Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (691)

Search Parameters:
Keywords = plasma storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1182 KB  
Review
Modulation of Root Nitrogen Uptake Mechanisms Mediated by Beneficial Soil Microorganisms
by Francisco Albornoz and Liliana Godoy
Plants 2025, 14(17), 2729; https://doi.org/10.3390/plants14172729 - 2 Sep 2025
Viewed by 213
Abstract
A diverse array of soil microorganisms exhibit plant growth-promoting (PGP) traits, many of which enhance root growth and development. These microorganisms include various taxa of bacteria, fungi, microalgae and yeasts—some of which are currently used in biofertilizers and biostimulant formulations. Recent studies have [...] Read more.
A diverse array of soil microorganisms exhibit plant growth-promoting (PGP) traits, many of which enhance root growth and development. These microorganisms include various taxa of bacteria, fungi, microalgae and yeasts—some of which are currently used in biofertilizers and biostimulant formulations. Recent studies have begun to unravel the complex communication between plant roots and beneficial microorganisms, revealing mechanisms that modulate root nitrogen (N) uptake beyond atmospheric N2 fixation pathways. Root N uptake is tightly regulated by plants through multiple mechanisms. These include transcriptional and post-transcriptional control of plasma membrane-localized N transporters in the epidermis, endodermis, and xylem parenchyma. Additionally, N uptake efficiency is influenced by vacuolar N storage, assimilation of inorganic N into organic compounds, and the maintenance of electrochemical gradients across root cell membranes. Many of these processes are modulated by microbial signals. This review synthesizes current knowledge on how soil microorganisms influence root N uptake, with a focus on signaling molecules released by soil beneficial microbes. These signals include phytohormones, volatile organic compounds (VOCs), and various low-molecular-weight organic compounds that affect transporter expression, root architecture, and cellular homeostasis. Special attention is paid to the molecular and physiological pathways through which these microbial signals enhance plant N acquisition and overall nutrient use efficiency. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

20 pages, 2703 KB  
Article
Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2
by Hannah Bäumges, Svenja Jelinek, Heike Lange, Sandra Markmann, Emanuela Capriotti, Jan Anwar Häusser, Mai-Britt Ilse, Thomas Braulke and Torben Lübke
Cells 2025, 14(17), 1355; https://doi.org/10.3390/cells14171355 - 30 Aug 2025
Viewed by 394
Abstract
Fucose-containing glycoproteins and glycolipids broadly occur in humans as well as in many other species and are essential for a wide range of physiological processes, such as cell adhesion, fertilization, and tumor development. In humans, the cellular degradation of various fucosylated glycoconjugates depends [...] Read more.
Fucose-containing glycoproteins and glycolipids broadly occur in humans as well as in many other species and are essential for a wide range of physiological processes, such as cell adhesion, fertilization, and tumor development. In humans, the cellular degradation of various fucosylated glycoconjugates depends on the FUCA1-encoded lysosomal tissue α-L-fucosidase (FUCA1). The crucial role of FUCA1 is reflected by the severe lysosomal storage disease fucosidosis, which causes a massive accumulation of fucosylated glycans, glycolipids, and α(1,6)-fucosylated glycoasparagines. Therefore, it is reasonable to assume that FUCA1 is predominantly responsible for the degradation of fucosylated glycoconjugates, although a second, functionally uncharacterized α-L-fucosidase, the plasma α-L-fucosidase (FUCA2), is known. To investigate the impact of both fucosidases in more detail, we generated two different monoclonal antibodies as useful tools for the detection of human and murine FUCA1 and utilized a FUCA2-specific antibody to demonstrate that FUCA2 is a bona fide lysosomal protein that is sorted in a mannose 6-phosphate (M6P)-dependent manner. We then compared FUCA1 and FUCA2 upon ectopic expression and evaluated their enzyme activity profiles under various conditions. Untagged and differently tagged versions of FUCA1 exhibited α-L-fucosidase activity, while various FUCA2 derivatives, even after affinity purification, did not show any fucosidase activity against commonly used pseudo-substrates. Our findings suggest that FUCA1 and not FUCA2 is exclusively responsible for the lysosomal de-fucosylation of glycoconjugates. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Lysosomal Storage Disorders)
Show Figures

Figure 1

16 pages, 7539 KB  
Article
Dispersion of Sintered Mg-Ni-Ce Materials for Efficient Hydrogen Storage
by Nuriya Mukhamedova, Arman Miniyazov, Aisara Sabyrtayeva, Timur Tulenbergenov and Ospan Oken
Crystals 2025, 15(8), 743; https://doi.org/10.3390/cryst15080743 - 20 Aug 2025
Viewed by 390
Abstract
This paper presents the results of the effect of dispersion on the structural-phase state of the material for hydrogen storage of the Mg-Ni-Ce system. X-ray phase analysis and scanning electron microscopy studies have shown that the sequential use of mechanical synthesis and spark-plasma [...] Read more.
This paper presents the results of the effect of dispersion on the structural-phase state of the material for hydrogen storage of the Mg-Ni-Ce system. X-ray phase analysis and scanning electron microscopy studies have shown that the sequential use of mechanical synthesis and spark-plasma sintering methods ensures the formation of a stable and dense microstructure with a high content of the intermetallic phase Mg2Ni. As a result of dispersion for 1 h, the sintered material was transferred to a finely dispersed state without changing the phase composition. Increasing the duration of dispersion to 2 h led to the formation of large agglomerates and the destruction of the material structure. For the first time, the dispersion technology was applied to materials of the Mg-Ni-Ce system, pre-sintered by spark-plasma sintering. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

42 pages, 1850 KB  
Review
Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products
by Nasser Al-Habsi
Sustainability 2025, 17(16), 7491; https://doi.org/10.3390/su17167491 - 19 Aug 2025
Viewed by 993
Abstract
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation [...] Read more.
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation areas, underpinning the fruit’s importance in national food security policies and economic frameworks. The date fruit’s rich nutritional profile, encompassing carbohydrates, dietary fiber, minerals, and bioactive compounds, supports its status as a functional food with health benefits. Postharvest technologies and quality preservation strategies, including temperature-controlled storage, advanced drying, edible coatings, and emerging AI-driven monitoring systems, are critical to reducing losses and maintaining quality across diverse cultivars and maturity stages. Processing techniques such as drying, irradiation, and cold plasma distinctly influence sugar composition, texture, polyphenol retention, and sensory acceptance, with cultivar- and stage-specific responses guiding optimization efforts. The cold chain and innovative packaging solutions, including vacuum and modified atmosphere packaging, along with biopolymer-based edible coatings, enhance storage efficiency and microbial safety, though economic and practical constraints remain, especially for smallholders. Microbial contamination, a major challenge in date fruit storage and export, is addressed through integrated preservation approaches combining thermal, non-thermal, and biopreservative treatment. However, gaps in microbial safety data, mycotoxin evaluation, and regulatory harmonization hinder broader application. Date fruit derivatives such as flesh, syrup, seeds, press cake, pomace, and vinegar offer versatile functional roles across food systems. They improve nutritional value, sensory qualities, and shelf life in bakery, dairy, meat, and beverage products while supporting sustainable waste valorization. Emerging secondary derivatives like powders and extracts further expand the potential for clean-label, health-promoting applications. This comprehensive review underscores the need for multidisciplinary research and development to advance sustainable production, postharvest management, and value-added utilization of date palm fruits, fostering enhanced food security, economic benefits, and consumer health worldwide. Full article
Show Figures

Graphical abstract

18 pages, 1483 KB  
Article
Breed-Specific Responses of Rabbit Semen to Chilling Storage: Sperm Quality, Acrosome Status, and Oxidative Stress Biomarkers
by Ibtissem Boulbina, Mohammed El Amine Bekara, Hacina AinBaziz, Simona Mattioli and Cesare Castellini
Animals 2025, 15(16), 2384; https://doi.org/10.3390/ani15162384 - 14 Aug 2025
Viewed by 423
Abstract
Artificial insemination (AI) in rabbits depends largely on chilled semen storage, but the physiological responses to chilling and associated biochemical changes in seminal plasma (SP) remain poorly understood, particularly across breeds. This study aimed to compare the semen preservation capacity of Algerian local [...] Read more.
Artificial insemination (AI) in rabbits depends largely on chilled semen storage, but the physiological responses to chilling and associated biochemical changes in seminal plasma (SP) remain poorly understood, particularly across breeds. This study aimed to compare the semen preservation capacity of Algerian local population (LAP) and New Zealand White (NZW) rabbits and to explore the relationship between SP oxidative stress biomarkers and sperm traits during 72 h of chilled storage at 5 °C. Semen pools (nine/breed) were evaluated at 0, 4, 24, 48, and 72 h for motility, viability, and acrosome status. Oxidative stress markers were also assessed in the SP, including malondialdehyde (MDA), reactive oxygen metabolites (ROMs), superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). LAP sperm showed higher motility (p < 0.001) and viability (p < 0.05), particularly between 4 h and 48 h, and exhibited a lower rate of acrosome reaction (p < 0.001) from 48 h to 72 h. Lower SOD and higher CAT activity in LAP (p < 0.001), correlated with MDA and acrosome status, respectively, may reflect a more balanced antioxidant response. Lipid peroxidation did not appear to be the main factor driving sperm deterioration (p > 0.05). These results demonstrate that LAP rabbits exhibit better resilience to chilled storage compared to NZW and highlight the potential value of CAT and SOD activities as indicators of sperm resilience during chilled storage. Further studies are required to validate and extend these findings, with the aim of improving semen preservation strategies. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

14 pages, 10162 KB  
Article
Corrosion Behavior of Porcelain Enamels in Water Tank Storage
by Nicolò Mattei, Luca Benedetti and Stefano Rossi
Coatings 2025, 15(8), 934; https://doi.org/10.3390/coatings15080934 - 11 Aug 2025
Viewed by 367
Abstract
Recent updates to European Union directives on drinking water have extended safety limits to hot water, increasing the need to assess materials commonly used in water storage systems, such as porcelain enamel. This study investigates the interaction between enameled surfaces and aqueous environments, [...] Read more.
Recent updates to European Union directives on drinking water have extended safety limits to hot water, increasing the need to assess materials commonly used in water storage systems, such as porcelain enamel. This study investigates the interaction between enameled surfaces and aqueous environments, focusing on element release and microstructural alterations. The mass loss and chemical stability of the enamel were evaluated through a combination of surface characterization and Inductively Coupled Plasma (ICP) analysis. Time-resolved quantification of selected elements confirmed that all concentrations remained within EU regulatory thresholds. Additionally, the enamel was subjected to acidic and alkaline environments to explore the influence of pH on degradation mechanisms. Scanning electron microscopy (SEM) revealed that while the enamel undergoes surface-level modifications, the bulk structure remains intact. Notably, alkaline exposure had the strongest impact, dissolving needle-like calcium-rich structures and altering the surface more significantly than water or acid alone. These structures appear to facilitate localized corrosion once degraded. The correlation between surface morphology and elemental release dynamics highlights the critical role of microstructural features in determining long-term chemical resistance. Overall, the results underscore the importance of optimizing both the composition and structure of enamel coatings for applications involving prolonged contact with potable water. Full article
Show Figures

Graphical abstract

31 pages, 1732 KB  
Review
GLUT4 Trafficking and Storage Vesicles: Molecular Architecture, Regulatory Networks, and Their Disruption in Insulin Resistance
by Hana Drobiova, Ghadeer Alhamar, Rasheed Ahmad, Fahd Al-Mulla and Ashraf Al Madhoun
Int. J. Mol. Sci. 2025, 26(15), 7568; https://doi.org/10.3390/ijms26157568 - 5 Aug 2025
Viewed by 1176
Abstract
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to [...] Read more.
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to the plasma membrane. Disruption of this pathway is a hallmark of insulin resistance and a key contributor to the pathogenesis of type 2 diabetes. Recent advances have provided critical insights into both the insulin signalling cascades and the complex biogenesis, as well as the trafficking and fusion dynamics of GSVs. This review synthesizes the current understanding of the molecular mechanisms governing GSV mobilization and membrane fusion, highlighting key regulatory nodes that may become dysfunctional in metabolic disease. By elucidating these pathways, we propose new therapeutic avenues targeting GSV trafficking to improve insulin sensitivity and combat type 2 diabetes. Full article
Show Figures

Figure 1

11 pages, 3000 KB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 343
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

22 pages, 3360 KB  
Article
Effect of Atmospheric Cold Plasma Treatment on the Microorganism Growth, Diversity, and Quality of Coconut Water During Refrigerator Storage
by Lixian Zeng, Wenyue Gu, Yuanyuan Wang, Wentao Deng, Jiamei Wang and Liming Zhang
Foods 2025, 14(15), 2709; https://doi.org/10.3390/foods14152709 - 1 Aug 2025
Viewed by 474
Abstract
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower [...] Read more.
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower than the control even after 6 days of storage. Enzymatic activity analysis revealed reduced polyphenol oxidase (PPO) and peroxidase (POD) levels in treated samples. Specifically, the 12 s CP treatment resulted in the lowest antioxidant capacity values: 15.77 Fe2+/g for ferric reducing antioxidant power (FRAP), 37.15% for DPPH radical scavenging, and 39.51% for ABTS+ radical scavenging. Microbial enumeration showed that extended CP treatment effectively inhibited the growth of total viable counts, psychrophilic bacteria, lactic acid bacteria, and yeast. High-throughput sequencing identified Leuconostoc, Carnobacterium, and Lactobacillus as the dominant bacterial genera. During storage, Carnobacterium was the primary genus in the early stage, while Leuconostoc emerged as the dominant genus by the end of the storage period. In summary, CP as an effective non-thermal technology was able to maintain quality and antioxidant capacity, inhibit microbial growth, and delay the spoilage in coconut water to help extend the refrigerated shelf life of the product. Full article
Show Figures

Figure 1

10 pages, 1090 KB  
Article
Non-Thermal Plasma and Hydropriming Combined Treatment of Cucumber and Broccoli Seeds and the Effects on Germination and Seedling Characteristics After Short-Term Storage
by Pratik Doshi, Vladimír Scholtz, Josef Khun, Laura Thonová, Xiang Cai and Božena Šerá
Appl. Sci. 2025, 15(15), 8404; https://doi.org/10.3390/app15158404 - 29 Jul 2025
Viewed by 327
Abstract
The combined effect of non-thermal plasma (NTP) and hydropriming on the germination performance and seedling characteristics of specific varieties of cucumber (Cucumis sativus L.) and broccoli (Brassica oleracea var. italica Plenck.) seeds after short-term storage is reported. Seeds were treated with [...] Read more.
The combined effect of non-thermal plasma (NTP) and hydropriming on the germination performance and seedling characteristics of specific varieties of cucumber (Cucumis sativus L.) and broccoli (Brassica oleracea var. italica Plenck.) seeds after short-term storage is reported. Seeds were treated with NTP for 10 and 15 min, followed by hydropriming in distilled water for 24 h, and then stored for six months in the dark before evaluation. The treated cucumber seeds demonstrated a statistically significant enhancement in seed germination and seedling vitality indices. In contrast, broccoli seeds showed no significant improvement. The stimulatory effects observed in cucumber may be attributed to reactive oxygen and nitrogen species, which act as signaling molecules to promote stress tolerance and early growth. This study also highlights the potential of combined NTP treatment and hydropriming as a pre-sowing treatment for select crops, underscoring the need for species-specific optimization. The used, portable, and relatively inexpensive NTP device offers practical advantages for agricultural applications. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

14 pages, 2136 KB  
Article
Cold Atmospheric Plasma Treatment of Zirconia to Improve Its Bond Strength and Longevity with Dental Cement
by Yixuan Liao, ThiThuHa Phan and Qingsong Yu
Materials 2025, 18(15), 3482; https://doi.org/10.3390/ma18153482 - 24 Jul 2025
Viewed by 447
Abstract
Zirconia restoration debonding is one of the common issues in its dental applications because of its dense and chemically inert structure that is difficult to bond to. In this study, plasma treatment of zirconia was performed to improve its bond strength and longevity [...] Read more.
Zirconia restoration debonding is one of the common issues in its dental applications because of its dense and chemically inert structure that is difficult to bond to. In this study, plasma treatment of zirconia was performed to improve its bond strength and longevity with dental resin cement. Sandblasted zirconia specimens were treated using argon cold atmospheric plasmas (CAPs), followed by applying a thin layer of 10-MDP primer, dental resin cement with light curing. Micro-shear bond strength (µSBS) test results showed that 300 s of CAP treatment significantly increased the initial µSBS to 38.3 ± 5.6 MPa as compared with the 21.6 ± 7.9 MPa without CAP treatment. After 30 days of storage in 37 °C deionized (DI) water, CAP-treated zirconia specimens had 191.2% higher bond strength than the bonded specimens without plasma treatment. After 1000 cycles of thermal cycling (TC) between 5 °C and 55 °C, the CAP-treated zirconia specimens gave 30.5% higher bond strength than the bonded specimens without plasma treatment. Surface–water contact angle measurements indicated that the zirconia surface became much more hydrophilic but showed rapid hydrophobic recovery within the first hour of CAP treatment, indicating the importance of promptly applying the primer after the plasma treatment. These findings suggest that the argon CAP technique is effective in the surface preparation of zirconia for enhancing bond strength and longevity with dental cement. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Oral Rehabilitation)
Show Figures

Figure 1

23 pages, 6480 KB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 533
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 1874 KB  
Article
Influence of 50 Hz and 20 kHz Plasma Generator Frequency on Ammonia Decomposition for Hydrogen Recovery
by Michalina Perron, Mateusz Wiosna, Wojciech Gajewski, Krzysztof Krawczyk and Michał Młotek
Energies 2025, 18(14), 3841; https://doi.org/10.3390/en18143841 - 19 Jul 2025
Viewed by 365
Abstract
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient [...] Read more.
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient NH3 decomposition methods are needed to recover stored hydrogen. Plasma-assisted decomposition offers a potential solution, but high energy consumption, mainly due to inefficient power supply systems, remains a challenge. This study examines the impact of varying the driving frequency of a gliding discharge plasma system on ammonia decomposition, comparing low-frequency 50 Hz and high-frequency 20 kHz power supplies. Results show that high-frequency plasma enhances electron density and energy distribution, increasing the amount of vibrationally excited nitrogen molecules. This improves catalyst activation, leading to higher ammonia conversion and hydrogen production. Compared to the thyristor-powered system, the high-frequency system increased ammonia decomposition productivity by 30% and reduced energy consumption by 36% using a coprecipitated catalyst. These findings emphasize the importance of a plasma generator optimizing plasma-assisted ammonia decomposition and improving efficiency in hydrogen production. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

31 pages, 3964 KB  
Article
Integrase-Deficient Lentiviral Vector as a Platform for Efficient CRISPR/Cas9-Mediated Gene Editing for Mucopolysaccharidosis IVA
by Fnu Nidhi and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(14), 6616; https://doi.org/10.3390/ijms26146616 - 10 Jul 2025
Viewed by 799
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme [...] Read more.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available, they have significant limitations regarding efficacy in skeletal tissues and long-term safety, highlighting the need for more effective therapies. We evaluated a novel gene therapy approach using a dual Integrase-deficient lentiviral vector (IDLV) to deliver an expression cassette that includes human GALNS cDNA and Cas9 sgRNA, targeting the upstream region of the mouse Galns initial codon. This approach leverages the endogenous promoter to drive transgene expression. We assessed in vitro transduction, editing, and functional correction in NIH3T3 and MPS IVA mouse fibroblasts. In vivo efficacy was successfully evaluated via the facial vein injection in MPS IVA newborn mice. In vitro, this IDLV platform demonstrated supraphysiological GALNS activity in cell lysate, resulting in the normalization of KS levels. In vivo direct IDLV platform in newborn MPS IVA mice led to sustained plasma GALNS activity, reduced plasma KS, and favorable biodistribution. Partial correction of heart and bone pathology was observed, with no vector toxicity and minimal antibody responses. This dual IDLV-CRISPR/Cas9 approach effectively mediated targeted GALNS knock-in, yielding sustained enzyme activity, reduced KS storage, and partial pathological amelioration in MPS IVA mice. In conclusion, IDLVs represent an efficient, safe platform for delivering the CRISPR/Cas9 gene editing system for MPS IVA. Full article
Show Figures

Graphical abstract

22 pages, 4164 KB  
Article
Effects of Low-Temperature Plasma Treatment on Germination, Seedling Development, and Biochemical Parameters of Long-Term-Stored Seeds
by Martin Matějovič, Vladislav Čurn, Jan Kubeš, Eva Jozová, Zora Kotíková and Petra Hlásná Čepková
Agronomy 2025, 15(7), 1637; https://doi.org/10.3390/agronomy15071637 - 4 Jul 2025
Viewed by 571
Abstract
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma [...] Read more.
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma technologies can also improve germination parameters and promote the development seeds suitable for long-term storage. Seeds from four selected cultivars of wheat, oats, flax, and rapeseed stored in the gene bank for 1, 10, and 20 years were subjected to plasma treatments for 20, 25, and 30 min. The study evaluated the mean root and shoot length, root–shoot ratio, and seedling vigour index. Additionally, the malondialdehyde level, total polyphenol content, total flavonoid content, and total antioxidant capacity were analysed. Plasma treatment displayed varying effects on the morphological characteristics and antioxidant activity of the tested cultivars, which were influenced by treatment duration and cultivar. A positive effect of plasma treatment on seedling length, seedling vigour index, and root–shoot ratio was observed in flax cultivar ‘N-9/62/K3/B’ in all periods and in variants T2 and T3. Conversely, the wheat cultivar ‘Granny’ showed variable results, and the oat cultivar ‘Risto’ showed variable negative results in regards to mean root length and mean shoot length after plasma treatment. The indicators of oxidative stress and antioxidant capacity were affected in all the cultivars studied. A positive effect of plasma treatment on these indicators was observed in the wheat cultivar ‘Granny’, while flax cultivar ‘N-9/62/K3/B’ exhibited inconsistent results. While in cereals, a decrease in malondialdehyde content after plasma treatment was associated with an increase in polyphenol and flavonoid content as the treatment duration increased, small-seeded species responded somewhat differently. The rapeseed cultivar ‘Skrivenskij’ and flax cultivar ‘N-9/62/K3/B’ showed an increase in polyphenol and flavonoid content following a decrease in malondialdehyde levels. This study highlights the potential of low-temperature plasma treatment for long-term-stored seeds and its applicability to plant genetic resources. The findings emphasize the need for the further optimization of low-temperature plasma treatment conditions for different plant species and cultivars. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop