Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (132)

Search Parameters:
Keywords = phytoplankton community dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1187 KB  
Article
Annual Variations and Influencing Factors of Zooplankton Community Structure in the Coastal Waters of Northern Shandong Peninsula, China
by Xiuxia Wang, Mingming Zhu, Bingqing Xu, Yanyan Yang, Xiaomin Zhang, Shaowen Li, Tiantian Wang, Fan Li, Guangxin Cui and Xiang Zheng
Biology 2025, 14(10), 1386; https://doi.org/10.3390/biology14101386 - 11 Oct 2025
Viewed by 60
Abstract
The coastal waters of the northern Shandong Peninsula have abundant fishery resources, which serve as a critical transitional fishing ground for economic fish migrating into the Bohai Sea for spawning and departing for overwintering habitats. However, anthropogenic pressures such as garbage dumping have [...] Read more.
The coastal waters of the northern Shandong Peninsula have abundant fishery resources, which serve as a critical transitional fishing ground for economic fish migrating into the Bohai Sea for spawning and departing for overwintering habitats. However, anthropogenic pressures such as garbage dumping have led to severe degradation of local fishery resources and concomitant adverse effects on zooplankton communities. To assess these impacts, we analyzed the spatiotemporal distribution, community structure, dominant species, and diversity indices of zooplankton based on sampling data collected in spring from 2015 to 2018 in this region. A total of 24 zooplankton species and 11 larval classes were identified, with the highest species richness observed in 2016. Calanus sinicus and Centropages abdominalis were the primary dominant species, with C. sinicus consistently predominant across all four years. Notably, the dominant species exhibited marked annual variability. The abundance and biomass of zooplankton in the surveyed area exhibited significant annual variations, both showing a trend of first decreasing and then increasing. Peak abundance occurred in 2015 (594.36 ind/m3), while the lowest was recorded in 2017 (118.73 ind/m3). Spatially, abundance and biomass were heterogeneous, with coastal waters exhibiting higher concentrations than offshore areas. The overall low level of community diversity and its significant annual variations indicated that the zooplankton community structure in the surveyed sea area was unstable and showed a trend of degenerative succession. The community structure of zooplankton and larger-bodied dominant species showed stronger correlations with phytoplankton dynamics, whereas smaller-bodied species were more influenced by water temperature. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

16 pages, 2223 KB  
Article
Influence of Inorganic Nutrients on a North Atlantic Microbial Community’s Response to Ocean Alkalinity Enhancement
by Inês de Castro, Susana C. Ribeiro, António Louvado, Newton Carlos Marcial Gomes, Mário Cachão, Paulo F. Silva Borges, Eduardo Brito de Azevedo and Joana Barcelos e Ramos
Oceans 2025, 6(4), 65; https://doi.org/10.3390/oceans6040065 - 9 Oct 2025
Viewed by 99
Abstract
Ocean Alkalinity Enhancement (OAE) is a promising carbon dioxide removal strategy, but its ecological impacts on marine microbial communities under varying nutrient conditions remain poorly understood. We conducted laboratory incubations using a natural North Atlantic microbial assemblage to investigate the response to OAE [...] Read more.
Ocean Alkalinity Enhancement (OAE) is a promising carbon dioxide removal strategy, but its ecological impacts on marine microbial communities under varying nutrient conditions remain poorly understood. We conducted laboratory incubations using a natural North Atlantic microbial assemblage to investigate the response to OAE under both natural and nutrient-enriched regimes. We tracked phytoplankton and bacterioplankton dynamics, biomass, and leucine aminopeptidase (LAP) and alkaline phosphatase (ALP) activity as indicators of organic matter remineralization. OAE consistently reduced phytoplankton abundance in both nutrient regimes, potentially due to CO2 limitation, resulting in lower production of phytoplankton-derived organic matter. This reduction was reflected in decreased LAP activity and shifts in the relative abundance of phytoplankton-associated bacterial taxa. These findings indicate that OAE can directly affect phytoplankton through carbonate chemistry alterations, with potential microbial responses largely mediated by changes in organic matter availability. While short-term microbial disruptions were modest, the ecological consequences of altered bloom dynamics should be carefully considered in future OAE deployment strategies. Full article
Show Figures

Figure 1

14 pages, 1733 KB  
Article
Occurrence and Seasonal Variation of Picoplankton at Saiysad Freshwater in Taif City, Saudi Arabia
by Najwa Al-Otaibi
Water 2025, 17(18), 2788; https://doi.org/10.3390/w17182788 - 22 Sep 2025
Viewed by 386
Abstract
A wadi ecosystem, a wetland characterized by seasonal water flow, is a unique freshwater environment typically found in semi-arid and arid regions. This study investigates the seasonal and spatial dynamics of environmental properties and microbial plankton communities at Wadi Saiysad in Taif City, [...] Read more.
A wadi ecosystem, a wetland characterized by seasonal water flow, is a unique freshwater environment typically found in semi-arid and arid regions. This study investigates the seasonal and spatial dynamics of environmental properties and microbial plankton communities at Wadi Saiysad in Taif City, Saudi Arabia. Using flow cytometry, three distinct picoplankton populations were observed: Synechococcus and heterotrophic prokaryotes classified as low (LNA) or high (HNA) nucleic acid content. Surface freshwater samples were collected from three distinct sites, representing habitats with actively flowing water, biodiverse communities, and human-influenced areas. Interestingly, no significant differences among stations were observed, suggesting that the sampled stretch of Wadi Saiysad receives similar nutrient inputs. Seasonal water temperature reached 24.5 ± 0.57 °C in summer and the pH ranged from neutral to slightly alkaline. Nutrient analyses revealed that Wadi Saiysad is eutrophic and limited by phosphorus. Phytoplankton biomass was dominated by nanoplankton, particularly in summer (46.60 ± 5.33%), while Synechococcus increased significantly with a maximum abundance of 1.32 × 104 cells mL−1 during the cooler months. HNA prokaryotes displayed marked seasonal variation (1.95 × 104–1.78 × 105 cells mL−1) compared to LNA prokaryotes (2.05–8.17 × 104 cells mL−1). This study highlights the urgent need for monitoring and managing the nutrient inputs in Wadi Saiysad to protect its biodiversity and support sustainable use. Full article
(This article belongs to the Special Issue Freshwater Ecosystems—Biodiversity and Protection: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 3517 KB  
Article
Effects of Nitrogen and Phosphorus on Estuarine Phytoplankton Communities in Aquatic Microcosms
by Jianan Ling, Chao Wei, Dongning Yang, Jiangning Zeng, Fangping Cheng, Xin Zheng and Zhanhong Yang
Toxics 2025, 13(9), 798; https://doi.org/10.3390/toxics13090798 - 19 Sep 2025
Viewed by 304
Abstract
Phytoplankton serves as the primary producer in estuarine ecosystems, with its community structure and dynamics being directly influenced by the concentration and ratio of nitrogen (N) and phosphorus (P) nutrients. This study utilized raw water from the Yangtze Estuary to establish a series [...] Read more.
Phytoplankton serves as the primary producer in estuarine ecosystems, with its community structure and dynamics being directly influenced by the concentration and ratio of nitrogen (N) and phosphorus (P) nutrients. This study utilized raw water from the Yangtze Estuary to establish a series of ocean microcosm systems, setting up gradients of dissolved inorganic nitrogen (DIN) and reactive phosphate (SRP) concentrations to explore the reaction of phytoplankton communities over 30 days. The results indicated that total phytoplankton abundance significantly increased under prolonged exposure to high concentrations of DIN and SRP. However, the community diversity indices exhibited a declining tendency, indicating a simplification and increased instability of the community structure. Diatoms and dinoflagellates, the predominant phytoplankton taxa, differed in their response to DIN and SRP. Diatom abundance rose at elevated DIN concentrations and initially increased and then decreased at high SRP concentrations, while dinoflagellate abundance diminished at high DIN concentrations and persisted in increasing at elevated SRP concentrations. An ecological threshold is the critical point at which the structure or function of an ecosystem undergoes significant changes when subjected to external disturbances or internal changes. The Threshold Indicator Taxa Analysis (TITAN) was employed to identify indicator species within the microcosm systems, revealing that the ecological response thresholds of phytoplankton communities to DIN and SRP were 0.50 mg/L and 0.030 mg/L, respectively. This study quantitatively analyzed the environmental exposure concentrations of DIN and SRP at the community level and calculated the ecological response thresholds, providing fundamental data and a scientific basis for nitrogen and phosphorus management in estuaries. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

20 pages, 2426 KB  
Article
Unravelling the Role of Predator Diversity in Shaping Plankton Dynamics: Evidence from a Mesocosm Study
by Robyn Shaylee Fabian and William Froneman
Diversity 2025, 17(9), 591; https://doi.org/10.3390/d17090591 - 22 Aug 2025
Viewed by 503
Abstract
Predation plays a key organizational role in structuring plankton communities. However, predator diversity can lead to emergent effects in which the outcomes of predator–prey interactions are modified. The response of the plankton community to three different predator regimes at natural densities was investigated [...] Read more.
Predation plays a key organizational role in structuring plankton communities. However, predator diversity can lead to emergent effects in which the outcomes of predator–prey interactions are modified. The response of the plankton community to three different predator regimes at natural densities was investigated over a 10-day mesocosm experiment in a temperate, temporarily open/closed estuary in South Africa. The regimes included: (1) predation by the mysid, Mesopodopsis wooldridgei; (2) predation by larval Rhabdosargus holubi and (3) a combination of the two predators. M. wooldridgei are primarily copepod feeders, and juvenile R. holubi consume a broader diet including zooplankton, algae and invertebrate fauna. In the absence of predators, zooplankton grazing contributed to a significant decline in the phytoplankton size structure and total chlorophyll-a (Chl-a) concentration. The presence of the predators contributed to a decline in the total zooplankton abundances and biomass which dampened the grazing impact of the zooplankton on the total Chl-a, consistent with the expectations of a trophic cascade. There were no significant differences in the size structure of the phytoplankton community, total Chl-a concentration and the total zooplankton abundances and biomass between the different predator treatments, suggesting that the increase in predator diversity did not contribute to increased prey risk. These findings highlight both the direct and indirect ecological impacts of predators on plankton dynamics. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Graphical abstract

25 pages, 7381 KB  
Article
Noctiluca scintillans Bloom Reshapes Microbial Community Structure, Interaction Networks, and Metabolism Patterns in Qinhuangdao Coastal Waters, China
by Yibo Wang, Min Zhou, Xinru Yue, Yang Chen, Du Su and Zhiliang Liu
Microorganisms 2025, 13(8), 1959; https://doi.org/10.3390/microorganisms13081959 - 21 Aug 2025
Viewed by 604
Abstract
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses [...] Read more.
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses to N. scintillans bloom events is crucial for elucidating their underlying mechanisms and ecological impacts. This study investigated the microbial community dynamics, metabolic shifts, and the environmental drivers associated with a N. scintillans bloom in the coastal waters of Qinhuangdao, China, using high-throughput sequencing of 16S and 18S rRNA genes, co-occurrence network analysis, and metabolic pathway prediction. The results revealed that the proliferation of autotrophic phytoplankton, such as Minutocellus spp., likely provided a nutritional foundation and favorable conditions for the N. scintillans bloom. The bloom significantly altered the community structures of prokaryotes and microeukaryotes, resulting in significantly lower α-diversity indices in the blooming region (BR) compared to the non-blooming region (NR). Co-occurrence network analyses demonstrated reduced network complexity and stability in the BR, with keystone taxa primarily belonging to Flavobacteriaceae and Rhodobacteraceae. Furthermore, the community structures of both prokaryotes and microeukaryotes correlated with multiple environmental factors, particularly elevated levels of NH4+-N and PO43−-P. Metabolic predictions indicated enhanced anaerobic respiration, fatty acid degradation, and nitrogen assimilation pathways, suggesting microbial adaptation to bloom-induced localized hypoxia and high organic matter. Notably, ammonia assimilation was upregulated, likely as a detoxification strategy. Additionally, carbon flux was redirected through the methylmalonyl-CoA pathway and pyruvate-malate shuttle to compensate for partial TCA cycle downregulation, maintaining energy balance under oxygen-limited conditions. This study elucidates the interplay between N. scintillans blooms, microbial interactions, and functional adaptations, providing insights for HAB prediction and management in coastal ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

25 pages, 1660 KB  
Review
Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance
by Elena Bisinicu and Luminita Lazar
Phycology 2025, 5(3), 39; https://doi.org/10.3390/phycology5030039 - 20 Aug 2025
Viewed by 654
Abstract
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The [...] Read more.
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The analysis reveals a clear dominance of work on plankton community structure (81%), whereas topics such as modeling and scenario analysis (7%), ecosystem assessment (7%), and bloom dynamics and seasonality (5%) remain comparatively underrepresented. Post-2020 publications indicate a promising shift toward scenario-based frameworks, gelatinous zooplankton impacts, and trait-based indicators, although functional integration remains fragmented. Keyword co-occurrence and network analyses revealed a concentration on nutrient–phytoplankton–zooplankton pathways, while other themes—such as bioluminescence and redoxcline dynamics—appeared only marginally represented in the literature we analyzed. To support ecosystem-based management under the Marine Strategy Framework Directive (MSFD), we highlight three priorities: improving NPZD-type models, using trophic efficiency metrics, and standardizing plankton indicators across the region. Strengthening the mechanistic understanding of planktonic trophic linkages is critical for improving food web assessments and adaptive marine governance in the Black Sea. Full article
Show Figures

Figure 1

17 pages, 8868 KB  
Article
Dual Influence of Rainfall and Water Temperature on Phytoplankton Diversity and Nutrient Dynamics in a Mountainous Riverine Reservoir
by Qihang Zhao, Lian Hu, Xinyue Ren, Xiang Hu, Tianchi Sun, Jun Zuo, Peng Xiao, He Zhang, Rongzhen Zhang and Renhui Li
Diversity 2025, 17(8), 573; https://doi.org/10.3390/d17080573 - 15 Aug 2025
Viewed by 505
Abstract
The combined effects of anthropogenic activities and climate change, particularly the increasing frequency of extreme rainfall events, continue to pose significant threats to the security of reservoir ecosystems and water quality. Effective prediction and management of aquatic ecosystems require a comprehensive understanding of [...] Read more.
The combined effects of anthropogenic activities and climate change, particularly the increasing frequency of extreme rainfall events, continue to pose significant threats to the security of reservoir ecosystems and water quality. Effective prediction and management of aquatic ecosystems require a comprehensive understanding of how environmental factors influence the dynamics of phytoplankton communities. However, the response patterns of phytoplankton community diversity, niche breadth, and cell density to rainfall disturbances in complex mountainous riverine reservoirs remain poorly understood. In this study, we systematically investigated the phytoplankton community structure and its environmental drivers in Zhaoshandu Reservoir (China) via field surveys, morphological identification of samples, and multivariate statistical analyses. Water temperature (WT), rainfall, and phytoplankton cell density in the study area ranged from 11.4 °C to 35.6 °C, from 0 to 72.5 mm, and from 3.33 × 103 to 7.95 × 107 cells/L, respectively. Total phosphorus and total nitrogen concentrations ranged from 0.002 to 0.633 mg/L and from 0.201 to 5.06 mg/L, respectively. Canonical correspondence analysis found that rainfall and WT were the pivotal drivers of phytoplankton density and biomass and were significantly correlated with phytoplankton diversity. Importantly, structural equation modeling revealed that the direct effects of both rainfall and WT on phytoplankton diversity and niche width, as well as the indirect effects of rainfall on ammonium nitrogen concentration, significantly modulated algal density and biomass in Zhaoshandu Reservoir. Our study highlights the role of rainfall as a potential major regulator of phytoplankton communities in this riverine reservoir. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

12 pages, 1451 KB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Viewed by 858
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

27 pages, 11944 KB  
Article
Heatwave-Induced Thermal Stratification Shaping Microbial-Algal Communities Under Different Climate Scenarios as Revealed by Long-Read Sequencing and Imaging Flow Cytometry
by Ayagoz Meirkhanova, Adina Zhumakhanova, Polina Len, Christian Schoenbach, Eti Ester Levi, Erik Jeppesen, Thomas A. Davidson and Natasha S. Barteneva
Toxins 2025, 17(8), 370; https://doi.org/10.3390/toxins17080370 - 27 Jul 2025
Viewed by 900
Abstract
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were [...] Read more.
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were based on IPCC climate warming scenarios, enabling simulation of future warming conditions. Surface oxygen levels reached 19.37 mg/L, while bottom layers dropped to 0.07 mg/L during stratification. Analysis by FlowCAM revealed dominance of Cyanobacteria under ambient conditions (up to 99.2%), while Cryptophyta (up to 98.9%) and Chlorophyta (up to 99.9%) were predominant in the A2 and A2+50% climate scenarios, respectively. We identified temperature changes and shifts in nutrient concentrations, particularly phosphate, as critical factors in microbial community composition. Furthermore, five distinct Microcystis morphospecies identified by FlowCAM-based analysis were associated with different microbial clusters. The combined use of imaging flow cytometry, which differentiates phytoplankton based on morphological parameters, and nanopore long-read sequencing analysis has shed light into the dynamics of microbial communities associated with different Microcystis morphospecies. In our observations, a peak of algicidal bacteria abundance often coincides with or is followed by a decline in the Cyanobacteria. These findings highlight the importance of species-level classification in the analysis of complex ecosystem interactions and the dynamics of algal blooms in freshwater bodies in response to anthropogenic effects and climate change. Full article
Show Figures

Figure 1

22 pages, 2461 KB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 576
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

16 pages, 2024 KB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 445
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

15 pages, 2997 KB  
Article
Volcanic Ash–Alkaline (Soda) Lake Water Interactions: Biogeochemical Effects in Lake Van as a Model System
by Nazlı Olgun
Water 2025, 17(15), 2171; https://doi.org/10.3390/w17152171 - 22 Jul 2025
Viewed by 1174
Abstract
Volcanic ash from explosive eruptions can significantly alter lake water chemistry through ash–water interactions, potentially influencing primary productivity. Alkaline (soda) lakes, mostly found in volcanic regions, are particularly sensitive due to their unique geochemical properties. However, the effects of volcanic ash on the [...] Read more.
Volcanic ash from explosive eruptions can significantly alter lake water chemistry through ash–water interactions, potentially influencing primary productivity. Alkaline (soda) lakes, mostly found in volcanic regions, are particularly sensitive due to their unique geochemical properties. However, the effects of volcanic ash on the biogeochemistry and phytoplankton dynamics of soda lakes remain poorly understood. This study presents the first nutrient release experiments using natural alkaline water from Lake Van (Türkiye) and volcanic ash from four volcanoes (Hekla, Arenal, Sakurajima, Rabaul-Tavurvur) with different compositions. Sixteen abiotic leaching experiments were conducted over contact durations ranging from 1 to 24 h. Results show rapid increases in pH (~0.4–0.5 units), enhanced silica and phosphate concentrations, and elevated levels of Na, K, Ca, Sr, and S. Nitrate and Mg were generally depleted. The low N:P ratio (~0.06) in Lake Van water indicated nitrogen limitation, partially mitigated by ash-derived inputs. Cyanobacteria dominated the phytoplankton community (95%), consistent with nitrogen fixation under low-nitrate conditions. Elevated silica may promote diatom growth, while changes in Mg/Ca ratios suggest possible impacts on carbonate precipitation and microbialite development. These findings highlight the biogeochemical and ecological relevance of volcanic ash inputs to soda lakes. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 2685 KB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 533
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

24 pages, 3795 KB  
Article
Ecological Effects of Sargassum fusiforme Cultivation on Coastal Phytoplankton Community Structure and Water Quality: A Study Based on Microscopic Analysis
by Yurong Zhang, Rijin Jiang, Qingxi Han, Zimeng Li, Zhen Mao and Haifeng Jiao
Biology 2025, 14(7), 844; https://doi.org/10.3390/biology14070844 - 10 Jul 2025
Viewed by 2906
Abstract
This study used microscopy-based quantitative enumeration to investigate the effects of large-scale Sargassum fusiforme cultivation on coastal water quality and phytoplankton communities. Data from April (cultivation period) and June (non-cultivation period) in 2018 and 2019 showed that cultivation increased pH and dissolved oxygen [...] Read more.
This study used microscopy-based quantitative enumeration to investigate the effects of large-scale Sargassum fusiforme cultivation on coastal water quality and phytoplankton communities. Data from April (cultivation period) and June (non-cultivation period) in 2018 and 2019 showed that cultivation increased pH and dissolved oxygen (DO). It also reduced nitrate–nitrogen (NO3–N), nitrite–nitrogen (NO2–N), phosphate–phosphorus (PO4–P), total phosphorus (TP), and silicate–silicon (SiO3–Si) concentrations. These changes indicate improved coastal water quality from S. fusiforme cultivation. Nutrient levels rose again during the non-cultivation period. This suggests that water purification decreased without cultivation. Cultivation also lowered the dominance of Skeletonema costatum. This led to a more diverse and stable phytoplankton community. Microscopic observation is valuable for quantifying larger phytoplankton species, and plays an important role in ecological monitoring. These findings provide insights for sustainable aquaculture and ecological restoration. Full article
Show Figures

Figure 1

Back to TopTop