Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,085)

Search Parameters:
Keywords = plastic fiber reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1279 KB  
Article
Deteriorated Cyclic Behaviour of Corroded RC Framed Elements: A Practical Proposal for Their Modelling
by José Barradas-Hernández, Dariniel Barrera-Jiménez, Irving Ramírez-González, Franco Carpio-Santamaría, Alejandro Vargas-Colorado, Sergio Márquez-Domínguez, Rolando Salgado-Estrada, José Piña-Flores and Abigail Zamora-Hernández
Buildings 2025, 15(17), 3110; https://doi.org/10.3390/buildings15173110 - 29 Aug 2025
Abstract
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes [...] Read more.
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes a simplified numerical modelling approach to simulate the cyclic behaviour of existing RC framed structures with corrosion levels (η) below 25%. The proposed modelling employs concentrated plasticity hinges for beams and fiber sections for columns, incorporating corrosion-induced degradation through modified backbone curves and material properties based on the corrosion level of the structural element. The modelling approach was validated against experimental results from the literature; the proposed model adequately captures hysteretic energy, lateral load, and deformation capacities, with maximum errors of 11% for maximum lateral load, 12% for ultimate load, and 33% for dissipated energy in RC frames. For isolated columns, the errors were 11, 12, and 22%, respectively. In addition, a maximum difference of 7% was found in the lateral load capacity of the corroded frames associated with the Life Safety limit state. Finally, it was concluded that the proposed methodology is suitable for representing the cyclic behaviour of corroded RC columns and frames and provides engineers with a tool to evaluate the behaviour of corroded structures without resorting to complex models. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
23 pages, 818 KB  
Article
Integrating Circularity Micro-Indicators into Automotive Product Development to Evaluate Environmental Trade-Offs and Guide Sustainable Design Decisions
by Maria J. Simão, Joana Matos and Ricardo Simoes
Environments 2025, 12(9), 299; https://doi.org/10.3390/environments12090299 - 28 Aug 2025
Viewed by 175
Abstract
This study explores the integration of circular design principles into automotive product development, focusing on the environmental implications of design decisions related to geometry, material selection, and assembly methods. A case study approach was used to iteratively redesign a plastic automotive component, incorporating [...] Read more.
This study explores the integration of circular design principles into automotive product development, focusing on the environmental implications of design decisions related to geometry, material selection, and assembly methods. A case study approach was used to iteratively redesign a plastic automotive component, incorporating structural reinforcements and glass fiber (GF) to enhance performance. While these changes improved mechanical properties, they negatively impacted recyclability due to increased material heterogeneity and irreversible assembly using ultrasonic welding. Circularity performance was evaluated using the Recycling Desirability Index (RDI), Material Circularity Indicator (MCI), and circular design guidelines (CDGs). Despite achieving 20% recycled content, recyclability remained limited. Alternative design strategies—such as eliminating GF, replacing welding with mechanical fasteners, and enabling take-back systems—led to significant improvements in circularity scores. Notably, MCI analysis indicated that energy recovery pathways offered better circularity outcomes than landfilling. The findings highlight the importance of early-stage material standardization and assembly planning to enhance end-of-life recovery. This study underscores the environmental trade-offs inherent in current automotive design practices and calls for stronger collaboration between engineers, designers, and sustainability experts to align product development with circular economy goals. Findings emphasize the need for systemic changes in product development processes and industrial mindsets, including overcoming resistance to design modifications and fostering cross-departmental collaboration, to effectively implement circular economy principles in the automotive sector. Full article
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Quantifying Inter-Ply Friction and Clamping Effects via an Experimental–Numerical Framework: Advancing Non-Coherent Deformation Control of Uncured Metal–Fiber-Reinforced Polymer Laminates
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(17), 2330; https://doi.org/10.3390/polym17172330 - 28 Aug 2025
Viewed by 165
Abstract
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve [...] Read more.
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve a defect-free structural design. This study focuses on two core material behaviors of uncured laminates—inter-ply friction at metal–prepreg interfaces and out-of-plane bending—and optimizes process parameters for their non-coherent deformation. Experimental tests included double-lap sliding tests (to quantify inter-ply friction) and clamped-beam bending tests (to characterize out-of-plane bending); a double-curved dome part was designed to assess the effects of the material constituent, fiber orientation, inter-ply friction, and clamping force, with validation via finite element modeling (FEM) in Abaqus software. The results indicate that the static–kinetic friction model effectively predicts inter-ply friction behavior, with numerical friction coefficient–displacement trends closely matching experimental data. Additionally, the flexural bending model showed that greater plastic deformation in metal layers increased bending force while reducing post-unloading spring-back depth. Furthermore, for non-coherent deformation, higher clamping forces improve FRP prepreg deformation and mitigate buckling, but excessive plastic deformation raises metal cracking risk. This work helps establish a combined experimental–numerical framework for the defect prediction and process optimization of complex lightweight components, which address the core needs of modern aerospace manufacturing. Full article
Show Figures

Figure 1

14 pages, 4168 KB  
Article
Manufacturing and Recycling of 3D-Printed All-Polymer Composites
by Itsari Phuangmali, Yao Xu, Leyu Lin and Alois K. Schlarb
Recycling 2025, 10(5), 168; https://doi.org/10.3390/recycling10050168 - 26 Aug 2025
Viewed by 313
Abstract
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, [...] Read more.
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, especially with mechanical recycling processes, because the reinforcement structure is destroyed. Additionally, thermoplastics undergo molecular degradation and changes in the properties of the materials. Therefore, polymer fiber-reinforced plastics may have an advantage here, as polymer fibers are much more flexible than glass or carbon fibers. We investigated the production and recyclability of microfibrillar composites (MFCs) made of polypropylene (PP) and polyethylene terephthalate (PET). The samples were produced using extrusion-based 3D printing with different parameters, and their morphology and mechanical properties were examined. The samples were crushed, and the residue was fed back into the production line. The process was repeated with the samples produced from regenerate. The results prove that the printing process can be controlled to ensure the presence of fibers in samples made from recycled material. However, it is important to note that the mechanical properties decrease with each additional processing cycle. The choice of manufacturing parameters, especially in 3D printing, is crucial for achieving good properties. Full article
Show Figures

Figure 1

15 pages, 3116 KB  
Article
Raman Scattering for Anisotropy of Polyacrylonitrile-Based and Pitch-Based Carbon Fibers
by Kimiyoshi Naito and Chiemi Nagai
Fibers 2025, 13(9), 114; https://doi.org/10.3390/fib13090114 - 25 Aug 2025
Viewed by 217
Abstract
Polyacrylonitrile (PAN)-based and pitch-based carbon fibers exhibit significant anisotropies in the radial and axial directions. Characterizing the anisotropy of the elastic properties of PAN-based and pitch-based carbon fibers is important for carbon fiber research communities. In this present study, the Raman scattering for [...] Read more.
Polyacrylonitrile (PAN)-based and pitch-based carbon fibers exhibit significant anisotropies in the radial and axial directions. Characterizing the anisotropy of the elastic properties of PAN-based and pitch-based carbon fibers is important for carbon fiber research communities. In this present study, the Raman scattering for anisotropy of PAN-based and pitch-based carbon fiber-reinforced plastic (CFRP) samples was investigated. The Raman scattering parameters and ratios in the CFRPs with 0°, 45°, and 90° sections are related to the tensile modulus. These linear trends for the PAN-based and pitch-based CFRPs with 0°, 45°, and 90° sections intersect in the range of 400–700 GPa. The change in Raman scattering parameters and ratios of PAN-based and pitch-based carbon fibers and CFRPs with a 0° section are related to the tensile modulus. These linear trends also intersect in the range of 400–700 GPa. The intensity ratios increased with increase in the angle for each CFRPs. The intensity ratio in an arbitrary angle could be estimated using the rule of mixtures and coordinate transformation equations. The Raman anisotropic nature of PAN-based and pitch-based fibers are identified experimentally and analytically. Full article
Show Figures

Figure 1

24 pages, 43348 KB  
Article
Post-Fabrication Lamination with PP and PET Films for Improved Mechanical Performance of Injection-Molded Wood Fiber/PP Composites
by Wycliffe Ondiek, Arnaud Macadre and Koichi Goda
Eng 2025, 6(9), 204; https://doi.org/10.3390/eng6090204 - 22 Aug 2025
Viewed by 715
Abstract
This study investigates the effect of polymer film lamination on the tensile performance of wood fiber-reinforced polypropylene (WP) composites. Neat polypropylene (PP) and WP containing 25 wt% wood fiber were injection-molded and laminated with 0.1 mm PP or polyethylene terephthalate (PET) films using [...] Read more.
This study investigates the effect of polymer film lamination on the tensile performance of wood fiber-reinforced polypropylene (WP) composites. Neat polypropylene (PP) and WP containing 25 wt% wood fiber were injection-molded and laminated with 0.1 mm PP or polyethylene terephthalate (PET) films using a compatible adhesive. Four configurations were examined: unlaminated (0S), single-sided half-length (1S-H), single-sided full-length (1S-F), and double-sided full-length (2S-F). Mechanical properties and fracture morphology were characterized by uniaxial tensile tests and scanning electron microscopy (SEM), alongside measurements of surface roughness. PET lamination produced the greatest strength enhancements, with 2S-F specimens achieving gains of 12% for PP and 21% for WP, whereas PP lamination gave minimal or negative effects, except for a 5% increase in WP. Strength improvements were attributed to surface smoothing and suppression of crack initiation, as confirmed by roughness measurements and SEM observations. PET’s higher stiffness and strength accounted for its superior reinforcement relative to PP. Fractographic analysis revealed flat regions near specimen corners—interpreted as crack initiation sites—indicating that lamination delayed crack propagation. The results demonstrate that PET film lamination is an effective and practical post-processing strategy for enhancing the mechanical performance of wood–plastic composites. Full article
(This article belongs to the Topic Surface Engineering and Micro Additive Manufacturing)
Show Figures

Figure 1

22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 290
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

32 pages, 32119 KB  
Article
Experimental Study on Improving the Strength and Ductility of Prefabricated Concrete Bridge Piers Using GFRP Tube Confinement
by Hanhui Ye, Haoyang Zhou, Hehui Peng, Jiahui Ye and Zhanyu Bu
Buildings 2025, 15(17), 2981; https://doi.org/10.3390/buildings15172981 - 22 Aug 2025
Viewed by 194
Abstract
The application of precast assembled pier systems in high-seismicity regions is often constrained by their seismic performance limitations. To validate the optimization effect of GFRP confinement on the hysteretic performance of bridge piers, this study first conducted axial compression tests on 54 glass [...] Read more.
The application of precast assembled pier systems in high-seismicity regions is often constrained by their seismic performance limitations. To validate the optimization effect of GFRP confinement on the hysteretic performance of bridge piers, this study first conducted axial compression tests on 54 glass fiber-reinforced polymer (GFRP)-confined concrete cylindrical specimens. The investigation focused on the effects of fiber layers (6 and 10), orientation angles (±45°, ±60°, ±80°), slenderness ratios (2 and 4), and compression section configurations (fully loaded vs. core concrete loading only) on confinement efficacy. The experimental results demonstrate that specimens with ±60° fiber angles achieved an optimal balance between strength and ductility, exhibiting an average strength enhancement of 298.0% and a maximum axial strain of 2.7% compared to unconfined concrete. Subsequently, two GFRP tube-confined concrete bridge piers with varying fiber layers (PRCG1: 6 layers; PRCG2: 10 layers) and one unconfined reference pier (PRC) were designed and fabricated. All specimens employed grout-filled sleeves to connect caps and piers. Pseudo-static tests revealed that GFRP confinement effectively mitigated damage in plastic hinge zones and enhanced seismic performance. Compared to the PRC, PRCG1 and PRCG2 exhibited increases in ultimate displacement by 19.50% and 28.57%, in ductility coefficients by 18.56% and 27.84%, and in cumulative hysteretic energy dissipation by 13.90% and 26.43%, respectively. At the 5% drift ratio, their load capacities increased by 26.74% and 23.25%, stiffnesses improved by 28.91% and 25.51%, and residual displacements decreased by 20.89% and 11.17%. The accuracy and applicability of the GFRP tube-confined bridge pier model, developed based on the Lam–Teng model, were validated through numerical simulations using the OpenSees fiber element approach. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

52 pages, 4676 KB  
Review
Aramid Fiber-Reinforced Plastics (AFRPs) in Aerospace: A Review of Recent Advancements and Future Perspectives
by Xinning Xu, Yanbing Guo, Zhikang Shen, Boyang Liu, Fei Yan and Ning Zhong
Polymers 2025, 17(16), 2254; https://doi.org/10.3390/polym17162254 - 20 Aug 2025
Viewed by 573
Abstract
This review examines the application of aramid fiber-reinforced plastics (AFRPs) in the aerospace industry, highlighting their significance in enhancing aircraft performance. Aramid fibers, such as Kevlar® and Twaron®, have emerged as key materials due to their exceptional tensile strength, low [...] Read more.
This review examines the application of aramid fiber-reinforced plastics (AFRPs) in the aerospace industry, highlighting their significance in enhancing aircraft performance. Aramid fibers, such as Kevlar® and Twaron®, have emerged as key materials due to their exceptional tensile strength, low density, and thermal stability. However, challenges persist in manufacturing, durability, and multifunctionality. This paper evaluates the latest advancements in AFRP, focusing on how molecular structure, interfacial engineering, and manufacturing innovations influence performance. It addresses questions on improving adhesion, efficient manufacturing methods, enhancing durability under extreme conditions, and developing multifunctional AFRP. By analyzing breakthroughs from 2020 to 2025 and proposing targeted solutions, this review aims to help AFRP meet the demands of future aerospace systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

16 pages, 2789 KB  
Article
A Numerical Study on Lightning Damages and Residual Strength of CFRP Laminates Considering Delamination Induced by Thermal Stress
by Qian-Zhi Yin, Jiapeng Bian and Yin Fan
Polymers 2025, 17(16), 2245; https://doi.org/10.3390/polym17162245 - 19 Aug 2025
Viewed by 474
Abstract
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced [...] Read more.
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced damage in carbon fiber-reinforced plastic (CFRP) composites. Subsequently, parametric investigations evaluate the influence of varying input loads and stacking sequences on interlaminar pyrolysis and delamination damage, with damage assessment quantitatively conducted based on simulated post-strike uniaxial ultimate compressive loads. Post-strike uniaxial compressive strength reduction with cohesive elements is 28.91%, demonstrating closer alignment with experimental reduction (36.72%) than the 21.12% reduction predicted by the interlaminar-effect-neglecting model. Under combined thermal expansion and shockwave overpressure, the 28.91% compressive strength reduction demonstrates closer alignment with the experimental 36.72% reduction than the 25.13% reduction observed under isolated shockwave overpressure. The results highlight the critical role of thermal delamination in compressive strength reduction, with distinct waveform-dependent mechanisms: under C-waveform lightning currents, arc thermal effects cannot be neglected; D-waveform strikes exhibit predominant contributions from impact loading to delamination damage, with thermally driven delamination likewise pronounced. Increased current amplitude correlates with amplified mechanical damage severity, while premature symmetry in ply stacking sequences exacerbates compressive performance degradation. This work enhances multi-physics modeling fidelity by bridging thermal delamination and mechanical degradation pathways, offering foundational insights for optimizing lightning strike resistance in advanced aerospace composite systems. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

22 pages, 8553 KB  
Article
Research on Laser Cladding Single-Pass Continuous Carbon Fiber-Reinforced Aluminum Matrix Composite Process Based on Abaqus
by Pengtao Zhang, Xiaole Cheng, Yuanyuan Deng, Yao Peng, Meijiao Qu, Peng Ren and Teng Wang
Materials 2025, 18(16), 3859; https://doi.org/10.3390/ma18163859 - 18 Aug 2025
Viewed by 425
Abstract
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in [...] Read more.
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in Abaqus, integrating phase-dependent material properties and latent heat effects to simulate multi-physics interactions during single-track deposition, resolving transient temperature fields peaking at 1265 °C, and residual stresses across uncoated and Ni-coated fiber configurations. The work identifies an optimal parameter window characterized by laser power ranging from 700 to 800 W, scan speed of 2 mm/s, and spot radius of 3 mm that minimizes thermal distortion below 5% through gradient-controlled energy delivery, while quantitatively demonstrating nickel interlayers’ dual protective role in achieving 42% reduction in fiber degradation at 1200 °C compared to uncoated systems and enhancing interfacial load transfer efficiency by 34.7%, thereby reducing matrix tensile stresses to 159 MPa at fiber interfaces. Experimental validation confirms the model’s predictive capability, revealing nickel-coated systems exhibit superior thermal stability with temperature differentials below 12.6 °C across interfaces and mechanical interlocking, achieving interfacial void fractions under 8%. These results establish a process–structure linkage framework, advancing defect-controlled composite fabrication and providing a digital twin methodology for aerospace-grade manufacturing. Full article
Show Figures

Figure 1

26 pages, 7957 KB  
Article
Elastoplastic Modeling of Kevlar® Composite Laminates: A Cyclic Loading Approach for In-Plane Characterization
by Rene Alejandro Canceco de la Cruz, Luis Adrián Zúñiga Avilés, Gabriel Plascencia Barrera, Alberto Díaz Díaz and José Martin Herrera Ramírez
Polymers 2025, 17(16), 2235; https://doi.org/10.3390/polym17162235 - 17 Aug 2025
Viewed by 519
Abstract
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar® fibers through comprehensive in-plane tensile testing. Cyclic loading–unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on [...] Read more.
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar® fibers through comprehensive in-plane tensile testing. Cyclic loading–unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on 04, 904, and ±45s laminates. The experimental results revealed significant nonlinear hardening behavior beyond yield stress, accompanied by yarn stiffening effects during loading cycles. A novel elastoplastic constitutive model was developed, incorporating Hill’s yield criterion adapted for orthotropic materials and an isotropic hardening function that accounts for equivalent plastic strains and progressive yarn stiffening. Laminates with other stacking sequences were also tested and the accuracy of the predictions of the nonlinear behavior was assessed. In these laminates, delaminations took place and the model provided an overestimation of the stress–strain response. Since the model could not predict delamination onset and propagation, an adaptation of the model considering fully delaminated interfaces brought a lower bound of this response. Despite the limitations of the model, it can be used to provide reasonable limits to the stress–strain response of laminates accounting for plastic strains within plies. This study provides essential mechanical properties and constitutive relationships for designing Kevlar® composite structures with tailored stiffness characteristics for impact-resistant applications. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

18 pages, 1711 KB  
Article
Tensile Behavior of a Fiber-Reinforced Stabilized Soil—Cyclic Loading Frequency Study
by António A. S. Correia, Daniel S. Goulart and Paulo J. Venda Oliveira
Appl. Sci. 2025, 15(16), 8825; https://doi.org/10.3390/app15168825 - 10 Aug 2025
Viewed by 677
Abstract
The present work aims to study the effect of cyclic loading on the tensile behavior of a chemically stabilized sandy soil, whether or not reinforced with polypropylene or sisal fibers. To this end, a series of splitting tensile strength tests were carried out [...] Read more.
The present work aims to study the effect of cyclic loading on the tensile behavior of a chemically stabilized sandy soil, whether or not reinforced with polypropylene or sisal fibers. To this end, a series of splitting tensile strength tests were carried out by varying the frequency of the cyclic loading. During cyclic loading a substantial decrease in accumulated plastic axial displacement was observed with rising frequency when fibers were incorporated. On average, the reduction was 28% for polypropylene fibers and 14% for sisal fibers. For the polypropylene fibers, this effect is more pronounced because of a greater number of randomly distributed fibers, creating a strong and dense interlocking network. Regarding the load-displacement characteristics, fiber inclusion leads to a more ductile tensile response, which is identified by a secondary peak strength and residual strength. The cyclic loading frequency does not show a distinct trend concerning the post-cyclic tensile strength behavior; this behavior is dependent on the mechanical properties of materials (cemented matrix and fibers). Nevertheless, the cyclic stage resulted in an increased post-cyclic tensile strength for sisal fibers (ranging from 23% to 51%), although no clear trend was observed with respect to frequency variation. In contrast, for polypropylene fibers, the cyclic stage resulted in a more ductile tensile mechanical response, with post-cyclic tensile strength increasing from 1% to 16% as the frequency decreased. Full article
Show Figures

Figure 1

16 pages, 3557 KB  
Article
Mechanical Behavior Analysis of Polypropylene-Based Composites and a Photopolymer Resin via Tensile and Scratch Testing
by Sergiu Gabriel Pal, Viorel Goanta, Ciprian Ionut Moraras and Vlad Carlescu
Polymers 2025, 17(16), 2180; https://doi.org/10.3390/polym17162180 - 9 Aug 2025
Viewed by 304
Abstract
This study investigates the mechanical behavior of various plastic materials through tensile and scratch testing. Three polypropylene-based composites—PP-GB30GF10, PP-TD40, and PP-GF20—were subjected to uniaxial tensile tests in accordance with standard protocols to assess their strength, stiffness, and elongation characteristics. The results highlight notable [...] Read more.
This study investigates the mechanical behavior of various plastic materials through tensile and scratch testing. Three polypropylene-based composites—PP-GB30GF10, PP-TD40, and PP-GF20—were subjected to uniaxial tensile tests in accordance with standard protocols to assess their strength, stiffness, and elongation characteristics. The results highlight notable differences in the tensile performance depending on the type and percentage of reinforcing fillers, such as glass fibers and talc. In parallel, the scratch resistance was evaluated for specimens produced via stereolithography (SLA) using Formlabs Black V4 resin, a common photopolymer used in prototyping applications. The scratch test aimed to characterize the surface durability under localized mechanical stress. The findings contribute to a better understanding of the mechanical performance of these materials and their potential applications in fields requiring both structural integrity and surface resilience, such as automotive components and functional prototyping. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 4876 KB  
Article
Energy Absorption Characteristics of CFRP–Aluminum Foam Composite Structure Under High-Velocity Impact: Focusing on Varying Aspect Ratios and Relative Densities
by Jie Ren, Shujie Liu, Jiuhe Wang and Changfang Zhao
Polymers 2025, 17(15), 2162; https://doi.org/10.3390/polym17152162 - 7 Aug 2025
Viewed by 405
Abstract
This study systematically investigates the high-velocity impact response and energy absorption characteristics of carbon fiber-reinforced plastic (CFRP)—aluminum foam (AlF) hybrid composite structures, aiming to address the growing demand for lightweight yet high-performance energy-absorbing materials in aerospace and protective engineering applications. Particular emphasis is [...] Read more.
This study systematically investigates the high-velocity impact response and energy absorption characteristics of carbon fiber-reinforced plastic (CFRP)—aluminum foam (AlF) hybrid composite structures, aiming to address the growing demand for lightweight yet high-performance energy-absorbing materials in aerospace and protective engineering applications. Particular emphasis is placed on elucidating the influence of key geometric and material parameters, including the aspect ratio of the columns and the relative density of the AlF core. Experimental characterization was first performed using a split Hopkinson pressure bar (SHPB) apparatus to evaluate the dynamic compressive behavior of AlF specimens with four different relative densities (i.e., 0.163, 0.245, 0.374, and 0.437). A finite element (FE) model was then developed and rigorously validated against the experimental data, demonstrating excellent agreement in terms of deformation modes and force–displacement responses. Extensive parametric studies based on the validated FE framework revealed that the proposed CFRP-AlF composite structure achieves a balance between specific energy absorption (SEA) and peak crushing force, showing a significant improvement over conventional CFRP or AlF. The confinement effect of CFRP enables AlF to undergo progressive collapse along designated orientations, thereby endowing the CFRP-AlF composite structure with superior impact resistance. These findings provide critical insight for the design of next-generation lightweight protective structures subjected to extreme dynamic loading conditions. Full article
Show Figures

Figure 1

Back to TopTop