Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (578)

Search Parameters:
Keywords = point-to-plane measure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 624 KB  
Article
Timing Matters: A Randomized Controlled Trial Comparing Preoperative and Postoperative Erector Spinae Plane Block for Analgesia in Laparoscopic Cholecystectomy
by Mehmet Sait Acar, Veli Fahri Pehlivan, Basak Pehlivan and Erdogan Duran
Medicina 2025, 61(10), 1806; https://doi.org/10.3390/medicina61101806 - 9 Oct 2025
Abstract
Background and Objectives: The erector spinae plane block (ESPB) is an emerging regional anesthesia technique that has demonstrated effectiveness in reducing postoperative pain and opioid consumption following laparoscopic cholecystectomy (LC). However, the optimal timing of ESPB whether administered preoperatively or postoperatively remains uncertain, [...] Read more.
Background and Objectives: The erector spinae plane block (ESPB) is an emerging regional anesthesia technique that has demonstrated effectiveness in reducing postoperative pain and opioid consumption following laparoscopic cholecystectomy (LC). However, the optimal timing of ESPB whether administered preoperatively or postoperatively remains uncertain, particularly regarding its influence on intraoperative hemodynamic stability and procedural feasibility. This study aimed to compare the analgesic efficacy, intraoperative hemodynamic profiles, and procedural advantages of preoperative versus postoperative ESPB in patients undergoing elective LC. Materials and Methods: In this prospective, randomized, and single-blind clinical trial, 80 ASA I–II adult patients scheduled for elective LC were randomly assigned to receive bilateral ESPB either before anesthesia induction (Group 1) or immediately after surgery but prior to extubation (Group 2). All patients received standardized general anesthesia. The primary outcome was postoperative pain measured by the numeric rating scale (NRS) at 2 h postoperatively. Secondary outcomes included NRS scores at other time points (0, 4, 6, 12, and 24 h), intraoperative and postoperative hemodynamic parameters, cumulative 24 h rescue analgesic consumption, patient satisfaction scores, and adverse events. Results: Both groups experienced significant reductions in postoperative NRS scores, with no statistically significant differences between groups in pain intensity or tramadol consumption. However, the preoperative ESPB group exhibited significantly more stable intraoperative blood pressure readings, particularly at 30 and 60 min after incision and at extubation. No ESPB-related complications occurred in either group. Patient satisfaction levels were comparable across groups. Conclusions: Preoperative and postoperative ESPBs offer comparable analgesic efficacy and opioid sparing effects in LC. However, preoperative ESPB provides enhanced intraoperative hemodynamic stability and avoids the logistical challenges of performing blocks under anesthesia, including repositioning related risks. These findings suggest that preoperative ESPB may be considered for integration into enhanced recovery after surgery (ERAS) protocols for minimally invasive biliary surgery, pending further large-scale multicenter trials. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

24 pages, 4205 KB  
Article
Mechanism and Data-Driven Grain Condition Information Perception Method for Comprehensive Grain Storage Monitoring
by Yunshandan Wu, Ji Zhang, Xinze Li, Yaqiu Zhang, Wenfu Wu and Yan Xu
Foods 2025, 14(19), 3426; https://doi.org/10.3390/foods14193426 - 5 Oct 2025
Viewed by 200
Abstract
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation [...] Read more.
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation and external air temperature effects on silo boundaries and introduces a novel interpolation-optimized model parameter initialization technique to enable comprehensive grain condition perception. Rigorous multidimensional validation confirms the method’s accuracy: The novel initialization technique achieved high precision, demonstrating only 1.89% error in Day-2 low-temperature zone predictions (27.02 m2 measured vs. 26.52 m2 simulated). Temperature fields were accurately reconstructed (≤0.5 °C deviation in YOZ planes), capturing spatiotemporal dynamics with ≤0.45 m2 maximum low-temperature zone deviation. Cloud map comparisons showed superior simulation fidelity (SSIM > 0.97). Further analysis revealed a 22.97% reduction in total low-temperature zone area (XOZ plane), with Zone 1 (near south exterior wall) declining 27.64%, Zone 2 (center) 25.30%, and Zone 3 20.35%. For dynamic evolution patterns, high-temperature zones exhibit low moisture (<14%), while low-temperature zones retain elevated moisture (>14%). A strong positive correlation between temperature and relative humidity fields; temperature homogenization drives humidity uniformity. The framework enables holistic monitoring, providing actionable insights for smart ventilation control, condensation risk warnings, and mold prevention. It establishes a robust foundation for intelligent grain storage management, ultimately reducing post-harvest losses. Full article
Show Figures

Figure 1

25 pages, 4606 KB  
Article
Denoising and Simplification of 3D Scan Data of Damaged Aero-Engine Blades for Accurate and Efficient Rigid and Non-Rigid Registration
by Hamid Ghorbani and Farbod Khameneifar
Sensors 2025, 25(19), 6148; https://doi.org/10.3390/s25196148 - 4 Oct 2025
Viewed by 225
Abstract
Point cloud processing of raw scan data is a critical step to enhance the accuracy and efficiency in computer-aided inspection and remanufacturing of damaged aero-engine blades. This paper presents a new methodology to obtain a noise-reduced and simplified dataset from the raw scan [...] Read more.
Point cloud processing of raw scan data is a critical step to enhance the accuracy and efficiency in computer-aided inspection and remanufacturing of damaged aero-engine blades. This paper presents a new methodology to obtain a noise-reduced and simplified dataset from the raw scan data while preserving the underlying geometry of the damaged blade in high-curvature and damaged regions. At first, outliers are removed from the scan data, and measurement noise is reduced through local least-squares quadric surface/plane fitting on the adaptive support domain of measured points under the measurement uncertainty constraint of inspection data. Then, a directed Hausdorff distance-based region growing scheme is developed to progressively search within the support domain of denoised data points to obtain a down-sampled dataset while preserving the local geometric shape of the surface. Numerical and experimental case studies have been conducted to evaluate the accuracy and computation time of scan-to-CAD rigid registration and CAD-to-scan non-rigid registration processes using the down-sampled dataset of damaged blades. The results have demonstrated that the proposed methodology effectively removes the measurement noise and outliers and provides a down-sampled dataset from the scan data that can significantly reduce the time complexity of the computer-aided inspection and remanufacturing process of the point cloud of damaged blades with a negligible loss of accuracy. Full article
(This article belongs to the Special Issue Short-Range Optical 3D Scanning and 3D Data Processing)
Show Figures

Graphical abstract

29 pages, 466 KB  
Review
From Counters to Telemetry: A Survey of Programmable Network-Wide Monitoring
by Nofel Yaseen
Network 2025, 5(3), 38; https://doi.org/10.3390/network5030038 - 16 Sep 2025
Viewed by 806
Abstract
Network monitoring is becoming increasingly challenging as networks grow in scale, speed, and complexity. The evolution of monitoring approaches reflects a shift from device-centric, localized techniques toward network-wide observability enabled by modern networking paradigms. Early methods like SNMP polling and NetFlow provided basic [...] Read more.
Network monitoring is becoming increasingly challenging as networks grow in scale, speed, and complexity. The evolution of monitoring approaches reflects a shift from device-centric, localized techniques toward network-wide observability enabled by modern networking paradigms. Early methods like SNMP polling and NetFlow provided basic insights but struggled with real-time visibility in large, dynamic environments. The emergence of Software-Defined Networking (SDN) introduced centralized control and a global view of network state, opening the door to more coordinated and programmable measurement strategies. More recently, programmable data planes (e.g., P4-based switches) and in-band telemetry frameworks have allowed fine grained, line rate data collection directly from traffic, reducing overhead and latency compared to traditional polling. These developments mark a move away from single point or per flow analysis toward holistic monitoring woven throughout the network fabric. In this survey, we systematically review the state of the art in network-wide monitoring. We define key concepts (topologies, flows, telemetry, observability) and trace the progression of monitoring architectures from traditional networks to SDN to fully programmable networks. We introduce a taxonomy spanning local device measures, path level techniques, global network-wide methods, and hybrid approaches. Finally, we summarize open research challenges and future directions, highlighting that modern networks demand monitoring frameworks that are not only scalable and real-time but also tightly integrated with network control and automation. Full article
Show Figures

Figure 1

13 pages, 2763 KB  
Article
Structural Deflection Measurement with a Single Smartphone Using a New Scale Factor Calibration Method
by Long Tian, Yangxiang Yuan, Liping Yu and Xinyue Zhang
Infrastructures 2025, 10(9), 238; https://doi.org/10.3390/infrastructures10090238 - 10 Sep 2025
Viewed by 373
Abstract
This study proposes a novel structural deflection measurement method using a single smartphone with an innovative scale factor (SF) calibration technique, eliminating reliance on laser rangefinders and industrial cameras. Conventional off-axis digital image correlation (DIC) techniques require laser rangefinders to measure discrete points [...] Read more.
This study proposes a novel structural deflection measurement method using a single smartphone with an innovative scale factor (SF) calibration technique, eliminating reliance on laser rangefinders and industrial cameras. Conventional off-axis digital image correlation (DIC) techniques require laser rangefinders to measure discrete points for SF calculation, suffering from high hardware costs and sunlight-induced ranging failures. The proposed approach replaces physical ranging by deriving SF through geometric relationships of known structural dimensions (e.g., bridge length/width) within the measured plane. A key innovation lies in developing a versatile SF calibration framework adaptable to varying numbers of reference dimensions: a non-optimized calculation integrates smartphone gyroscope-measured 3D angles when only one dimension is available; a local optimization model with angular parameters enhances accuracy for 2–3 known dimensions; and a global optimization model employing spatial constraints achieves precise SF resolution with ≥4 reference dimensions. Indoor experiments demonstrated sub-0.05 m ranging accuracy and deflection errors below 0.30 mm. Field validations on Beijing Subway Line 13′s bridge successfully captured dynamic load-induced deformations, confirming outdoor applicability. This smartphone-based method reduces costs compared to traditional setups while overcoming sunlight interference, establishing a hardware-adaptive solution for vision-based structural health monitoring. Full article
Show Figures

Figure 1

24 pages, 8777 KB  
Article
Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras
by Hongxin Liu, Xuedi Chen, Chunyu Liu, Fei Xing, Peng Xie, Shuai Liu, Xun Wang, Yuxin Zhang, Weiyang Song and Yanfang Zhao
Remote Sens. 2025, 17(17), 2978; https://doi.org/10.3390/rs17172978 - 27 Aug 2025
Viewed by 626
Abstract
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this [...] Read more.
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this limitation, we, in collaboration with Tsinghua University, propose a high-precision, real-time, on-orbit geometric calibration system based on active optical monitoring. The proposed system employs reference lasers to integrate the space camera and the star tracker into a unified optical system, enabling real-time monitoring and correction of the camera’s exterior orientation parameters. However, during on-orbit operation, the space camera is subjected to a complex thermal environment, which induces thermal deformation of optical elements and their supporting structures, thereby degrading the measurement accuracy of the geometric calibration system. To address this issue, this article analyzes the impact of temperature fluctuations on the focal plane, the reference laser unit, and the laser relay folding unit and proposes athermalization design optimization schemes. Through the implementation of a thermal-compensated design for the collimation optical system, the pointing stability and divergence angle control of the reference laser are effectively enhanced. To address the thermal sensitivity of the laser relay folding unit, a right-angle cone mirror scheme is proposed, and its structural materials are optimized through thermo–mechanical–optical coupling analysis. Finite element analysis is conducted to evaluate the thermal stability of the on-orbit geometric calibration system, and the impact of temperature variations on measurement accuracy is quantified using an optical error assessment method. The results show that, under temperature fluctuations of 5 °C for the focal plane and the reference laser unit, 1 °C for the laser relay folding unit, and 2 °C for the star tracker, the maximum deviation of the system’s measurement reference does not exceed 0.57″ (3σ). This enables long-term, stable, high-precision monitoring of exterior orientation parameter variations and improves image positioning accuracy. Full article
Show Figures

Figure 1

24 pages, 6742 KB  
Article
Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods
by Kaifeng Ma, Fengtao Yan, Shiming Li, Guiping Huang, Xiaojie Jia, Feng Wang and Li Chen
Remote Sens. 2025, 17(17), 2938; https://doi.org/10.3390/rs17172938 - 24 Aug 2025
Viewed by 871
Abstract
With the rapid advancement in laser scanning technologies, the capability to collect massive volumes of data and richer detailed features has been significantly enhanced. However, the differential representation ability of multi-source point clouds in capturing intricate structures within complex scenes, combined with the [...] Read more.
With the rapid advancement in laser scanning technologies, the capability to collect massive volumes of data and richer detailed features has been significantly enhanced. However, the differential representation ability of multi-source point clouds in capturing intricate structures within complex scenes, combined with the computational burden imposed by large datasets, presents substantial challenges to current registration methods. The proposed method encompasses two innovative feature point pruning techniques and two closely interconnected progressive processes. First, it identifies structural points that effectively represent the features of the scene and performs a rapid initial alignment of point clouds within the two-dimensional plane. Subsequently, it establishes the mapping relationship between the point clouds to be matched utilizing FPFH descriptors, followed by further screening to extract the maximum consensus set composed of points that meet constraints based on the intensity of graph nodes. Then, it integrates the processes of feature point description and similarity measurement to achieve precise point cloud registration. The proposed method effectively extracts matching primitives from large datasets, addressing issues related to false matches and noise in complex data environments. It has demonstrated favorable matching results even in scenarios with low overlap between datasets. On two public datasets and a self-constructed dataset, the method achieves an effective point set screening rate of approximately 1‰. On the WHU-TLS dataset, our method achieves a registration accuracy characterized by a rotation precision of 0.062° and a translation precision of 0.027 m, representing improvements of 70% and 80%, respectively, over current state-of-the-art (SOTA) methods. The results obtained from real registration tasks demonstrate that our approach attains competitive registration accuracy when compared with existing SOTA techniques. Full article
(This article belongs to the Special Issue Point Cloud Data Analysis and Applications)
Show Figures

Figure 1

18 pages, 1810 KB  
Article
A Cone-Beam Computed Tomography Study of the Morphological and Morphometric Variations in the Mandibular Lingula and Its Clinical Implications
by Hui Wen Tay and Wei Cheong Ngeow
Diagnostics 2025, 15(16), 2071; https://doi.org/10.3390/diagnostics15162071 - 18 Aug 2025
Viewed by 569
Abstract
Background/Objectives: The mandibular lingula (ML) is a small bony projection on the medial surface of the ramus and serves as the first reference point identified during sagittal split ramus osteotomy (SSRO) or inferior alveolar nerve block (IANB). Anatomical variations in the mandibular ramus [...] Read more.
Background/Objectives: The mandibular lingula (ML) is a small bony projection on the medial surface of the ramus and serves as the first reference point identified during sagittal split ramus osteotomy (SSRO) or inferior alveolar nerve block (IANB). Anatomical variations in the mandibular ramus have been shown to exist across different populations. Understanding these population-specific differences enhances both clinical safety and diagnostic precision. However, there is a paucity of anthropological data amongst the Mongoloid population, especially in Southeast Asia. Hence, this study aimed to investigate the (i) distance of the lingula to different mandibular anatomical landmarks and its localization, (ii) lingula shape, and (iii) differences between gender and the sides of the mandible amongst the local ethnic groups. Methods: This retrospective cross-sectional study consisted of 206 cone-beam computed tomography (CBCT) images of 77 males and 129 females (mean age 33), with a total of 412 hemimandibles. Measurements were performed on three-dimensionally reconstructed CBCT images. Results: The most common shape was the truncated type. The distance of the lingula to the anterior (LiA), posterior (LiP), superior (LiS), and inferior (LiI) borders of mandible were 17.84 (2.25) mm, 14.46 (3.44) mm, 17.73 (3.00) mm, and 27.05 (4.40) mm, respectively. No significant difference exists between the sides of the mandible. Sexual dimorphism existed for all lingula measurements except LiA. Indians have smaller rami with more anteriorly and inferiorly placed ML than Malay and Chinese. The majority of ML was located 8.55 mm above the occlusal plane. Conclusions: This study provides information on the ML and its surrounding ramus structure in the local population. Such variations must be accounted for in SSRO and IANB. Full article
Show Figures

Figure 1

15 pages, 11276 KB  
Article
Influence of Casting Texture on Local Material Flow During ECAP of Commercially Pure Aluminum
by Nadja Berndt and Martin Franz-Xaver Wagner
Metals 2025, 15(8), 904; https://doi.org/10.3390/met15080904 - 14 Aug 2025
Viewed by 3043
Abstract
The plastic deformation during equal-channel angular pressing (ECAP) can be affected by various material- and processing-related factors. For instance, the initial crystal orientation and grain size play an important role in determining the material flow, which may cause localized deformation in terms of [...] Read more.
The plastic deformation during equal-channel angular pressing (ECAP) can be affected by various material- and processing-related factors. For instance, the initial crystal orientation and grain size play an important role in determining the material flow, which may cause localized deformation in terms of macroscopic deformation banding. In this study, we use a continuous cast AA1080 aluminum alloy with coarse columnar grains to analyze the influence of casting texture on the local material flow during ECAP. Billets are extracted with their columnar grains inclined either in the same direction as the ECAP shear plane or opposite to it. Visio-plastic analysis is performed on split billets. The pass is interrupted halfway through the ECAP tool to accurately capture steady-state deformation conditions. Flow lines at several positions within the billet are identified based on the positions of deformed and undeformed marker points and fitted to a phenomenological model based on a super-ellipse function. For further characterization, hardness measurements, optical and electron microscopy are carried out on the ECAP-deformed samples. Significant differences in terms of local material flow and microstructure evolution regarding the resulting crystal orientation and deformation banding are observed. Our results confirm and emphasize the importance of initial grain size and texture effects for ECAP processing. Full article
Show Figures

Graphical abstract

30 pages, 6195 KB  
Article
Digital Inspection Technology for Sheet Metal Parts Using 3D Point Clouds
by Jian Guo, Dingzhong Tan, Shizhe Guo, Zheng Chen and Rang Liu
Sensors 2025, 25(15), 4827; https://doi.org/10.3390/s25154827 - 6 Aug 2025
Viewed by 592
Abstract
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and [...] Read more.
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and the topological relationship is established by using a K-dimensional tree (KD tree). The pass-through filtering method is adopted to denoise the point cloud data. To preserve the fine features of the parts, an improved voxel grid method is proposed for the downsampling of the point cloud data. Feature points are extracted via the intrinsic shape signatures (ISS) algorithm and described using the fast point feature histograms (FPFH) algorithm. After rough registration with the sample consensus initial alignment (SAC-IA) algorithm, an initial position is provided for fine registration. The improved iterative closest point (ICP) algorithm, used for fine registration, can enhance the registration accuracy and efficiency. The greedy projection triangulation algorithm optimized by moving least squares (MLS) smoothing ensures surface smoothness and geometric accuracy. The reconstructed 3D model is projected onto a 2D plane, and the actual dimensions of the parts are calculated based on the pixel values of the sheet metal parts and the conversion scale. Experimental results show that the measurement error of this inspection system for three sheet metal workpieces ranges from 0.1416 mm to 0.2684 mm, meeting the accuracy requirement of ±0.3 mm. This method provides a reliable digital inspection solution for sheet metal parts. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

24 pages, 11545 KB  
Article
Workpiece Coordinate System Measurement for a Robotic Timber Joinery Workflow
by Francisco Quitral-Zapata, Rodrigo García-Alvarado, Alejandro Martínez-Rocamora and Luis Felipe González-Böhme
Buildings 2025, 15(15), 2712; https://doi.org/10.3390/buildings15152712 - 31 Jul 2025
Viewed by 486
Abstract
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an [...] Read more.
Robotic timber joinery demands integrated, adaptive methods to compensate for the inherent dimensional variability of wood. We introduce a seamless robotic workflow to enhance the measurement accuracy of the Workpiece Coordinate System (WCS). The approach leverages a Zivid 3D camera mounted in an eye-in-hand configuration on a KUKA industrial robot. The proposed algorithm applies a geometric method that strategically crops the point cloud and fits planes to the workpiece surfaces to define a reference frame, calculate the corresponding transformation between coordinate systems, and measure the cross-section of the workpiece. This enables reliable toolpath generation by dynamically updating WCS and effectively accommodating real-world geometric deviations in timber components. The workflow includes camera-to-robot calibration, point cloud acquisition, robust detection of workpiece features, and precise alignment of the WCS. Experimental validation confirms that the proposed method is efficient and improves milling accuracy. By dynamically identifying the workpiece geometry, the system successfully addresses challenges posed by irregular timber shapes, resulting in higher accuracy for timber joints. This method contributes to advanced manufacturing strategies in robotic timber construction and supports the processing of diverse workpiece geometries, with potential applications in civil engineering for building construction through the precise fabrication of structural timber components. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

19 pages, 3117 KB  
Article
Feasibility and Accuracy of a Dual-Function AR-Guided System for PSI Positioning and Osteotomy Execution in Pelvic Tumour Surgery: A Cadaveric Study
by Tanya Fernández-Fernández, Javier Orozco-Martínez, Carla de Gregorio-Bermejo, Elena Aguilera-Jiménez, Amaia Iribar-Zabala, Lydia Mediavilla-Santos, Javier Pascau, Mónica García-Sevilla, Rubén Pérez-Mañanes and José Antonio Calvo-Haro
Bioengineering 2025, 12(8), 810; https://doi.org/10.3390/bioengineering12080810 - 28 Jul 2025
Viewed by 584
Abstract
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) [...] Read more.
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) system for intraoperative guidance in PSI positioning and osteotomy execution using a head-mounted display (HMD). The system provides dual-function support by assisting both PSI placement and osteotomy execution. Methods: Ten fresh-frozen cadaveric hemipelves underwent AR-assisted internal hemipelvectomy, using customized 3D-printed PSIs and a new in-house AR software integrated into an HMD. Angular and translational deviations between planned and executed osteotomies were measured using postoperative CT analysis. Absolute angular errors were computed from plane normals; translational deviation was assessed as maximum error at the osteotomy corner point in both sagittal (pitch) and coronal (roll) planes. A Wilcoxon signed-rank test and Bland–Altman plots were used to assess intra-workflow cumulative error. Results: The mean absolute angular deviation was 5.11 ± 1.43°, with 86.66% of osteotomies within acceptable thresholds. Maximum pitch and roll deviations were 4.53 ± 1.32 mm and 2.79 ± 0.72 mm, respectively, with 93.33% and 100% of osteotomies meeting translational accuracy criteria. Wilcoxon analysis showed significantly lower angular error when comparing final executed planes to intermediate AR-displayed planes (p < 0.05), supporting improved PSI positioning accuracy with AR guidance. Surgeons rated the system highly (mean satisfaction ≥ 4.0) for usability and clinical utility. Conclusions: This cadaveric study confirms the feasibility and precision of an HMD-based AR system for PSI-guided pelvic osteotomies. The system demonstrated strong accuracy and high surgeon acceptance, highlighting its potential for clinical adoption in complex oncologic procedures. Full article
Show Figures

Figure 1

19 pages, 3810 KB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Cited by 1 | Viewed by 616
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

13 pages, 1088 KB  
Article
Mid-Term Recovery of Right Ventricular Function and Improvement of Left Ventricular Function After Da Silva Cone Procedure for Ebstein Anomaly
by Krithika Sundaram, Veenah Stoll, Luciana Da Fonseca Da Silva, Adam Christopher, Arvind Hoskoppal, Jacqueline Kreutzer, David Liddle, Laura Olivieri, Jacqueline Weinberg, Craig P. Dobson, José P. Da Silva and Tarek Alsaied
J. Cardiovasc. Dev. Dis. 2025, 12(7), 276; https://doi.org/10.3390/jcdd12070276 - 17 Jul 2025
Viewed by 722
Abstract
Background: The Da Silva Cone procedure for Ebstein anomaly has dramatically improved tricuspid valve competence and clinical outcomes. However, preoperative left ventricular (LV) dysfunction and immediate postoperative right ventricular (RV) systolic dysfunction are frequently observed. While excellent valve outcomes are well established, recovery [...] Read more.
Background: The Da Silva Cone procedure for Ebstein anomaly has dramatically improved tricuspid valve competence and clinical outcomes. However, preoperative left ventricular (LV) dysfunction and immediate postoperative right ventricular (RV) systolic dysfunction are frequently observed. While excellent valve outcomes are well established, recovery of biventricular function following the Cone remains less defined. This study aimed to evaluate longitudinal changes in RV and LV function postoperatively and over a minimum of six months post-Cone operation. Methods: A single center retrospective review of 134 patients who underwent Cone repair for Ebstein’s anomaly from 2016 to 2024 was performed. Echocardiograms were analyzed at three time points: preoperative (Time 1), hospital discharge (Time 2), and ≥6 months postoperative (Time 3). RV parameters included fractional area change (FAC), tricuspid annular plane systolic excursion (TAPSE), and tricuspid S′. LV parameters included left ventricular ejection fraction (LVEF), end-diastolic volume indexed to body surface area (LVEDVi), left ventricular stroke volume (LVSVi), and mitral E/E′. Subgroup analyses examined outcomes by prior Glenn, Starnes procedure, and degree of RV dilation. Paired two sample t-tests were used to compare serial measures. Results: Median age at surgery was 7.8 years (IQR: 2.3–17.7). All patients had discharge echocardiograms; 70 had follow-up studies at ≥6 months. RV function declined postoperatively with reductions in FAC (35% to 21%), TAPSE (2.0 to 0.8 cm), and S′ (13 to 5 cm/s), all p < 0.001. By Time 3, these measures improved (FAC to 29%, TAPSE to 1.3 cm, S′ to 7 cm/s) but did not fully return to baseline. LVEDVi and LVSVi increased significantly by Time 3 (LVEDVi: 47 to 54 mL/m2; LVSVi: 30 to 34 mL/m2; p < 0.001), while LVEF remained unchanged. Patients with prior Glenn or Starnes had greater Time 1 LV volumes and lower RV function, but by Time 3, most differences resolved. Moderate–severe preoperative RV dilation was associated with worse RV function at Time 2 and normalized by Time 3. Conclusions: The Da Silva Cone procedure leads to early postoperative RV dysfunction with partial recovery over the mid-term follow-up. Concurrently, LV filling and stroke volume improve, reflecting favorable interventricular interaction. These findings support echocardiographic surveillance to guide functional recovery post-Cone and inform patient counseling. Full article
Show Figures

Graphical abstract

20 pages, 4036 KB  
Article
Shell Model Reconstruction of Thin-Walled Structures from Point Clouds for Finite Element Modelling of Existing Steel Bridges
by Tomoya Nakamizo and Mayuko Nishio
Sensors 2025, 25(13), 4167; https://doi.org/10.3390/s25134167 - 4 Jul 2025
Viewed by 561
Abstract
Digital twin models utilising point cloud data have received significant attention for efficient bridge maintenance and performance assessment. There are some studies that show finite element (FE) models from point cloud data. While most of those approaches focus on modelling by solid elements, [...] Read more.
Digital twin models utilising point cloud data have received significant attention for efficient bridge maintenance and performance assessment. There are some studies that show finite element (FE) models from point cloud data. While most of those approaches focus on modelling by solid elements, modelling of some civil structures, such as bridges, requires various uses of beam and shell elements. This study proposes a systematic approach for constructing shell element FE models from point cloud data of thin-walled structural members. The proposed methodology involves k-means clustering for point cloud segmentation into individual plates, principal component analysis for neutral plane estimation, and edge detection based on normal vector variations for geometric structure determination. Validation experiments using point cloud data of a steel corner specimen revealed dimensional errors up to 5 mm and angular errors up to 6°, but static load analysis demonstrated good accuracy with maximum displacement errors within 3.8% and maximum stress errors within 7.7% compared to nominal models. Additionally, the influence of point cloud data quality on FE model geometry and analysis results was evaluated based on geometric accuracy and point cloud density metrics, revealing that significant variations in density within the same surface lead to reduced neutral plane estimation accuracy. Furthermore, toward practical application to actual bridge structures, on-site measurements and quality evaluation of point cloud data from a steel plate girder bridge were conducted. The results showed that thickness errors in the bridge data reached up to 2 mm, while surface deviation RMSE ranged from 3 to 5 mm. This research contributes to establishing practical FE modelling procedures from point cloud data and providing a model validation framework that ensures appropriate abstraction in structural analysis. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop