Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,931)

Search Parameters:
Keywords = plantation forests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1186 KB  
Article
Response of Depth-Stratified Soil Quality to Land-Use Conversion and Its Limiting Factors in Tropical Ecosystems
by Yanmin Li, Tianqi Zhang and Shihang Wang
Land 2025, 14(10), 2010; https://doi.org/10.3390/land14102010 - 7 Oct 2025
Abstract
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing [...] Read more.
Land degradation is known to alter soil properties and quality; however, its depth-dependent effects across contrasting land-use types and the key factors limiting soil recovery remain poorly quantified in tropical ecosystems. This study established a forest degradation gradient on Hainan Island, China, encompassing mature forest, secondary forest, rubber plantation, and areca plantation. Soil physical (e.g., bulk density, porosity, water content, field capacity) and chemical (e.g., organic matter, nitrogen, phosphorus, and potassium fractions) properties were measured at three depths (0–20 cm, 20–40 cm, and 40–60 cm). A soil quality index (SQI) was constructed using principal component analysis, and obstacle degree modeling was applied to identify major limiting factors. The results showed that degradation of mature forests significantly reduced topsoil (0–20 cm) quality regardless of subsequent land-use type. In contrast, changes in medium (20–40 cm) and deep (40–60 cm) soil quality were land-use dependent. Conversion to secondary forests and areca plantations resulted in negligible effects, whereas transformation into rubber plantations significantly enhanced soil quality at medium and deep depths. Obstacle degree analysis identified available phosphorus, rather than nitrogen, as the primary limiting factor for soil quality in the region, accounting for 39.7% of all limitations across land-use types. This study demonstrates that the effects of tropical forest degradation on soil quality exhibit dual dependence on both soil depth and land-use type in tropical settings. Furthermore, it highlights the essential role of available phosphorus management in guiding soil restoration and sustainable land-use strategies in these vulnerable ecosystems. Full article
(This article belongs to the Special Issue Land Resource Use Efficiency and Sustainable Land Use)
30 pages, 88126 KB  
Article
Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam
by Nastasia Lineva, Roman Gorbunov, Ekaterina Kashirina, Tatiana Gorbunova, Polina Drygval, Cam Nhung Pham, Andrey Kuznetsov, Svetlana Kuznetsova, Dang Hoi Nguyen, Vu Anh Tu Dinh, Trung Dung Ngo, Thanh Dat Ngo and Ekaterina Chuprina
Land 2025, 14(10), 2003; https://doi.org/10.3390/land14102003 - 6 Oct 2025
Abstract
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park [...] Read more.
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park and the Ma Da Forest) using remote sensing (Landsat and others) and geographic information system methods. The analysis is based on changes in the Enhanced Vegetation Index (EVI), land cover transformations, landscape metrics (Class area, Percentage of Landscape and others), and natural landscape fragmentation, as well as a spatio-temporal assessment of anthropogenic impacts on the area. The results revealed structural changes in the landscapes of the Dong Nai Biosphere Reserve between 2000 and 2024. According to Sen’s slope estimates, a generally EVI growth was observed in both the core and buffer zones of the reserve. This trend was evident in forested areas as well as in regions of the buffer zone that were previously occupied by highly productive agricultural land. An analysis of Environmental Systems Research Institute (ESRI) Land Cover and Land Cover Climate Change Initiative (CCI) data confirms the relative stability of land cover in the core zone, while anthropogenic pressure has increased due to the expansion of agricultural lands, mosaic landscapes, and urban development. The calculation of landscape metrics revealed the growing isolation of natural forests and the dominance of artificial plantations, forming transitional zones between natural and anthropogenically modified landscapes. The human disturbance index, calculated for the years 2000 and 2024, shows only a slight change in the average value across the territory. However, the coefficient of variation increased significantly by 2024, indicating a localized rise in anthropogenic pressure within the buffer zone, while a reduction was observed in the core zone. The practical significance of the results obtained lies in the possibility of their use for the management of the Dongnai biosphere Reserve based on a differentiated approach: for the core and the buffer zone. There should be a ban on agriculture and development in the core zone, and restrictions on urbanized areas in the buffer zone. Full article
Show Figures

Figure 1

13 pages, 5844 KB  
Article
Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics
by Yang Guo, Xunzhi Ouyang, Ping Pan, Jun Liu and Chang Liu
Forests 2025, 16(10), 1543; https://doi.org/10.3390/f16101543 - 5 Oct 2025
Abstract
Clarifying the role of density regulation in different stand types of Chinese fir (Cunninghamia lanceolata) is beneficial for sustainable management. Stand density management diagrams (SDMDs) can help in simulating thinning, regulating stand structure, and balancing timber yield. This study, conducted in [...] Read more.
Clarifying the role of density regulation in different stand types of Chinese fir (Cunninghamia lanceolata) is beneficial for sustainable management. Stand density management diagrams (SDMDs) can help in simulating thinning, regulating stand structure, and balancing timber yield. This study, conducted in Ganzhou City, a mid-subtropical region of China, used second-class forest resource survey plots dominated by Chinese fir, including 541 Chinese fir pure stands, 232 Chinese fir-conifer mixed stands, and 351 Chinese fir-broadleaf mixed stands. Equations for self-thinning, dominant height, and stand volume were constructed, and the SDMDs were subsequently developed to simulate two management scenarios: self-thinning and thinning. The results indicate that self-thinning relationships differ among Chinese fir stand types and that appropriate thinning can improve stand growth. Mixed stands, particularly Chinese fir–broadleaf mixed stands, showed greater growth potential at later stages, highlighting the role of species mixing in reducing competition and enhancing resource-use efficiency. The SDMDs developed in this study provide a practical tool for density regulation and silvicultural planning in Chinese fir plantations. However, being based on regional-scale growth models, the results mainly reflect regional conditions and should be further validated with long-term experiments. Full article
Show Figures

Figure 1

23 pages, 15968 KB  
Article
YOLOv8n-RMB: UAV Imagery Rubber Milk Bowl Detection Model for Autonomous Robots’ Natural Latex Harvest
by Yunfan Wang, Lin Yang, Pengze Zhong, Xin Yang, Chuanchuan Su, Yi Zhang and Aamir Hussain
Agriculture 2025, 15(19), 2075; https://doi.org/10.3390/agriculture15192075 - 3 Oct 2025
Abstract
Natural latex harvest is pushing the boundaries of unmanned agricultural production in rubber milk collection via integrated robots in hilly and mountainous regions, such as the fixed and mobile tapping robots widely deployed in forests. As there are bad working conditions and complex [...] Read more.
Natural latex harvest is pushing the boundaries of unmanned agricultural production in rubber milk collection via integrated robots in hilly and mountainous regions, such as the fixed and mobile tapping robots widely deployed in forests. As there are bad working conditions and complex natural environments surrounding rubber trees, the real-time and precision assessment of rubber milk yield status has emerged as a key requirement for improving the efficiency and autonomous management of these kinds of large-scale automatic tapping robots. However, traditional manual rubber milk yield status detection methods are limited in their ability to operate effectively under conditions involving complex terrain, dense forest backgrounds, irregular surface geometries of rubber milk, and the frequent occlusion of rubber milk bowls (RMBs) by vegetation. To address this issue, this study presents an unmanned aerial vehicle (UAV) imagery rubber milk yield state detection method, termed YOLOv8n-RMB, in unstructured field environments instead of manual watching. The proposed method improved the original YOLOv8n by integrating structural enhancements across the backbone, neck, and head components of the network. First, a receptive field attention convolution (RFACONV) module is embedded within the backbone to improve the model’s ability to extract target-relevant features in visually complex environments. Second, within the neck structure, a bidirectional feature pyramid network (BiFPN) is applied to strengthen the fusion of features across multiple spatial scales. Third, in the head, a content-aware dynamic upsampling module of DySample is adopted to enhance the reconstruction of spatial details and the preservation of object boundaries. Finally, the detection framework is integrated with the BoT-SORT tracking algorithm to achieve continuous multi-object association and dynamic state monitoring based on the filling status of RMBs. Experimental evaluation shows that the proposed YOLOv8n-RMB model achieves an AP@0.5 of 94.9%, an AP@0.5:0.95 of 89.7%, a precision of 91.3%, and a recall of 91.9%. Moreover, the performance improves by 2.7%, 2.9%, 3.9%, and 9.7%, compared with the original YOLOv8n. Plus, the total number of parameters is kept within 3.0 million, and the computational cost is limited to 8.3 GFLOPs. This model meets the requirements of yield assessment tasks by conducting computations in resource-limited environments for both fixed and mobile tapping robots in rubber plantations. Full article
(This article belongs to the Special Issue Plant Diagnosis and Monitoring for Agricultural Production)
Show Figures

Figure 1

15 pages, 3212 KB  
Article
Soil Microbial Communities Significantly Changed Along Stand Ages in Masson Pine (Pinus massoniana Lamb.) Plantation
by Weijun Fu, Bingyi Wang, Dunzhu Li and Yong Zhang
Plants 2025, 14(19), 3004; https://doi.org/10.3390/plants14193004 - 28 Sep 2025
Abstract
Soil microbial communities are important for nutrient cycling regulation in forest ecosystems. However, limited knowledge exists regarding the characteristics of these microbial communities in Masson pine (Pinus massoniana Lamb.) plantations of different stand ages. In this study, four planted Masson pine stands [...] Read more.
Soil microbial communities are important for nutrient cycling regulation in forest ecosystems. However, limited knowledge exists regarding the characteristics of these microbial communities in Masson pine (Pinus massoniana Lamb.) plantations of different stand ages. In this study, four planted Masson pine stands (8-year-old, 12-year-old, 22-year-old, and 38-year-old stands) and one natural broadleaved forest stand (as a control) with three replications, were selected in the Laoshan Forest Farm, Qiandao Lake Town, Zhejiang Province, China. Soil physicochemical properties were measured and their effects on soil microbial communities were studied. Amplicon-based high-throughput sequencing was employed to process raw sequence data for soil microbes. It is worth noting that significant differences (p < 0.05) in soil bacterial genera were observed among different stand age groups. Total nitrogen (TN), total phosphorus (TP), total potassium (TK), available potassium (AK), soil organic carbon (SOC), and soil bulk density (BD) were identified as the primary factors influencing bacterial community distribution (p < 0.05). Available nitrogen (AN), SOC, TN, and TK showed significant correlations with soil fungal communities (p < 0.05). These findings underscore the crucial role of soil physicochemical properties in shaping soil microbial community composition in Masson pine plantations. Full article
Show Figures

Figure 1

18 pages, 5624 KB  
Article
Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China
by Xiaoyan Wang, Ru Wang, Liguo Liao, Bijia Zhang, Jia Yang, Wencheng Peng, Fangneng Lin, Xin Li, Shiqin Mo, Tengmin Li and Jinrui Lei
Forests 2025, 16(10), 1522; https://doi.org/10.3390/f16101522 - 28 Sep 2025
Abstract
In tropical regions, the establishment of large-scale exotic plantations has addressed the demand for timber resources but has also disrupted the structural stability of native vegetation and altered soil nutrient cycling, thereby impairing ecosystem functions. Identifying effective restoration strategies for these plantations is [...] Read more.
In tropical regions, the establishment of large-scale exotic plantations has addressed the demand for timber resources but has also disrupted the structural stability of native vegetation and altered soil nutrient cycling, thereby impairing ecosystem functions. Identifying effective restoration strategies for these plantations is crucial for sustainable forest management and ecological security. This study examined Acacia mangium Willd., Cunninghamia lanceolata (Lamb.) Hook., and Pinus caribaea Morelet. plantations in Hainan Tropical Rainforest National Park under three treatments: plantation control, girdling, and natural secondary forest. Vegetation surveys and soil analyses were conducted to explore the relationships between community structure, soil physicochemical properties, and enzyme activities. Diversity indices, Pearson correlations, and redundancy analysis were used to assess plant–soil relationships. The results showed that girdling significantly accelerated succession in C. lanceolata and P. caribaea plantations, increased species diversity, and enhanced the dominance of native species. Shrub-layer diversity indices (Hshrub, Dshrub, Eshrub) were the main drivers of soil properties and enzyme activities, while tree-layer effects were weaker. Girdling regulated soil nutrients and biological activity primarily via changes in community structure. These findings highlight the importance of optimizing shrub-layer structure and enhancing diversity for tropical plantation restoration. Combining forest type conversion with moderate interventions can promote coordinated plant–soil development over time. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3745 KB  
Article
Differences in Soil Solution Chemistry and Their Vertical Variation Between Moso Bamboo Forests and Japanese Cedar Plantations in Western Japan
by Dongchuan Fu and Masaaki Chiwa
Forests 2025, 16(10), 1519; https://doi.org/10.3390/f16101519 - 26 Sep 2025
Abstract
Bamboo invasion into adjacent forests highlights the need to clarify its ecological impacts, particularly on soil solution chemistry, which influences forest nutrient availability and downstream water quality. This study examined how bamboo invasion alters base cations and anion concentrations, their vertical distribution, and [...] Read more.
Bamboo invasion into adjacent forests highlights the need to clarify its ecological impacts, particularly on soil solution chemistry, which influences forest nutrient availability and downstream water quality. This study examined how bamboo invasion alters base cations and anion concentrations, their vertical distribution, and the distinct ionic compositions maintaining charge balance in soil solution by comparing Moso bamboo (BF) and adjacent Japanese cedar (CF) forests. In surface soil solution (5 cm), most ion concentrations were significantly higher in CF than in BF, likely attributable to a greater interception of atmospheric nitrogen resulting from taller tree height in CF. In vertical distribution, CF showed generally higher ion concentrations in surface soil solution than at 50 cm, whereas in BF, this phenomenon was observed only for NO3, NH4+, and K+, consistent with bamboo’s high demand for macronutrients. Significant correlations between the concentration of NO3 and those of Ca2+ and Mg2+ were absent only in BF soil leachate. Conversely, a deficit of strong anions showed a significant correlation with the concentration of Ca2+ and Mg2+ in BF soil leachate, with HCO3 identified as a potentially major component. Our findings provide insights into the concomitant-ion relationships between base cations and NO3 across forest types and soil depths. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3181 KB  
Article
Linking Morphological Traits of Fine Root to Soil CO2 Efflux in Middle-Aged Plantations of Four Tree Species
by Seung Won Lim, Kyu Hong Song, Ji Won Jang, Se Hee Lee, Namin Koo, Sukwoo Kim and Nam Jin Noh
Forests 2025, 16(10), 1513; https://doi.org/10.3390/f16101513 - 25 Sep 2025
Abstract
Understanding belowground carbon dynamics is essential for predicting the carbon balance of forest ecosystems. This study aimed to investigate links between soil CO2 efflux (RS), soil physicochemical properties, and fine-root morphology across four middle-aged plantations of different species (Robinia [...] Read more.
Understanding belowground carbon dynamics is essential for predicting the carbon balance of forest ecosystems. This study aimed to investigate links between soil CO2 efflux (RS), soil physicochemical properties, and fine-root morphology across four middle-aged plantations of different species (Robinia pseudoacacia, Quercus mongolica, Pinus koraiensis, and Metasequoia glyptostroboides) in Mt. Ansan, Seoul, Republic of Korea. Seasonal measurements of RS, soil temperature (TS), and soil water content (SWC) were conducted, and soils and fine roots (≤2.0 mm) were analyzed for physicochemical properties and morphological traits, with a focus on very-fine roots (≤0.5 mm). The results showed that RS was positively correlated with TS (r = 0.77) and negatively with SWC (r = −0.33). RS normalized at 25 °C (R25), differed significantly among plantations, and exhibited strong positive correlations with electrical conductivity (r = 0.81), as well as with total nitrogen and carbon concentrations and clay content. Among fine root traits, the length, surface area, and volume of very-fine roots exhibited the strongest associations with R25, underscoring their pivotal role in regulating belowground respiration. These findings suggest that species-specific fine root strategies and soil conditions jointly control RS dynamics, particularly under warmer conditions, and highlight very-fine root traits as key indicators of soil carbon flux in forest ecosystems. Full article
Show Figures

Figure 1

15 pages, 6592 KB  
Article
Longleaf Pine Growth Divergence Increases over Time Across Its Geographic Range
by Xiongwen Chen, John L. Willis and David C. Clabo
Forests 2025, 16(10), 1512; https://doi.org/10.3390/f16101512 - 25 Sep 2025
Abstract
The “divergence problem” in recent decades is a tendency for trees in high latitudes to lose climate sensitivity. Growth divergence has been reported for certain tree species in alpine or northern latitude locations but has yet to be found in species with southern [...] Read more.
The “divergence problem” in recent decades is a tendency for trees in high latitudes to lose climate sensitivity. Growth divergence has been reported for certain tree species in alpine or northern latitude locations but has yet to be found in species with southern distributions. This retrospective study used tree ring data collected from longleaf pine trees (Pinus palustris Mill.) in natural stands and a young plantation to test whether divergence exists in this important southeastern tree species. Our results demonstrate that a growth divergence in basal area increment (BAI) occurred among individual longleaf pines within stands. The BAI of each tree followed Taylor’s law but with differing exponents, which varied from 0.75 to 6.4. Divergence of BAI among trees increased with time, and it might be related to the local drought, as the highest BAI divergence occurred when the SPEI (standardized precipitation-evapotranspiration index) was approximately 0 (−0.3–0.3). Hourly dendrometer measurements confirmed growth divergence among individuals. Collectively, our study provides new information about the growth characteristics of longleaf pine, which may partially explain how this species persists and thrives in southeastern environments. Our current management strategy on longleaf pine forests, such as prescribed burning and genetics improvement efforts, needs to be adapted. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

19 pages, 1994 KB  
Article
Comparison of Plantation Arrangements and Naturally Regenerating Mixed-Conifer Stands After a High-Severity Fire in the Sierra Nevada
by Iris Allen, Sophan Chhin, Jianwei Zhang and Michael Premer
Forests 2025, 16(10), 1506; https://doi.org/10.3390/f16101506 - 23 Sep 2025
Viewed by 124
Abstract
A sharp escalation in wildfire frequency, severity, and scale in the western United States calls for the creation of forests that are resilient in the future. One reforestation method involves clustering trees into groups of two to four, instead of creating evenly spaced [...] Read more.
A sharp escalation in wildfire frequency, severity, and scale in the western United States calls for the creation of forests that are resilient in the future. One reforestation method involves clustering trees into groups of two to four, instead of creating evenly spaced plantations, in an effort to increase structural heterogeneity and emulate natural regeneration patterns. There have been a limited number of studies on clustered plantations, and this study addresses this important research gap. In Eldorado National Forest in the Sierra Nevada, we compared growth and structure in several post-fire plantations, treated with and without pre-commercial thinning (PCT), and naturally regenerating stands. Using mixed-effects models, we tested for growth and structural differences between evenly spaced and clustered plantations, as well as comparing them to stands of naturally regenerating trees. Our results indicated that diameter and height growth were generally better maintained in the plantations compared to under natural stand conditions. When considering plantation arrangement, the annual basal area increment (BAI) thinning index ([BAI after thinning − BAI before thinning]/BAI before thinning) was generally higher in evenly spaced plantations (1.03) compared to clustered plantations (0.79). While high plant diversity would be important eventually from an ecological perspective, our study suggests that during the initial phases of plantation development, lower shrub diversity could assist with plantation establishment and growth. The frequency of yellow pines was an important, positively associated factor affecting BAI and height growth, but primarily in the high-elevation region, which demonstrates a facilitative legacy effect of prior stand composition. Our study highlighted the important legacy effect of prior stand density on the growth of yellow pines, but primarily in the low-elevation region, and only when the two plantation groups were examined. The negative association suggests that a lower initial density of plantations promotes better BAI growth and height growth after PCT. These findings thus have broad implications for effective post-fire restoration of young plantations to help ensure their future resilience to both post-fire restoration and climate change adaptation and biotic (i.e., plant competition) stress factors. Full article
(This article belongs to the Special Issue Post-Fire Recovery and Monitoring of Forest Ecosystems)
Show Figures

Figure 1

21 pages, 10980 KB  
Article
Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022)
by Jiale Song, Shun Hu, Ziyong Sun, Yunquan Wang, Xun Liang, Zhuzhang Yang and Zilong Liao
Forests 2025, 16(10), 1502; https://doi.org/10.3390/f16101502 - 23 Sep 2025
Viewed by 161
Abstract
The farming-pastoral ecotone (FPE) of northern China serves as a critical ecological transition zone, in which poplar plantations significantly contribute to afforestation for large-scale ecological restoration projects. Due to concerns about sustainability, precise monitoring of the spatiotemporal dynamics of poplar plantations is needed, [...] Read more.
The farming-pastoral ecotone (FPE) of northern China serves as a critical ecological transition zone, in which poplar plantations significantly contribute to afforestation for large-scale ecological restoration projects. Due to concerns about sustainability, precise monitoring of the spatiotemporal dynamics of poplar plantations is needed, but systematic research is lacking. This study investigated the spatiotemporal dynamics of poplar plantation area and growth status from 1989 to 2022, taking the Anguli Nao watershed, a typical region in the FPE of northern China, as an example. Firstly, by utilizing satellite images and the random forest classification algorithm, the poplar plantation areas were well extracted, with a high accuracy over 93% and extremely strong consistency as demonstrated by a Kappa coefficient larger than 0.88. Significant changes in poplar plantation areas existed from 1989 to 2022, with an overall increasing trend (1989: 130.3 km2, 2002: 275.9 km2, 2013: 256.0 km2, and 2022: 289.2 km2). Furthermore, the accuracy of our extraction method significantly outperformed six widely used global land cover products, all of which failed to capture the distribution of poplar plantations (producer’s accuracy < 0.21; Kappa coefficient < 0.18). In addition, the analysis of vegetation growth status revealed large-scale degradation from 2002 to 2013, with a degradation ratio of 24.4% that further increased to 31.1% by 2022, satisfying the significance test via Theisl–Sen trend analysis and the Mann–Kendall test. This study points out the uncertainty of existing land cover products and risk of poplar plantations in the FPE of northern China and provides instructive reference for similar research. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

11 pages, 548 KB  
Article
Predation Pressure on Invertebrate Sentinel Prey Depends on Distance to Forest Edge and Seasonality in Kenyan Tea (Camellia sinensis) Plantations
by Titus S. Imboma, Alfredo Venturo and Gábor L. Lövei
Insects 2025, 16(9), 988; https://doi.org/10.3390/insects16090988 - 22 Sep 2025
Viewed by 237
Abstract
Tea is a global commodity, and due to its way of preparation pesticide residues cannot be tolerated. This underlines the importance of non-chemical pest control. Kenya is the third largest global tea producer but the potential of natural enemies against tea pests is [...] Read more.
Tea is a global commodity, and due to its way of preparation pesticide residues cannot be tolerated. This underlines the importance of non-chemical pest control. Kenya is the third largest global tea producer but the potential of natural enemies against tea pests is unknown. We used artificial caterpillars made of non-drying green plasticine to quantify attack rates by predators on tea canopies at different distances from plantation edges and in the nearby native forest during the wet and dry seasons in three tea-growing mountain regions of Kenya, Kericho, Gatamaiyu and Kakamega. The artificial sentinel caterpillars were readily attacked by arthropods, birds, and sporadically by small mammals. During an exposure time of 24 h, the overall attack rate was 25.0%d−1. Natural enemy activity was higher in the dry (35.3%d−1) than in the wet (16.7%d−1) season. The highest predation pressure was measured in the native forest (41.7%d−1) and gradually decreased with increasing distances into the tea plantation (to 8.3%d−1 at 40 m from the edge). The rate of decrease from the forest edge towards the centre of the tea plantation was steeper for birds than for arthropods, indicating that birds were more reluctant to use this habitat. The potential for natural pest control in Kenyan tea plantations is high, but planting native trees is recommended especially if bird activity inside tea plantations is to be encouraged. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

27 pages, 13116 KB  
Article
Spatial Structure Evaluation of Chinese Fir Plantation in Hilly Area of Southern China Based on UAV and Cloud Model
by Jinyan Liu, Bowen Jin, Guochang Ding, Xiang Huang and Jianwen Dong
Forests 2025, 16(9), 1483; https://doi.org/10.3390/f16091483 - 18 Sep 2025
Viewed by 244
Abstract
Chinese fir, as a crucial fast-growing tree species in the hilly regions of southern China, exhibits spatial structure characteristics that directly influence both the ecological functionality and productivity of its stands. This study focused on Chinese fir plantations in the Yangkou State-Owned Forest [...] Read more.
Chinese fir, as a crucial fast-growing tree species in the hilly regions of southern China, exhibits spatial structure characteristics that directly influence both the ecological functionality and productivity of its stands. This study focused on Chinese fir plantations in the Yangkou State-Owned Forest Farm, Fujian Province. Using UAV-LiDAR point cloud data, individual tree parameters such as height and crown width were extracted, and a DBH inversion model was constructed by integrating machine learning algorithms. Spatial structure parameters were quantified through weighted Voronoi diagrams. A comprehensive evaluation system was established based on the combined weighting method and fuzzy evaluation model to systematically analyze spatial structure characteristics and their evolutionary patterns across different age classes. The results demonstrated that growth environment indicators (openness and openness ratio) progressively declined with the stand’s age, reflecting deteriorating light conditions due to increasing canopy closure. Growth superiority (size ratio and angle competition index) exhibited a “V”-shaped trend, with the most intense competition occurring in the middle-aged stands before stabilizing in the over-mature stage. The resource utilization efficiency (uniform angle and forest layer index) showed continuous optimization, reaching optimal spatial configuration in over-mature stands. This study developed a spatial structure evaluation system for Chinese fir plantations by combining UAV data and cloud modeling, elucidating structural characteristics and developmental patterns across different growth stages, thereby providing theoretical foundations and technical support for close-to-nature management and the precision quality improvement of Chinese fir plantations. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

12 pages, 732 KB  
Article
Effects of Fruiting Plants on Frugivorous Bird Diversity Across Different Disturbed Habitats
by Yuzhen Mei, Zheng Wang and Ning Li
Diversity 2025, 17(9), 654; https://doi.org/10.3390/d17090654 - 17 Sep 2025
Viewed by 214
Abstract
Bird–plant interactions are critical for maintaining biodiversity and ecosystem function, and represent a key research focus in modern ecology. Using the line transect method, we surveyed bird diversity and collected plant trait data in four habitat types in the southern zone of Fujian’s [...] Read more.
Bird–plant interactions are critical for maintaining biodiversity and ecosystem function, and represent a key research focus in modern ecology. Using the line transect method, we surveyed bird diversity and collected plant trait data in four habitat types in the southern zone of Fujian’s Meihuashan National Nature Reserve during October–December 2021 and July–August 2022. This study investigated how plant traits (tree height, diameter at breast height (DBH), canopy density fruit amount) influence the diversity of frugivorous birds (species richness, abundance, Shannon–Wiener, Pielou, Simpson) across four disturbed habitats—villages (residential areas), bamboo forests (economic plantations), unguarded broad-leafed forests (wild forests), and nurtured broad-leafed forests (managed forests)—during both summer (breeding season) and autumn–winter (fruiting season). The key findings revealed that (1) significant correlations between plant traits and bird diversity were exclusive to the fruiting season, with no associations found in summer; (2) during autumn–winter, the key plant traits driving bird diversity varied distinctively by habitat: tree height and canopy density were paramount in villages; both habitat structure (canopy density) and fruit amount were important in bamboo forests, whereas in both broad-leafed forests, a combination of tree structure (height, DBH, canopy density) and fruit amount determined bird abundance; (3) a significant interaction between season and habitat was detected for community evenness, indicating that habitat type modulates the seasonal effects on community composition. This study underscores that in human-modified landscapes, conserving habitat structural complexity and key resource plants is crucial for sustaining frugivorous bird diversity and its ecological functions. Conservation strategies must account for seasonal dynamics to be effective. Full article
Show Figures

Figure 1

24 pages, 11317 KB  
Article
Rural Property Subdivision: Land Use Change Patterns and Water Rights Around Cerro Castillo National Park, Chilean Patagonia
by Andrés Adiego, Trace Gale, Luis Alberto Longares Aladrén, Andrea Báez-Montenegro and Ángela Hernández-Moreno
Land 2025, 14(9), 1877; https://doi.org/10.3390/land14091877 - 13 Sep 2025
Viewed by 464
Abstract
Protected areas (PAs) are increasingly exposed to anthropogenic pressures under global change scenarios, with surrounding land subdivision and land use/land cover change (LULCC) dynamics often undermining their conservation goals and intensifying demand for basic services such as water availability. This study analyzed the [...] Read more.
Protected areas (PAs) are increasingly exposed to anthropogenic pressures under global change scenarios, with surrounding land subdivision and land use/land cover change (LULCC) dynamics often undermining their conservation goals and intensifying demand for basic services such as water availability. This study analyzed the buffer zone around Cerro Castillo National Park in Chilean Patagonia to assess the evolution of rural private properties, considering their subdivision, LULCC, and legal water demand dynamics. Using cadastral records, Landsat 8 imagery, and official water rights databases, we quantified property subdivision and analyzed LULCC and water rights distribution patterns through spatial overlap analysis. Results indicate a nearly fourfold increase in subdivisions between 2011 and 2023, with 304 properties divided into 3237 units occupying 43.7% of the private land area. LULCC analysis revealed a net recovery of native forest (+10%) alongside notable increases in urban coverage (+152%) and exotic plantations (+245%). Legal water demand almost doubled, with 68% of consumptive rights concentrated in subdivided properties. These findings highlight property subdivision as an important factor influencing socioecological change in the territories that surround PAs. We argue that subdivision dynamics can serve as an early indicator for anticipating land use pressures and can complement integrated landscape-scale planning, consistent with the transformative change approaches advocated by international biodiversity frameworks. Full article
Show Figures

Figure 1

Back to TopTop