathay poplar (Populus × canadensis Moench × Populus simonii Carr. f. fastigiata Schneid.) under combined Cd-phenol stress. The results showed that the combined stress synergistically inhibited the photosynthetic physiological characteristics, with an inhibition rate up to 54.0%, significantly higher than that under single stress (p < 0.05). Cd accumulation varied markedly among plant organs, following the order: root (ranging from 4000.2 to 9277.0 mg/kg) > stems (ranging from 96.0 to 383.6 mg/kg) > leaf (ranging from 10.3 to 40.1 mg/kg). Phenol enhanced Cd absorption and enrichment in the roots by up to 1.8 times but reduced its translocation to aboveground parts by 37.8–40.0%. Notably, at low Cd concentrations, the Cd removal efficiency under combined stress (26.0%) was substantially higher than under single Cd stress (6.6%). In contrast, biomass, tolerance index, and root–shoot ratio were slightly affected in all treatments (p > 0.05). These findings demonstrate that Narrow Crown Black-Cathay poplar is a suitable candidate for the short-term remediation of Cd in environments co-contaminated with cadmium and phenol. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

21 pages, 5345 KB  
Review
Molecular Insights into the Biomedical Applications of Plagiomnium affine (Blandow ex Funck) T. Kop.: A Promising Source of Bioactive Metabolites
by Julia Krupa, Andrzej Kaźmierczak and Izabela Kołodziejczyk
Int. J. Mol. Sci. 2025, 26(19), 9341; https://doi.org/10.3390/ijms26199341 - 24 Sep 2025
Viewed by 367
Abstract
Plagiomnium affine is a species of terrestrial moss that inhabits mainly coniferous forests but also occurs in areas with other characteristics. It is very adjustable, being a commercially available aquarium plant and popular among enthusiasts. Despite its wide distribution in various habitats, its [...] Read more.
Plagiomnium affine is a species of terrestrial moss that inhabits mainly coniferous forests but also occurs in areas with other characteristics. It is very adjustable, being a commercially available aquarium plant and popular among enthusiasts. Despite its wide distribution in various habitats, its physiological and biochemical adaptations, ecological roles, and responses to environmental changes remain only partially understood. In fact, it is not known what biomedical applications lie in this species, which is relatively easy to cultivate in vitro, and its role as an accumulator of elements such as manganese or cadmium is largely ignored. This article reviews the current state of research on P. affine, focusing on available published data that can help illuminate the biomedical application of the species, highlighting gaps in knowledge and identifying priorities for future research. For this purpose, all available literature, regardless of year of study, addressing the indicated topic was reviewed. The report presents P. affine as a uniquely adaptable moss species rich in bioactive compounds of scientific interest, highlighting its application importance in modern science. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

21 pages, 6218 KB  
Article
Exogenous Application of Applied Microbial Agents to Alleviate Salt Stress on ‘Pinot Noir’ Grapes and Improve Fruit Yield and Quality
by Zhilong Li, Lei Ma, Guojie Nai, Zhihui Pu, Jingrong Zhang, Sheng Li, Bing Wu and Shaoying Ma
Agriculture 2025, 15(18), 1960; https://doi.org/10.3390/agriculture15181960 - 17 Sep 2025
Viewed by 308
Abstract
Microbial inoculants, as a new type of product that combines economic efficiency with ecological sustainability, play an important role in promoting plant growth and development, increasing crop yields, and enhancing plant resistance to abiotic stress. This study used the wine grape cultivar ( [...] Read more.
Microbial inoculants, as a new type of product that combines economic efficiency with ecological sustainability, play an important role in promoting plant growth and development, increasing crop yields, and enhancing plant resistance to abiotic stress. This study used the wine grape cultivar (Vitis viniferaPinot Noir’) as experimental material to systematically investigate the effects of microbial inoculants on the soil–leaf–fruit system during the late growth stage of grapes under salt stress conditions (200 mM NaCl). This study analyzed the regulatory effects of microbial inoculants on soil physicochemical properties, leaf physiological and biochemical characteristics, as well as fruit yield and quality. The results showed that salt stress significantly inhibited the growth of Pinot Noir grapes. However, the application of microbial inoculants effectively alleviated the negative effects of salt stress. By enhancing the plant’s antioxidant defense capacity and regulating physiological metabolic pathways such as osmotic balance, the inoculants significantly mitigated the inhibitory effect of salt stress on fruit development. Notably, the S+JH treatment group demonstrated particularly outstanding results, with hundred-berry weight, single-bunch weight, and yield per plant increasing significantly by 15.96%, 12.47%, and 28.93%, respectively, compared to the salt stress group (S). Additionally, this treatment also stabilized free amino acid content and suppressed excessive organic acid synthesis. This study provides new technical insights into the application of microbial inoculants for saline-alkali land improvement and stress-resistant cultivation of horticultural crops such as grapes, holding significant practical value for promoting the sustainable development of the grape industry in saline-alkali regions. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Horticultural Crops)
Show Figures

Figure 1

14 pages, 1452 KB  
Article
Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety
by Osman Doğan and Kevser Yazar
Horticulturae 2025, 11(9), 1118; https://doi.org/10.3390/horticulturae11091118 - 15 Sep 2025
Viewed by 654
Abstract
Grapes are one of the most preferred fruit species in the world. Increasing yield and quality in table grape production has always been the top priority for producers. Producers’ interest in biostimulants from sustainable agricultural practices for quality and yield increase is increasing [...] Read more.
Grapes are one of the most preferred fruit species in the world. Increasing yield and quality in table grape production has always been the top priority for producers. Producers’ interest in biostimulants from sustainable agricultural practices for quality and yield increase is increasing day by day. Seaweed extracts (SWEs), which are among the most preferred biostimulants, are shown as an organic input due to their ecological safety and harmlessness. In this study, Ecklonia maxima (Em), Macrocystis integrifolia (Mi) and Ascophyllum nodosum (An), which are brown SWEs, were applied to the Alphonse Lavallée (AL) grape variety four times via the leaves. As a result of the applications, yield, quality and physiological parameters were examined. As a result of the study, all SWE applied increased yield per vine between 28% and 47%. SWEs improved cluster and berry characteristics and increased phenolic content and antioxidant activity compared to the control. They also contributed to physiological characteristics of the grapevine, such as photosynthetic activity and stomatal conductance. It is thought that SWEs, which are among the sustainable agricultural practices, will improve the yield and quality of grapes not only in organic farming but in all agricultural practices. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

14 pages, 1146 KB  
Review
Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms
by Ya-Wen Chang, Jing-Ya Zhao, Yu-Cheng Wang and Yu-Zhou Du
Insects 2025, 16(9), 957; https://doi.org/10.3390/insects16090957 - 11 Sep 2025
Viewed by 563
Abstract
Global climate change has intensified temperature fluctuations, significantly impacting insect populations. Thermal tolerance has emerged as a critical determinant of species distribution and invasion potential. Liriomyza trifolii, an economically important invasive pest, has been rapidly expanding in southeastern coastal regions of China, [...] Read more.
Global climate change has intensified temperature fluctuations, significantly impacting insect populations. Thermal tolerance has emerged as a critical determinant of species distribution and invasion potential. Liriomyza trifolii, an economically important invasive pest, has been rapidly expanding in southeastern coastal regions of China, gradually displacing its congeners L. sativae and L. huidobrensis. This competitive advantage is closely associated with its superior thermal adaptation strategies. Here, we first examine the temperature-mediated competitive dominance of L. trifolii, then systematically elucidate the physiological, biochemical, and molecular mechanisms underlying its temperature tolerance, revealing its survival strategies under extreme temperatures. Notably, L. trifolii exhibits a lower developmental threshold temperature and higher thermal constant, extending its damage period, while its significantly lower supercooling point confers exceptional overwintering capacity. Physiologically, rapid cold hardening (RCH) enhances cold tolerance through glycerol accumulation and increased fatty acid unsaturation, while heat acclimation improves thermotolerance via a trade-off between developmental processes and reproductive investment. Molecular analyses demonstrate that L. trifolii combines the low-temperature inducible characteristics of L. huidobrensis with the high-temperature responsive advantages of L. sativae in heat shock protein (Hsp) expression patterns. Transcriptomic studies further identify differential expressions of lipid metabolism and chaperone-related genes as key to thermal adaptation. Current research limitations include incomplete understanding of non-Hsp gene regulatory networks and laboratory–field adaptation discrepancies. Future studies should integrate multi-omics approaches with ecological modeling to predict L. trifolii’s expansion under climate change scenarios and develop temperature-based green control strategies. Full article
(This article belongs to the Special Issue Invasive Pests: Bionomics, Damage, and Management)
Show Figures

Figure 1

18 pages, 3819 KB  
Article
Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population
by Zorica Popović, Nikola Mišić, Milan Protić and Vera Vidaković
Fire 2025, 8(9), 342; https://doi.org/10.3390/fire8090342 - 26 Aug 2025
Viewed by 1148
Abstract
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. [...] Read more.
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. In this study, the morpho-physiological traits (thickness, roughness, moisture content) and flammability characteristics (ignition, heat release, mass loss, as determined in laboratory flammability tests) of the bark of P. nigra were investigated. The trees were selected based on their age (young vs. old) and fire exposure (burned vs. unburned). The bark thickness was significantly greater in older trees, while the bark moisture content was significantly lower in previously burned trees (p ≤ 0.05). The bark thickness correlated strongly with the ignition time, heat release, and mass loss. These results indicate that the age of the tree primarily affects the bark thickness and time to cambium death, while fire exposure primarily affects the bark moisture content, regardless of age. Understanding that the bark thickness and flammability play a key role in tree survival may aid in the selection of individuals or stand structures better suited to survive in fire-prone conditions and in the strategic planning of burns to reduce fuel loads without exceeding the mortality risk of younger or thinner-barked individuals. Full article
Show Figures

Figure 1

23 pages, 2605 KB  
Review
Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
by Md. Muzammal Hoque, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa and Marios Drosos
Bioengineering 2025, 12(9), 909; https://doi.org/10.3390/bioengineering12090909 - 25 Aug 2025
Viewed by 2016
Abstract
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to [...] Read more.
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to support regenerative agriculture and mitigate climate change. Functioning as biofertilizers, biostimulants, and bioremediators, microalgae accelerate nutrient cycling, improve soil aggregation through extracellular polymeric substances (EPSs), and stimulate rhizospheric microbial diversity. Empirical studies demonstrate their ability to increase crop yields by 5–25%, reduce chemical nitrogen inputs by up to 50%, and boost both organic carbon content and enzymatic activity in soils. Their application in saline and degraded lands further promotes resilience and ecological regeneration. Microalgal cultivation platforms offer scalable in situ carbon sequestration, converting atmospheric carbon dioxide (CO2) into biomass with potential downstream vaporization into biofuels, bioplastics, and biochar, aligning with circular economy principles. While the commercial viability of microalgae is challenged by high production costs, technical complexities, and regulatory gaps, recent breakthroughs in cultivation systems, biorefinery integration, and strain optimization highlight promising pathways forward. This review highlights the strategic importance of microalgae in enhancing climate resilience, promoting agricultural sustainability, restoring soil health, and driving global bioeconomic transformation. Full article
(This article belongs to the Special Issue Engineering Microalgal Systems for a Greener Future)
Show Figures

Graphical abstract

14 pages, 3302 KB  
Article
Analysis of Coupled Response Characteristics of NAI Release and Stem Flow in Four Urban Greening Tree Species in Beijing During Drought Stress and Recovery Processes
by Xueqiang Liu, Bin Li, Weikang Zhang, Shaowei Lu, Jigui Wu, Jing An, Yaqian Fan, Na Zhao, Xiaotian Xu and Shaoning Li
Plants 2025, 14(17), 2630; https://doi.org/10.3390/plants14172630 - 23 Aug 2025
Viewed by 454
Abstract
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release [...] Read more.
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release of NAI by plants and sap flow in recent years, it is still unclear how the release of NAI by plants changes during drought stress and recovery processes, as well as the coupling effect between the release of NAI by plants and sap flow under drought stress. In this context, four typical green tree species, Robinia pseudoacacia, Quercus variabilis, Pinus tabulaeformis, and Platycladus orientalis, were selected as experimental materials. A drought stress and recovery control experiment was conducted based on OTC. The dynamic data of negative air ion concentration (NAIC) and sap flow rate during the process of drought stress and recovery were monitored to clarify the characteristics and correlations of NAI and sap flow changes in the experimental tree species under drought stress and recovery. The main research results are as follows: (1) At the end of the drought period, the NAI and sap flow in the drought treatment group significantly decreased (p < 0.01), compared with the control group (CK), and the reduction rate of sap flow (77.73 ± 4.96%) for each tree species was higher than that of NAI (47.78% ± 4.96%). (2) At 1 day after rehydration, the recovery amplitudes of NAI and sap flow for all tree species were the greatest; at 7 days after rehydration, the NAI and sap flow of the drought treatment group recovered to the levels of the control group (p > 0.05). (3) During different stages of drought rehydration, the response degree of NAI to sap flow varied. The study found that in the drought-rehydration stage, the correlation between the NAI released by each tree species and sap flow was the lowest at the drought endpoint. In conclusion, this research clarifies the changing patterns of plant NAI release and sap flow during drought-rehydration, as well as the response changes of NAI to sap flow. It provides a theoretical basis for selecting drought-tolerant tree species in arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 1493 KB  
Article
Effect of Nitrogen Application Rate on Growth Physiology, Yield Quality, and Nitrogen Fertilizer Utilization Rate of Liriope muscari in Pots
by Yuhong Yuan, Jihong Xiao, Shaoyan Liu, Tianyou He, Jundong Rong and Yushan Zheng
Biology 2025, 14(8), 1104; https://doi.org/10.3390/biology14081104 - 21 Aug 2025
Cited by 1 | Viewed by 388
Abstract
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable [...] Read more.
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.33 kg/ha, N2: 416.66 kg/ha, N3: 625 kg/ha, N4: 833.33 kg/ha, N5: 1041.66 kg/ha). The morphological characteristics, photosynthetic physiology, tuber yield and quality, and seven nitrogen fertilizer utilization indices of L. muscari were analyzed and measured. Correlation analysis and structural equation modeling (SEM) were employed to investigate the mechanism by which nitrogen influences its growth and development, photosynthetic characteristics, tuber yield and quality, and nitrogen fertilizer utilization efficiency. The results showed that (1) nitrogen significantly promoted plant height, crown width, tiller number, and chlorophyll synthesis, with the N3 treatment (625 kg/ha) reaching the peak value, and the crown width and tiller number increasing by 26.44% and 38.90% compared to N0; the total chlorophyll content and net photosynthetic rate increased by 39.67% and 77.04%, respectively, compared to N0; high nitrogen (N5) inhibited photosynthesis and increased intercellular CO2 concentration; (2) Fresh weight of tuberous roots, polysaccharide content, and saponin C content peaked at N3 (34.67 g/plant, 39.89%, and 0.21%), respectively, representing increases of 128.69%, 28.37%, and 33.66% compared to N0; (3) Nitrogen uptake, nitrogen fertilizer utilization efficiency, agronomic utilization efficiency, and apparent utilization efficiency were optimal at N3, while high nitrogen (N4–N5) reduced nitrogen fertilizer efficiency by 40–60%; (4) SEM analysis indicated that tiller number and transpiration rate directly drive yield, while stomatal conductance regulates saponin C synthesis. Under the experimental conditions, 625 kg/ha is the optimal nitrogen application rate balancing yield, quality, and nitrogen efficiency. Excessive nitrogen application (>833 kg/ha) induces photosynthetic inhibition and “luxury absorption”, leading to source-sink imbalance and reduced accumulation of secondary metabolites. This study provides a theoretical basis and technical support for the precise management of nitrogen in Liriope-type medicinal plants. It is expected to alleviate the contradictions of “high input, low output, and heavy pollution” in traditional fertilization models. Full article
Show Figures

Figure 1

20 pages, 3222 KB  
Article
Polypropylene Microplastics and Cadmium: Unveiling the Key Impacts of Co-Pollution on Wheat–Soil Systems from Multiple Perspectives
by Zhiqin Zhang, Haoran He, Nan Chang and Chengjiao Duan
Agronomy 2025, 15(8), 2013; https://doi.org/10.3390/agronomy15082013 - 21 Aug 2025
Viewed by 672
Abstract
The interaction between microplastics (MPs) and heavy metals and their ecological risks to the soil–plant system has attracted widespread attention. This study explored the effects of polypropylene (PP) alone or combined with cadmium (Cd) pollution on wheat seed germination, plant growth, and the [...] Read more.
The interaction between microplastics (MPs) and heavy metals and their ecological risks to the soil–plant system has attracted widespread attention. This study explored the effects of polypropylene (PP) alone or combined with cadmium (Cd) pollution on wheat seed germination, plant growth, and the soil environment from multiple perspectives through seed germination experiments and pot experiments. The results of the seed germination experiment showed that the addition of 50 mg L−1 PP could promote the growth of seeds. However, medium and high concentrations of PP had significant inhibitory effects on seeds. For PP + Cd co-pollution, the addition of 50 mg L−1 PP could partially alleviate the stress of Cd alone. However, with the increase in PP concentration, the co-pollution showed stronger toxicity to seeds. Moreover, the synergistic effect of PP and Cd was greater than the antagonistic effect; both of them aggravated the stress on wheat. The results of the pot experiment showed that the soil microenvironment was significantly affected by PP alone or combined with Cd pollution. It was manifested as reducing soil moisture and pH, affecting soil nutrient cycling, and inhibiting the activities of soil enzymes (except for catalase). In addition, the MPs and Cd significantly affected the physiological characteristics of plants. Specifically, the addition of 50 mg L−1 PP alone promoted or had no significant effect on wheat growth. However, with the increase in PP concentration, the biomass and chlorophyll content of plants decreased significantly, while carotenoids, oxidative damage, and antioxidant enzyme activities increased significantly. Moreover, PP + Cd co-pollution led to stronger phytotoxicity. Moreover, PP exposure caused an increase in plant shoot and root Cd concentrations, promoting Cd transport from roots to shoots. Correlation heat maps and RDA analysis revealed that plant Cd concentration was significantly correlated with soil environmental factors and plant physiological indicators. Finally, the results of the linear model (%) of relative importance indicated that pH and MDA content were important soil and plant variables affecting the increase in Cd concentration in plant tissues. This study is of great significance for evaluating the ecological risks of MPs-Cd composite pollution. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 4007 KB  
Article
Adaptability of Foxtail Millet Varieties Based on Photosynthetic Performance and Agronomic Traits
by Shulin Gao, Chenxu Wang, Xu Yang, Tianyu Ji, Suqi Shang, Shuo Li, Yinyuan Wen, Jianhong Ren, Xiaorui Li, Juan Zhao, Chunyan Hu, Xiangyang Yuan and Shuqi Dong
Plants 2025, 14(16), 2502; https://doi.org/10.3390/plants14162502 - 12 Aug 2025
Viewed by 438
Abstract
As a strategic crop of dry farming in northern China, the photosynthetic characteristics and stress resistance of foxtail millet (Setaria italica L.) are crucial to yield formation. This study aimed to explore the physiological characteristics of various foxtail millet varieties and screen [...] Read more.
As a strategic crop of dry farming in northern China, the photosynthetic characteristics and stress resistance of foxtail millet (Setaria italica L.) are crucial to yield formation. This study aimed to explore the physiological characteristics of various foxtail millet varieties and screen high-efficiency varieties adapted to semi-arid climates. In the agro-pastoral ecotone of northern Shanxi Province, the physiological and ecological parameters, etc. of six cultivars were measured. The results showed that different cultivars had bimodal diurnal photosynthetic curves with distinct peak values and midday depression degrees, reflecting varied responses to high midday temperature and light stress. Dabaigu and Jingu 21 performed superiorly, with mean daily net photosynthetic rates (Pn) of 22.99 and 20.72 µmol·m−2·s−1, significantly higher than Jinmiao K1 (12.87 µmol·m−2·s−1). Chlorophyll fluorescence analysis showed Dabaigu had higher potential activity (Fv/F0) of 3.98 than Jinmiao K1 (2.40). Jingu 21 synergistically optimized plant height, stem diameter, and biomass accumulation. Dabaigu and Jingu 21 are elite cultivars for the agro-pastoral ecotone of northern Shanxi Province due to high photosynthetic efficiency, strong photoprotection, and morphological plasticity. Full article
Show Figures

Graphical abstract

16 pages, 4914 KB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Viewed by 466
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

16 pages, 3007 KB  
Article
Construction of Ancestral Chromosomes in Gymnosperms and the Application in Comparative Genomic Analysis
by Haoran Liao, Lianghui Zhong, Yujie He, Jie He, Yuhan Wu, Ying Guo, Lina Mei, Guibing Wang, Fuliang Cao, Fangfang Fu and Liangjiao Xue
Plants 2025, 14(15), 2361; https://doi.org/10.3390/plants14152361 - 1 Aug 2025
Cited by 1 | Viewed by 609
Abstract
Chromosome rearrangements during plant evolution can lead to alterations in genome structure and gene function, thereby influencing species adaptation and evolutionary processes. Gymnosperms, as an ancient group of plants, offer valuable insights into the morphological, physiological, and ecological characteristics of early terrestrial flora. [...] Read more.
Chromosome rearrangements during plant evolution can lead to alterations in genome structure and gene function, thereby influencing species adaptation and evolutionary processes. Gymnosperms, as an ancient group of plants, offer valuable insights into the morphological, physiological, and ecological characteristics of early terrestrial flora. The reconstruction of ancestral karyotypes in gymnosperms may provide critical clues for understanding their evolutionary history. In this study, we inferred the ancestral gymnosperm karyotype (AGK), which comprises 12 chromosomes, and conducted a collinearity analysis with existing gymnosperm genomes. Our findings indicate that chromosome numbers have remained remarkably stable throughout the evolution of gymnosperms. For species with multiplied chromosome numbers, such as gnetophytes, weak collinearities with the AGK were observed. Comparisons between the AGK and gnetophyte genomes revealed a biased pattern regarding retained duplication blocks. Furthermore, our analysis of transposable elements in Welwitschia mirabilis identified enriched regions containing LINE-1 retrotransposons within the syntenic blocks. Syntenic analysis between the AGK and angiosperms also demonstrated a biased distribution across chromosomes. These results provide a fundamental resource for further characterization of chromosomal evolution in gymnosperms. Full article
Show Figures

Figure 1

17 pages, 1281 KB  
Article
Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments
by Shijiang Zhu, Tao Zhao, Shubiao Gui, Wen Xu, Kun Hao and Yun Zhong
Water 2025, 17(15), 2218; https://doi.org/10.3390/w17152218 - 24 Jul 2025
Viewed by 519
Abstract
This study aims to select the most suitable submerged plants for the remediation and ecological rehabilitation of nutrient-enriched aquatic environments. The experiment selected Vallisneria natans, Myriophyllum verticillatum, and Elodea nuttallii as research objects. An artificial outdoor pot experiment was conducted with [...] Read more.
This study aims to select the most suitable submerged plants for the remediation and ecological rehabilitation of nutrient-enriched aquatic environments. The experiment selected Vallisneria natans, Myriophyllum verticillatum, and Elodea nuttallii as research objects. An artificial outdoor pot experiment was conducted with six different levels of ammonia nitrogen: 2, 4, 6, 8, 12, and 16 mg/L. The present study measured the physiological and growth parameters of submerged macrophytes under varying ammonia nitrogen concentrations. The response characteristics of plants to ammonia nitrogen stress were analyzed, and the tolerance thresholds of different submerged macrophyte species to ammonia nitrogen were determined. This enabled us to screen for ammonia nitrogen-tolerant pioneer species suitable for water ecological restoration in eutrophic water bodies. The experiment spanned 28 days. The results showed that the maximum suitable concentration and maximum tolerance concentration of ammonia nitrogen for Vallisneria natans, Myriophyllum verticillatum, and Elodea nuttallii were 2, 4, and 4 mg/L and 4, 12, and 8 mg/L. Submerged plants can grow normally within their maximum ammonia nitrogen tolerance concentration. When the concentration exceeds the maximum tolerance level, the growth of submerged plants is severely stressed by ammonia nitrogen. Low ammonia nitrogen concentrations promote the growth of submerged macrophyte biomass and chlorophyll content as well as the accumulation of dry matter in plants, while high ammonia nitrogen concentrations damage the antioxidant enzyme system and inhibit the growth of submerged plants. The tolerance of the three submerged macrophytes to ammonia nitrogen is as follows: Myriophyllum verticillatum > Elodea nuttallii > Vallisneria natans. Therefore, Myriophyllum verticillatum should be chosen as the ammonia nitrogen-tolerant pioneer species in the ecological restoration of eutrophic water bodies. The research results can provide a theoretical basis for the application of aquatic macrophytes in the treatment of eutrophic water bodies and ecological restoration. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 9479 KB  
Review
Major Intrinsic Proteins in Fungi: A Special Emphasis on the XIP Subfamily
by Jean-Stéphane Venisse, Gisèle Bronner, Mouadh Saadaoui, Patricia Roeckel-Drevet, Mohamed Faize and Boris Fumanal
J. Fungi 2025, 11(7), 543; https://doi.org/10.3390/jof11070543 - 21 Jul 2025
Viewed by 722
Abstract
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned [...] Read more.
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned physiological and morphological responses orchestrated by conserved molecular pathways. Increasing evidence suggests that aquaporins (AQPs) play a key role in mediating these adaptive responses, particularly under varying abiotic and biotic stress conditions. However, despite notable advances in recent decades, the precise functional roles of AQPs within the fungal kingdom remains largely unresolved in the field of cell biology. AQPs are transmembrane proteins belonging to the major intrinsic proteins (MIPs) superfamily, which is characterized by remarkable sequence and structural diversity. Beyond their established function in facilitating water transport, MIPs mediated the bidirectional diffusion of a range of small inorganic and organic solutes, ions, and gases across cellular membranes. In fungi, MIPs are classified into three main subfamilies: orthodox (i.e., classical) AQPs, aquaglyceroporins (AQGP), and X-intrinsic proteins (XIPs). This review provides a concise summary of the fundamental structural and functional characteristics of fungal aquaporins, including their structure, classification, and known physiological roles. While the majority of the current literature has focused on the aquaporin and aquaglyceroporin subfamilies, this review also aims to offer a comprehensive and original overview of the relatively understudied X-intrinsic protein subfamily, highlighting its potential implication in fungal biology. Full article
Show Figures

Figure 1

Back to TopTop