Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = plant-based beverages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1002 KB  
Article
Differential Modulation of Cancer Cell Proliferation by Fermented Plant-Based Beverages: A Comparative Study of Tiger Nut, Carob and Rice Beverages in Colorectal Adenocarcinoma Cells
by Matteo Vitali, Mussa Makran, Mónica Gandía, Antonio Cilla and Amparo Gamero
Foods 2025, 14(17), 3072; https://doi.org/10.3390/foods14173072 (registering DOI) - 30 Aug 2025
Abstract
Fermentation represents a sustainable biotechnological approach for enhancing bioactive properties of plant-based foods, yet its anticancer effects remain underexplored. We evaluated the antiproliferative activity of fermented (with commercial probiotic lactic acid bacteria consortium) and unfermented plant-based beverages derived from tiger nut, carob, and [...] Read more.
Fermentation represents a sustainable biotechnological approach for enhancing bioactive properties of plant-based foods, yet its anticancer effects remain underexplored. We evaluated the antiproliferative activity of fermented (with commercial probiotic lactic acid bacteria consortium) and unfermented plant-based beverages derived from tiger nut, carob, and rice using an in vitro model. Following INFOGEST 2.0 gastrointestinal digestion, bioaccessible fractions were applied to Caco-2 colorectal adenocarcinoma cells at 1:15 v/v dilution for 24 h. Analyses included cell viability, apoptosis detection, cell cycle distribution, reactive oxygen species production, glutathione content, mitochondrial membrane potential, and intracellular calcium levels. Fermented tiger nut achieved superior (p < 0.05) cytotoxicity compared to unfermented counterpart (39.6% vs. 77.4% cell viability) through dual mechanisms: depleting cellular antioxidant defenses (glutathione reduced to 55.9%) while inducing oxidative stress (180.3% ROS overproduction). This evoked irreversible apoptosis (76.9% early apoptosis) and extensive DNA fragmentation (84.8% SubG1 population) via calcium-independent pathways. Fermented carob operated through cytostatic mechanisms, inducing G0/G1 cell cycle arrest (74.7% vs. 44.2% in blank digestion cells) without oxidative stress. Fermentation reduced (p < 0.05) rice beverage antiproliferative activity (90.2% vs. 71.9% unfermented beverage cell viability). These findings establish lactic acid fermentation as effective for developing plant-based beverages with anticancer mechanisms, offering dietary strategies for colorectal cancer prevention. Full article
(This article belongs to the Special Issue Advances in Biological Activities of Functional Food (3rd Edition))
Show Figures

Figure 1

20 pages, 334 KB  
Review
Potential of Andean Grains as Substitutes for Animal Proteins in Vegetarian and Vegan Diets: A Nutritional and Functional Analysis
by Jhonsson Luis Quevedo-Olaya, Marcio Schmiele and María Jimena Correa
Foods 2025, 14(17), 2987; https://doi.org/10.3390/foods14172987 - 27 Aug 2025
Viewed by 330
Abstract
The growing demand for sustainable protein sources has boosted interest in Andean pseudocereals, particularly quinoa (Chenopodium quinoa), cañihua (Chenopodium pallidicaule), and kiwicha (Amaranthus caudatus), due to their complete nutritional profile, high digestibility, and low allergenic potential. Their [...] Read more.
The growing demand for sustainable protein sources has boosted interest in Andean pseudocereals, particularly quinoa (Chenopodium quinoa), cañihua (Chenopodium pallidicaule), and kiwicha (Amaranthus caudatus), due to their complete nutritional profile, high digestibility, and low allergenic potential. Their inclusion in vegetarian and vegan diets represents a viable alternative that can replace animal proteins without compromising on nutritional quality. This study presents a critical review of indexed scientific literature analyzing essential amino acid composition, protein quality values—such as PDCAAS (Protein Digestibility-Corrected Amino Acid Score) and DIAAS (Digestible Indispensable Amino Acid Score)—and the impact of various processing technologies on the functionality of Andean proteins. Results show that these grains contain between 13 and 18 g of protein per 100 g of dry product and provide adequate levels of lysine, methionine, and threonine, meeting FAO (Food and Agriculture Organization) requirements for adult nutrition. Processes such as germination, fermentation, enzymatic hydrolysis, and extrusion have demonstrated improvements in both amino acid bioavailability and functional properties of proteins, enabling their application in gluten-free breads, meat analogs, and functional beverages. Furthermore, emerging strategies such as nanotechnology, bioactive peptide generation, and gene editing via CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)—a precise genome editing tool—open new possibilities for enhancing the nutritional and functional value of pseudocereals in the food industry. Taken together, the findings consolidate the strategic role of Andean grains as key ingredients in the development of sustainable, functional, and plant-based foods. Full article
(This article belongs to the Section Grain)
22 pages, 382 KB  
Article
Pulque: Beverage Transcending Historical Boundaries
by Diana Rodríguez-Vera, Roberto Rivera Pérez, Ivonne Maciel Arciniega-Martínez, Marvin A. Soriano-Ursúa, Aldo Arturo Reséndiz-Albor, Fernanda Magdaleno-Durán, Jazmín García-Machorro and José A. Morales-González
Histories 2025, 5(3), 41; https://doi.org/10.3390/histories5030041 - 23 Aug 2025
Viewed by 787
Abstract
Pulque, an available traditional Mexican fermented beverage, has deep ethnographic and cultural significance. It was originally consumed by pre-Columbian civilizations, including the Teotihuacanos, Mexicas, Otomies, Zapotecas, Mixtecas, and Maya. It was revered as a sacred drink [...] Read more.
Pulque, an available traditional Mexican fermented beverage, has deep ethnographic and cultural significance. It was originally consumed by pre-Columbian civilizations, including the Teotihuacanos, Mexicas, Otomies, Zapotecas, Mixtecas, and Maya. It was revered as a sacred drink with both ceremonial and medicinal uses, often reserved for elites and priests. Its production is based on the ancestral extraction and fermentation of aguamiel, a sweet sap obtained from agave plants. While advances in food technology have occurred, traditional techniques for obtaining and fermenting aguamiel remain prevalent, especially in rural communities, reflecting the resilience of indigenous knowledge systems. Recent interest in pulque has focused on its nutritional content and potential health benefits when consumed in moderation, though risks related to excessive intake remain a concern. Moreover, cultural initiatives aim to revitalize indigenous heritage through gastronomic promotion, tourism routes, and festive traditions. This study explores pulque’s production processes, its cultural symbolism, and its evolving role within Mexican society, suggesting that its survival reflects both continuity and adaptation in the face of modernity. This paper is also presented as a narrative integrative review to explore the biocultural significance of pulque across the anthropological, historical, biochemical, and public-health domains. Full article
(This article belongs to the Section Cultural History)
14 pages, 3687 KB  
Article
Revisiting Spectrophotometric Methods in the FoodOmics Era: The Influence of Phytochemicals in the Quantification of Soluble Sugars in Plant-Based Beverages, Drinks, and Extracts
by Ana Reis, Cláudia P. Passos, Elsa Brandão, Natércia Teixeira, Tiago Alves, Nuno Mateus and Victor de Freitas
Foods 2025, 14(16), 2889; https://doi.org/10.3390/foods14162889 - 20 Aug 2025
Viewed by 348
Abstract
The rising prevalence of diet-related diseases is driving consumers to adopt healthier, plant-based diets. Aware of this consumer trend, the Food Industry is investing in innovative, tasty, plant-based foods with added nutraceutical value. However, health-promoting phytochemicals are often found in foods with a [...] Read more.
The rising prevalence of diet-related diseases is driving consumers to adopt healthier, plant-based diets. Aware of this consumer trend, the Food Industry is investing in innovative, tasty, plant-based foods with added nutraceutical value. However, health-promoting phytochemicals are often found in foods with a high content of natural sugars that are readily absorbed, undermining their health benefits. To ensure proper labelling and support consumers in their choices for healthier foods, the Food Industry relies on cost-effective methods to measure soluble sugars. Herein, we assess three established spectrophotometric assays—phenol, orcinol, and anthrone—for quantifying soluble sugars in 12 plant-based beverages, drinks, and extracts. The standard glucose solutions revealed that the phenol and orcinol reagents displayed the highest sensitivity. Applied to phytochemical-rich beverages, drinks, and extracts, the anthrone protocol leads to precipitation phenomena; the phenol is prone to interference from chlorophylls, carotenoids, melanoidins, (ellagi)tannins, and anthocyanins, whereas orcinol is susceptible only to anthocyanins. Though spectrophotometric assays overestimate sugar levels in both high- and low-sugar-content samples, the orcinol-sulfuric acid method offers an environmentally safe and cost-effective approach to quantifying soluble sugars in phytochemical-rich samples, fostering food innovation and helping to build consumer trust within resilient and sustainable food systems. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

14 pages, 2535 KB  
Article
Development and Evaluation of Potential Probiotic Coconut Water Beverages: Fermentation, Storage, and Consumer Perception
by Brenda Novais Santos, Ana Lúcia Fernandes Pereira, Thatyane Vidal Fonteles and Sueli Rodrigues
Processes 2025, 13(8), 2554; https://doi.org/10.3390/pr13082554 - 13 Aug 2025
Viewed by 423
Abstract
Coconut water was explored as a plant-based substrate for the development of probiotic beverages fermented with four Bifidobacterium strains (B. animalis B-41406, B. bifidum B-41410, B. breve B-41408, and B. infantis B-41661). Each strain was tested separately in a monoculture, with the [...] Read more.
Coconut water was explored as a plant-based substrate for the development of probiotic beverages fermented with four Bifidobacterium strains (B. animalis B-41406, B. bifidum B-41410, B. breve B-41408, and B. infantis B-41661). Each strain was tested separately in a monoculture, with the coconut water adjusted to pH 6.7 and fermented under anaerobic conditions at 37 °C for 24 h. All formulations achieved a high cell viability (>12 log CFU/mL post-fermentation) and maintained counts above 6 log CFU/mL after 42 days at 4 °C. The fermentation resulted in significant lactic acid production (up to 6.1 g/L), with moderate acetic acid accumulation, and the pH remained below 4.5, ensuring microbiological stability. The sugar consumption varied across the strains, with B. bifidum and B. breve utilizing glucose and fructose more effectively. A sensory analysis, conducted with 100 untrained panelists using a 9-point hedonic scale and the Check-All-That-Apply (CATA) method, revealed that the B. bifidum-fermented beverage had the highest acceptance, attributed to favorable descriptors such as an “ideal sweetness”, “coconut flavor”, and “ideal texture”. These findings support the application of B. bifidum in the formulation of stable, microbiologically viable, and organoleptically acceptable non-dairy probiotic beverages, highlighting coconut water as a promising functional matrix. Full article
(This article belongs to the Special Issue Green Technologies for Food Processing)
Show Figures

Graphical abstract

24 pages, 1647 KB  
Review
Exploring Exopolysaccharides Produced in Indigenous Mexican Fermented Beverages and Their Biotechnological Applications
by Julián Fernando Oviedo-León, Abril Ramírez Higuera, Jorge Yáñez-Fernández, Humberto Hernández-Sánchez and Diana C. Castro-Rodríguez
Fermentation 2025, 11(8), 463; https://doi.org/10.3390/fermentation11080463 - 12 Aug 2025
Viewed by 699
Abstract
Indigenous Mexican fermented beverages, such as pulque, colonche, tepache, and water kefir, are pillars of the country’s cultural and gastronomic heritage. Their sensory attributes and health-promoting properties arise from complex microbial consortia, in which lactic acid bacteria (LAB), mainly Lactobacillus and Leuconostoc, [...] Read more.
Indigenous Mexican fermented beverages, such as pulque, colonche, tepache, and water kefir, are pillars of the country’s cultural and gastronomic heritage. Their sensory attributes and health-promoting properties arise from complex microbial consortia, in which lactic acid bacteria (LAB), mainly Lactobacillus and Leuconostoc, acetic acid bacteria (AAB), primarily Acetobacter, and yeasts such as Saccharomyces and Candida interact and secrete exopolysaccharides (EPSs). Dextran, levan, and heteropolysaccharides rich in glucose, galactose, and rhamnose have been consistently isolated from these beverages. EPSs produced by LAB enhance the viscosity and mouthfeel, extend the shelf life, and exhibit prebiotic, antioxidant, and immunomodulatory activities that support gut and immune health. Beyond food, certain EPSs promote plant growth, function as biocontrol agents against phytopathogens, and facilitate biofilm-based bioremediation, underscoring their biotechnological potential. This review integrates recent advances in the composition, biosynthetic pathways, and functional properties of microbial EPSs from Mexican fermented beverages. We compare reported titers, outline key enzymes, including dextransucrase, levansucrase, and glycosyltransferases, and examine how fermentation variables (the substrate, pH, and temperature) influence the polymer yield and structure. Finally, we highlight emerging applications that position these naturally occurring biopolymers as sustainable ingredients for food and agricultural innovation. Full article
(This article belongs to the Special Issue The Health-Boosting Power of Fermented Foods and Their By-Products)
Show Figures

Figure 1

19 pages, 3284 KB  
Article
Towards Healthy and Sustainable Diets: Understanding Food Consumption Trends in the EU
by Fabrizio Biganzoli, Carla Caldeira, Joana Dias, Valeria De Laurentiis, Joao Leite, Jan Wollgast and Serenella Sala
Foods 2025, 14(16), 2798; https://doi.org/10.3390/foods14162798 - 12 Aug 2025
Viewed by 833
Abstract
The assessment of food system sustainability requires a profound understanding of the evolution of food production and consumption. Monitoring the transition towards healthier and sustainable diets is crucial for supporting future interventions. This study explores market sales data as an input to investigate [...] Read more.
The assessment of food system sustainability requires a profound understanding of the evolution of food production and consumption. Monitoring the transition towards healthier and sustainable diets is crucial for supporting future interventions. This study explores market sales data as an input to investigate and compare current dietary trends in the European Union Member States over 14 years. By analysing consumption trends of major food product categories, including animal-based and plant-based foods, we identified two distinct clusters of countries with opposite dietary patterns. Our analysis explored not only major food product categories essential for healthy living but also superfluous foods (i.e., discretionary) to provide a broader understanding of dietary habits. In particular, our results show that countries reducing consumption of animal-based foods also exhibit a reduction in consumption of discretionary products, such as alcoholic beverages and soft drinks, highlighting opportunities for synergies between environmental and health policies. This research provides valuable insights for policymakers and stakeholders aiming to promote the uptake of healthy and sustainable diets and supports the development of targeted strategies to support the transition towards more environmentally friendly and healthy food systems. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

18 pages, 798 KB  
Article
The Impact of Nut-Based Plant Beverages on Wheat Bread Quality: A Study of Almond, Hazelnut, and Walnut Beverages
by Anna Wirkijowska, Dorota Teterycz and Piotr Zarzycki
Appl. Sci. 2025, 15(16), 8821; https://doi.org/10.3390/app15168821 - 10 Aug 2025
Viewed by 431
Abstract
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen [...] Read more.
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen bread variants, including a control, were produced using the straight dough method. The impact of substitution on dough performance, crumb structure, texture, color, physicochemical composition, and sensory attributes was evaluated. All nut beverages improved bread yield, with BA100 and BW100 showing the highest values. Crumb moisture was well retained, and baking losses were reduced in some high-substitution variants. Medium-sized pores (0.1–0.9 mm2) dominated crumb structure, particularly in almond-enriched breads, which contributed to desirable loaf volume and crumb elasticity. Walnut beverage significantly darkened the crumb due to natural pigments, while BA and BH maintained lighter tones and enhanced yellowness. Nut-based beverages increased ash and fat content, with BW breads showing the highest caloric values—mainly due to beneficial unsaturated fats. Sensory evaluation confirmed high consumer acceptability, with the highest ratings observed for breads containing 100% walnut and 50–75% almond beverage. These variants demonstrated the most favorable balance of technological performance and nutritional enhancement, underscoring their potential as optimal formulations for clean-label, plant-based bread products. Full article
Show Figures

Figure 1

16 pages, 2097 KB  
Article
Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice
by Di Yuan, Shan Zhang, Bin Hong, Shan Shan, Jingyi Zhang, Dixin Sha, Shiwei Gao, Qing Liu, Shuwen Lu and Chuanying Ren
Foods 2025, 14(15), 2733; https://doi.org/10.3390/foods14152733 - 5 Aug 2025
Viewed by 486
Abstract
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. [...] Read more.
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. Sequential enzymatic liquefaction and saccharification were optimized to generate a suitable hydrolysate. Screening of 13 probiotic strains revealed that a 10-strain Lactobacillus–Bifidobacterium consortium maximized GABA synthesis (12.2 mg/100 g). Fermentation parameters were optimized to 0.25% monosodium glutamate, 4% inoculum, 10 μmol/L pyridoxine hydrochloride, 37 °C, and 24 h. The resulting beverage achieved significantly elevated GABA concentrations while exhibiting low fat (0.2 g/100 g), reduced caloric content (233.6 kJ/100 g), and high viable probiotic counts (2 × 108 CFU/g). This strategy demonstrates significant potential for the scalable production of multifunctional, plant-based nutraceuticals with targeted bioactive components. Full article
Show Figures

Figure 1

17 pages, 1189 KB  
Article
Mixture Design and Kano Model for a Functional Chickpea and Hibiscus Beverage
by Fernando López-Cardoso, Nayely Leyva-López, Erick Paul Gutiérrez-Grijalva, Rosabel Vélez de la Rocha, Luis Angel Cabanillas-Bojórquez, Josué Camberos-Barraza, Feliznando Isidro Cárdenas-Torres and José Basilio Heredia
Beverages 2025, 11(4), 112; https://doi.org/10.3390/beverages11040112 - 4 Aug 2025
Viewed by 531
Abstract
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize [...] Read more.
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize flavor sensory acceptance, antioxidant capacity, and anthocyanin content using a mixture design and characterize the optimal formulation. An extreme vertices mixture design was employed, with fixed proportions of chickpea beverage (66.5%) and inulin (2%), while varying the proportions of hibiscus decoction, monk fruit, and cinnamon powder. Additionally, the Kano model was used to classify the beverage’s attributes. The optimized formulation consisted of 31.41% hibiscus decoction, 0.48% monk fruit, and 0.61% cinnamon powder, achieving 329.2 µmol TE/100 mL (antioxidant capacity), 3.567 mg C3GE/100 mL (anthocyanin content), and a flavor rating of 6.2. The Kano model classified good taste, functional properties, monk fruit sweetening, and chickpeas as attractive attributes, with functional properties obtaining the highest satisfaction index (0.88). These results demonstrate that employing a mixture design is an effective tool to enhance health-related aspects and consumer acceptance. Additionally, the incorporation of the Kano model provides a broader perspective on the development of functional beverages by identifying key attributes that influence product acceptance and market success. Full article
Show Figures

Figure 1

21 pages, 570 KB  
Article
The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages
by Anna Wirkijowska, Piotr Zarzycki, Dorota Teterycz and Danuta Leszczyńska
Appl. Sci. 2025, 15(15), 8428; https://doi.org/10.3390/app15158428 - 29 Jul 2025
Viewed by 453
Abstract
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional [...] Read more.
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional components that affect dough rheology and bread texture. This study examined the effects of substituting water with oat (BO), millet (BM), and spelt (BS) beverages in wheat bread formulations at 25%, 50%, 75%, and 100% levels. Thirteen bread variants were prepared: one control and four substitution levels for each of the three cereal-based beverages, using the straight dough method, with hydration adjusted according to farinograph results. Farinograph tests showed increased water absorption (up to 64.5% in BO100 vs. 56.9% in control) and improved dough stability (10.6 min in BS100). Specific bread volume increased, with BS75 reaching 3.52 cm3/g compared to 3.09 cm3/g in control. Moisture content remained stable during storage, and crumb hardness after 72 h was lowest in BO100 (9.5 N) and BS75 (11.5 N), indicating delayed staling. All bread variants received favorable sensory ratings, with average scores above 3.75 on a 5-point scale. The highest bread yield (149.8%) and lowest baking loss (10.9%) were noted for BS100. Although BO breads had slightly higher fat and energy content, their nutritional profile remained favorable due to unsaturated fatty acids. Overall, oat and spelt beverages demonstrated the greatest potential as functional water substitutes, improving dough handling, shelf-life, and sensory quality while maintaining consumer appeal. Full article
Show Figures

Graphical abstract

15 pages, 574 KB  
Article
Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages
by Tiziana Di Renzo, Antonela Guadalupe Garzón, Leonardo Pablo Sciammaro, Maria Cecilia Puppo, Silvina Rosa Drago and Anna Reale
Fermentation 2025, 11(8), 429; https://doi.org/10.3390/fermentation11080429 - 26 Jul 2025
Viewed by 583
Abstract
The study aimed to evaluate how different production methods and fermentation processes using two different lactic acid bacteria (LAB) affect the chemical composition and bioactive properties of pistachio beverages. The beverages were prepared with two varieties of pistachios, one from Argentina and the [...] Read more.
The study aimed to evaluate how different production methods and fermentation processes using two different lactic acid bacteria (LAB) affect the chemical composition and bioactive properties of pistachio beverages. The beverages were prepared with two varieties of pistachios, one from Argentina and the other from Italy. The pistachios were processed with two technologies: a domestic processor and a colloidal mill. For the fermentation, pistachio beverages were inoculated with two different LAB strains and incubated at 28 °C for 24 h. The beverages were analyzed for proximal composition (including protein, fat, fiber, and minerals) and bioactive properties such as antioxidant activity, angiotensin-converting enzyme inhibition (ACE-I), and dipeptidyl peptidase-4 inhibition (DPP-4). The colloidal milling allowed the inclusion of the whole pistachio nut, resulting in beverages with higher solid content and no waste. Beverages treated with colloidal milling exhibited higher acidity, improved microbial fermentation performance, and generally showed higher bioactivity compared to those obtained by the domestic processor. Bioactivity varied according to the pistachio variety, the processing method and LAB strains used. Lactic acid bacteria fermentation decreased antioxidant properties of the beverages by ~40% but improved anti-hypertensive and hypoglycaemic activities. Fermented pistachio-based beverages showed promising health-promoting properties, indicating their potential as functional foods. Full article
(This article belongs to the Special Issue Lactic Acid Bacteria: Fermentation)
Show Figures

Figure 1

25 pages, 1677 KB  
Article
Effect of Homogenization and Pectin on Chemical, Textural, Antioxidant and Sensory Characteristics of L. bulgaricus-Fermented Oat-Based Product
by Dmitrii V. Khrundin and Elena V. Nikitina
Foods 2025, 14(15), 2615; https://doi.org/10.3390/foods14152615 - 25 Jul 2025
Viewed by 290
Abstract
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the [...] Read more.
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the addition of 1% pectin on oat-based beverages fermented with Lactobacillus delbrueckii subsp. bulgaricus were evaluated in this study. The samples were evaluated for a number of characteristics, including physicochemical, rheological, antioxidant and sensory properties. After 6 h fermentation, pectin-containing samples showed a statistically significant decrease in pH (to 3.91) and an increase in titratable acidity (to 92 °T). Homogenization and the addition of pectin were found to significantly increase viscosity (by 1.5–2 times) and water-holding capacity (by 2 times) while reducing syneresis by 96%. The antioxidant activity of L. bulgaricus-fermented samples increased significantly: the radical scavenging activity (RSA) and OH-radical inhibition increased by 40–60%, depending on the treatment. Extractable polysaccharides (PSs) inhibited lipase and glucosidase by 90% and 85%, respectively; significantly higher inhibition was observed in the fermented and pectin-containing groups. Sensory evaluation showed that the homogenized, pectin-enriched samples (Homog+) scored highest for consistency (4.5 ± 0.2), texture (4.9 ± 0.2), and overall acceptability (4.8 ± 0.2); these scores were all statistically higher than those for the untreated samples. These results suggest that combining enzymatic hydrolysis, homogenization and fermentation with L. bulgaricus significantly improves the structural, functional and sensory properties of oat-based beverages, providing a promising approach to producing high-quality, functional non-dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 3376 KB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 566
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

25 pages, 2613 KB  
Article
Design and Optimization of a Plant-Based Synbiotic Beverage from Sprouted Buckwheat: A Multi-Response Approach for Enhancing Functional Properties
by Caterina Nela Dumitru, Camelia Vizireanu, Gabriela Elena Bahrim, Rodica Mihaela Dinica, Mariana Lupoae, Alina Oana Dumitru and Tudor Vladimir Gurau
Beverages 2025, 11(4), 104; https://doi.org/10.3390/beverages11040104 - 17 Jul 2025
Viewed by 658
Abstract
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This [...] Read more.
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This study aimed to optimize the fermentation process of a plant-based beverage composed of germinated buckwheat, honey, inulin, and Lactiplantibacillus plantarum (Lpb. plantarum), using Box–Behnken experimental design (BBD) and Response Surface Methodology (RSM) tools. The influence of three independent variables (inulin, honey, and inoculum concentration) was evaluated on five key response variables: total polyphenol content, flavonoid content, antioxidant activity (RSA%), pH, and starter culture viability. The optimal formulation—comprising 3% inulin, 10% honey, and 6.97 mg/100 mL inoculum—demonstrated functional stability over 21 days of refrigerated storage (4 °C), maintaining high levels of antioxidants and probiotic viability in the fermented beverage. Kinetic analysis of the fermentation process confirmed the intense metabolic activity of Lpb. plantarum, as evidenced by a decrease in pH, active consumption of reducing sugars, and organic acids accumulation. Full article
Show Figures

Figure 1

Back to TopTop