Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = polar low pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7431 KB  
Article
Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis
by Yajie Li, Dagui Liu, Donghan Wang, Sen Xu, Bin Ma, Yueyue Yu, Jianing Li and Yafei Li
Atmosphere 2025, 16(10), 1117; https://doi.org/10.3390/atmos16101117 - 24 Sep 2025
Viewed by 305
Abstract
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were [...] Read more.
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were identified, aligned with the “Three Mountains and Two Basins” topography: Region #1 (eastern wind-rich corridor), Region #2 (Tarim Basin, west–east increasing wind power density), Region #3 (northern valleys), and Region #4 (mountainous areas with weakest wind power density). Peaks-over-threshold analysis revealed 10~30-year return levels varying regionally, with 10-year return level for Node #1 reaching Beaufort Scale 11 but only Scale 6 for Node #4. Since 2001, EWS occurrences increased, with Nodes #2–4 showing doubled 10-year event occurrences in 2012–2023. Events exhibit consistent afternoon peaks and spring dominance (except Node #2 with summer maxima). Such long-term trends and diurnal and seasonal preferences of EWS could be partly explained by diverging synoptic drivers: orographic effects and enhanced pressure gradients (Node #1 and #3) associated with Ural blocking and polar vortex shifts, both showing intensification trends; thermal lows in the Tarim Basin (Node #2) accounting for their summer prevalence; boundary-layer instability that leads to localized wind intensification (Node #4). The results suggest the necessity of region-specific forecasting strategies for wind energy resilience. Full article
(This article belongs to the Special Issue Cutting-Edge Research in Severe Weather Forecast)
Show Figures

Figure 1

15 pages, 3333 KB  
Article
The Research on H2O Adsorption Characteristics of Lunar Regolith Simulants: Implications for the Development and Utilization of Lunar Water Resources
by Yanan Zhang, Ziheng Liu, Rongji Li, Xinyu Huang, Jiannan Li, Ye Tian, Junyue Tang, Fei Su and Huaiyu He
Water 2025, 17(18), 2777; https://doi.org/10.3390/w17182777 - 19 Sep 2025
Viewed by 335
Abstract
This study prepared an adsorption-based water-containing lunar regolith simulant under low-temperature conditions to investigate H2O behavior in simulated lunar environments. Experiments established that water binds to regolith particles via adsorption rather than existing in liquid/solid states, with critical initial pressure thresholds [...] Read more.
This study prepared an adsorption-based water-containing lunar regolith simulant under low-temperature conditions to investigate H2O behavior in simulated lunar environments. Experiments established that water binds to regolith particles via adsorption rather than existing in liquid/solid states, with critical initial pressure thresholds identified at various temperatures to ensure pure adsorption conditions. Crucially, coexisting substances extend H2O preservation to −100 °C, suggesting substantial water retention in lunar polar regolith even under extreme cold. Sublimation modeling further revealed phase transition boundaries, indicating water ice likely persists in both permanently shadowed regions and illuminated polar areas. These findings provide fundamental insights into: adsorption-driven enrichment/preservation mechanisms of lunar water, thermodynamic stability thresholds at ultralow temperatures, and water ice distribution patterns across lunar polar terrains. The data advance understanding of lunar water’s stability and extractability, offering critical scientific support for future in situ resource utilization and sustained lunar exploration. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 5645 KB  
Article
Low-Backward Radiation Circular Polarization RFID Reader Antenna Design for Sports-Event Applications
by Chia-Hung Chang, Ting-An Chang, Ming-Zhang Kuo, Tung-Ming Koo, Chung-I G. Hsu and Xinhua Wang
Electronics 2025, 14(18), 3582; https://doi.org/10.3390/electronics14183582 - 9 Sep 2025
Viewed by 673
Abstract
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna [...] Read more.
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna using an acrylic dielectric substrate with a wideband branch-line coupler feeding network is employed to improve overall radiation efficiency, which, in turn, provides two excitation port with a phase difference of 90°. Thus, right-hand circular polarization can be obtained. Instead of a conventional FR4–air–FR4 structure, the proposed FR4–acrylic–FR4 composite configuration is adopted to substantially increase the antenna’s mechanical strength and durability against external pressure from runners. The antenna’s performance is attributed to the use of an effective composite dielectric constant and an optimized design of its parameters. Additionally, the patch antenna’s low-backward radiation characteristic helps reduce multipath interference in real-world applications. The measured results are in good agreement with the simulated data, validating the proposed antenna design. In order to further assess the practical performance of the antenna, outdoor measurements are carried out to validate the estimated reading distances derived from controlled anechoic chamber tests. The measured return loss remained below −10 dB across the frequency range of 755–990 MHz, exhibiting a slight discrepancy compared to the simulated bandwidth of 800–1030 MHz. For the characteristic of the circular polarization, the measured axial ratio is below 3 dB within the range of 860–920 MHz. While a more relaxed criterion of an axial ratio below 6 dB is considered, the operating frequency range extends from 560 MHz to 985 MHz, which falls within the frequency band relevant for RFID reader applications. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 2756 KB  
Article
Triboelectric-Enhanced Piezoelectric Nanogenerator with Pressure-Processed Multi-Electrospun Fiber-Based Polymeric Layer for Wearable and Flexible Electronics
by Inkyum Kim, Jonghyeon Yun, Geunchul Kim and Daewon Kim
Polymers 2025, 17(17), 2295; https://doi.org/10.3390/polym17172295 - 25 Aug 2025
Viewed by 883
Abstract
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within [...] Read more.
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within piezoelectric materials. A multi-layer structure comprising alternating poly (vinylidene fluoride) (PVDF) and poly (hexamethylene adipamide) (PA 6/6) exhibits superior electrical performance. A lateral Janus configuration, providing distinct positive and negative triboelectric polarities, has further optimized device efficiency. This approach introduces a novel operational mechanism, enabling superior performance compared to conventional methods. The fiber-based architecture ensures exceptional flexibility, low weight, and a high surface-to-volume ratio, enabling enhanced energy harvesting. Experimentally, the PENG achieved an open-circuit voltage of 14.59 V, a short-circuit current of 205.7 nA, and a power density of 7.5 mW m−2 at a resistance of 30 MΩ with a five-layer structure subjected to post-processing under pressure. A theoretical model has mathematically elucidated the output results. Long-term durability (over 345,600 cycles) has confirmed its robustness. Demonstrations of practical applications include monitoring human joint motion and respiratory activity. These results highlight the potential of the proposed triboelectricity-enhanced PENG for vibrational energy harvesting in flexible and wearable electronic systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Graphical abstract

27 pages, 3538 KB  
Article
Novel Dual-Layer Zwitterionic Modification of Electrospun Nanofibrous Membrane for Produced Water Treatment and Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Membranes 2025, 15(8), 244; https://doi.org/10.3390/membranes15080244 - 10 Aug 2025
Viewed by 1073
Abstract
Produced water, a byproduct of oil and gas extraction, poses significant environmental challenges due to its complex composition and high salinity. Conventional treatment technologies often struggle to achieve efficient contaminant removal while maintaining long-term operational stability. Membrane-based separation processes, particularly forward osmosis (FO), [...] Read more.
Produced water, a byproduct of oil and gas extraction, poses significant environmental challenges due to its complex composition and high salinity. Conventional treatment technologies often struggle to achieve efficient contaminant removal while maintaining long-term operational stability. Membrane-based separation processes, particularly forward osmosis (FO), offer a promising alternative due to their low hydraulic pressure requirements, high selectivity, and ability to mitigate fouling and scaling effects. This study fabricated and evaluated a novel dual-layer zwitterion-modified electrospun nanofibrous membrane for enhanced produced water (PW) treatment. The dual-layer design consists of a highly porous electrospun nanofibrous support layer for improved permeability and mechanical strength, coupled with a zwitterionic-modified selective layer to enhance antifouling properties and selective contaminant rejection. The zwitterionic surface modification imparts superior hydration capacity, reducing organic and biological fouling while improving water transport efficiency. The membranes are characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), contact angle and tensile strength measurements, and nuclear magnetic resonance (NMR) spectroscopy to assess their morphological, structural, and chemical properties. The performance evaluations demonstrated significantly higher water flux (up to 16.05 L m−2 h−1 for SPW (synthetic produced water) and 6.00 L m−2 h−1 for PW using NaBr) and excellent solid rejection (up to 96.02% for SPW and 88.90% for PW), reduced concentration polarization, and superior antifouling performance compared to conventional FO membranes. Experimental results from bench-scale trials demonstrate that this advanced membrane technology offers enhanced water recovery and contaminant removal efficiency, making it a viable solution for industrial-scale PW treatment and reuse. The findings underscore the potential of next-generation dual-layer FO membranes in promoting sustainable water resource management within the oil and gas sector while minimizing environmental impact. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3985 KB  
Article
Interaction Between Radon, Air Ions, and Ultrafine Particles Under Contrasting Atmospheric Conditions in Belgrade, Serbia
by Fathya Shabek, Predrag Kolarž, Igor Čeliković, Milica Ćurčić and Aco Janičijević
Atmosphere 2025, 16(7), 808; https://doi.org/10.3390/atmos16070808 - 1 Jul 2025
Viewed by 660
Abstract
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, [...] Read more.
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, and air pollution under varying conditions and to assess potential health impacts. Measurements were taken at two sites: in early autumn at a suburban part of Belgrade with relatively clean air, and in late autumn in central Belgrade under polluted conditions, with low temperatures and high humidity. Parameters measured included radon, small air ions, particle size distribution, PM mass concentration, temperature, humidity, and pressure. Results showed lower radon concentrations in late autumn due to high soil moisture and absence of nocturnal inversions. Radon and air ion concentrations exhibited a strong positive correlation for both polarities under suburban conditions, whereas measurements in the urban setting revealed a weak negative correlation, despite radon concentrations in soil gas being approximately equal at both sites. Small ion levels were also reduced, mainly due to suppressed radon exhalation and increased aerosol concentrations, especially ultrafine particles. A strong negative correlation (r < −0.5) was found between small air ion concentrations and particle number concentrations in the 20–300 nm range, while larger particles (300–1000 nm and >1 µm) showed weak or no correlation due to their lower and more stable concentrations. In contrast, early autumn measurements showed a diurnal cycle of radon, characterized by nighttime maxima and daytime minima, unlike the consistently low values observed in late autumn. Full article
(This article belongs to the Special Issue Outdoor and Indoor Air Ions, Radon, and Ozone)
Show Figures

Figure 1

24 pages, 15859 KB  
Article
The Analysis of the Extreme Cold in North America Linked to the Western Hemisphere Circulation Pattern
by Mohan Shen and Xin Tan
Atmosphere 2025, 16(7), 781; https://doi.org/10.3390/atmos16070781 - 26 Jun 2025
Viewed by 556
Abstract
The Western Hemisphere (WH) circulation pattern was discovered in recent years through Self-Organizing Maps (SOMs) clustering of the Northern Hemisphere 500 hPa geopotential height during winter. For example, the extremely cold wave that occurred in North America during 2013–14 is associated with WH [...] Read more.
The Western Hemisphere (WH) circulation pattern was discovered in recent years through Self-Organizing Maps (SOMs) clustering of the Northern Hemisphere 500 hPa geopotential height during winter. For example, the extremely cold wave that occurred in North America during 2013–14 is associated with WH circulation anomalies. We discussed the extremely cold weather conditions within the WH pattern during the winter season from 1979 to 2023. The variations of cold air in North America during the WH pattern have been demonstrated using the NCEP/NCAR reanalysis datasets. By defining WH events and North American extremely cold events, we have identified a connection between the two. In extremely cold events, linear winds are the key factor driving the temperature drop, as determined by calculating temperature advection. The ridge in the Gulf of Alaska serves as an early signal for this cold weather. The WH circulation anomaly triggers an anomalous ridge in the Gulf of Alaska region, leading to trough anomalies downstream over North America. This results in the southward movement of cold air from the polar regions, causing cooling in the mid-to-northern parts of North America. With the maintenance of the stationary wave in the North Pacific (NP), the anomalous trough over North America can be deepened, driving cold air into the continent. Influenced by the low pressure over Greenland and the storm track, the cold anomalies are concentrated in the central and northern parts of North America. This cold air situation persists for approximately two weeks. The high-level patterns of the WH pattern in both the 500 hPa height and the troposphere level have been identified using SOM. This cold weather is primarily a tropospheric phenomenon with limited correlation to stratospheric activities. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 6277 KB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Cited by 1 | Viewed by 587
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

22 pages, 1017 KB  
Article
Development of a Validated LC-MS Method for the Determination of Cannabinoids and Evaluation of Supercritical CO2 vs. Ultrasound-Assisted Extraction in Cannabis sativa L. (Kompolti cv.)
by Vasileios A. Ioannidis, Varvara Sygouni, Sotirios Giannopoulos, Konstantinos Sotirianos, Theophilos Ioannides, Christakis A. Paraskeva and Fotini N. Lamari
Antioxidants 2025, 14(7), 777; https://doi.org/10.3390/antiox14070777 - 24 Jun 2025
Cited by 1 | Viewed by 2390
Abstract
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate [...] Read more.
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate HPLC-MS method for the determination of nine common cannabinoids and compare two widely used extraction techniques: ultrasound-assisted extraction (UAE) with methanol and supercritical CO2 extraction (SFE). Inflorescences of the Kompolti cultivar were used as the plant material. On a polar C18 column, more than thirty compounds were well separated within 25 min; thirteen cannabinoids were identified and eight of them were quantified, with cannabidiol and its acidic precursor being the most abundant. Additionally, three spectrophotometric assays were employed for extract characterization: the total phenolic content, total flavonoid content, and DPPH radical scavenging capacity. The SFE extract, obtained using ethanol as a co-solvent under low pressure (<100 bar) and temperature (<45 °C), was more enriched than the UAE extract (181.62 ± 2.90 vs. 140.64 ± 13.24 mg quercetin equivalents/g of dry extract) and cannabinoids (446.29 ± 22.66 vs. 379.85 ± 17.16 mg/g of dry extract), especially cannabinoid acids. However, UAE achieved greater recovery from the plant material (cannabinoids: 83.42 ± 5.15 vs. 68.84 ± 3.49 mg/g of plant material) and showed superior antioxidant capacity (DPPH IC50: 2.50 ± 0.18 vs. 3.37 ± 0.07 mg/mL). Notwithstanding the observed partial decarboxylation, the high repeatability (RSD < 15%, n = 11) of the entire analytical workflow involving UAE extraction and LC-MS analysis renders it suitable for routine analyses. This study contributes to the ongoing efforts toward the quality control and valorization of C. sativa. Full article
Show Figures

Figure 1

36 pages, 5420 KB  
Article
Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study
by Ali Bayat, Prodip K. Das and Suvash C. Saha
Mathematics 2025, 13(13), 2077; https://doi.org/10.3390/math13132077 - 23 Jun 2025
Viewed by 803
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational [...] Read more.
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design, improving material performance, and reducing overall costs, thereby accelerating the commercial rollout of PEMWE technology. Despite this, conventional models often oversimplify key components, such as porous transport and catalyst layers, by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant, linearly graded, and stepwise profiles—and derives analytical expressions for permeability, effective diffusivity, and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages, they significantly influence internal pressure, species distribution, and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and system-level electrochemical analysis, offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems. Full article
Show Figures

Figure 1

15 pages, 3154 KB  
Article
Multi-Physics Coupling of Rectangular Channels with Different Aspect Ratios in Solid Oxide Electrolysis Cells
by Jie Yao, Carsten Korte, Zhengyang Qian, Ming Chen and Jiangshui Luo
Materials 2025, 18(12), 2827; https://doi.org/10.3390/ma18122827 - 16 Jun 2025
Viewed by 443
Abstract
To explore the impact of the aspect ratio of the channels in the flow fields of solid oxide electrolysis cells on the performance of the cell, we developed three-dimensional models for cells with varying aspect ratios. Our findings revealed that channels with low [...] Read more.
To explore the impact of the aspect ratio of the channels in the flow fields of solid oxide electrolysis cells on the performance of the cell, we developed three-dimensional models for cells with varying aspect ratios. Our findings revealed that channels with low and high aspect ratios exhibit higher maximum pressure drops, whereas those with medium aspect ratios have the lowest pressure drops. Additionally, the mole fraction of the hydrogen decreases as the channel’s aspect ratio increases. We also computed the polarization curves for SOEC operating under three distinct aspect ratio channels. Our results suggest that structures with low aspect ratios exhibit the poorest electrochemical performance, suitable only for brief operations at low current densities; medium aspect ratio structures exhibit a balanced performance, making them suitable for various operating conditions; and high aspect ratio structures are best suited for operations at high current densities. This study on selecting different aspect ratios aids in determining the optimal channel parameters for different operating conditions, ultimately enhancing the performance of solid oxide electrolysis cells. Full article
Show Figures

Figure 1

14 pages, 6581 KB  
Article
High-Precision Diagnosis of the Whole Process of Laser-Induced Plasma and Shock Waves Using Simultaneous Phase-Shift Interferometry
by Lou Gao, Hongchao Zhang, Jian Lu and Zhonghua Shen
Photonics 2025, 12(6), 601; https://doi.org/10.3390/photonics12060601 - 11 Jun 2025
Viewed by 970
Abstract
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and [...] Read more.
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and its applicability is verified. Uncertainty analysis and precision verification show that the total phase shift uncertainty is controlled within 0.045 radians, equivalent to a refractive index accuracy of 8.55×106, with sensitivity to weak perturbations improved by approximately one order of magnitude compared to conventional carrier-frequency interferometry. Experimental results demonstrate that the SPSI system precisely captures the initial spatiotemporal evolution of LIP and tracks shock waves at varying attenuation levels, exhibiting notable advantages in weak shock wave detection. This research validates the SPSI system’s high sensitivity to transient weak perturbations, offering a valuable diagnostic tool for high-vacuum plasmas, low-pressure shock waves, and stress waves in optical materials. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

18 pages, 7993 KB  
Article
The Influence of Cr2N Addition and Ni/Mn Ratio Variation on Mechanical and Corrosion Properties of HIP-Sintered 316L Stainless Steel
by Minsu Lee, Hohyeong Kim, Seok-Won Son and Jinho Ahn
Materials 2025, 18(12), 2722; https://doi.org/10.3390/ma18122722 - 10 Jun 2025
Cited by 1 | Viewed by 698
Abstract
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys [...] Read more.
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys fabricated via hot isostatic pressing (HIP), conducted at 1300 °C and 100 MPa for 2 h, incorporating Cr2N powder and an optimized Ni/Mn ratio based on the nickel equivalent (Ni_eq). During HIP, Cr2N decomposition yielded a uniformly refined, dense austenitic microstructure, with enhanced corrosion resistance and mechanical performance. Corrosion resistance was evaluated by potentiodynamic polarization in 3.5 wt.% NaCl after 1 h of OCP stabilization, using a scan range of −0.25 V to +1.5 V (Ag/AgCl) at 1 mV/s. Optimization of the Ni/Mn ratio effectively improved the pitting corrosion resistance and mechanical strength. It is cost-effective to partially substitute Ni with Mn. Of the various alloys, C13Ni-N exhibited significantly enhanced hardness (~30% increase from 158.3 to 206.2 HV) attributable to nitrogen-induced solid solution strengthening. E11Ni-HM exhibited the highest pitting corrosion resistance given the superior PREN value (31.36). In summary, the incorporation of Cr2N and adjustment of the Ni/Mn ratio effectively improved the performance of 316L stainless steel alloys. Notably, alloy E11Ni-HM demonstrated a low corrosion current density of 0.131 μA/cm2, indicating superior corrosion resistance. These findings offer valuable insights for developing cost-efficient, mechanically robust corrosion-resistant materials for hydrogen-related applications. Further research will evaluate alloy resistance to hydrogen embrittlement and investigate long-term material stability. Full article
Show Figures

Figure 1

18 pages, 4005 KB  
Article
Measurement and Modelling of Carbon Dioxide in Triflate-Based Ionic Liquids: Imidazolium, Pyridinium, and Pyrrolidinium
by Raheem Akinosho, Amr Henni and Farhan Shaikh
Liquids 2025, 5(2), 15; https://doi.org/10.3390/liquids5020015 - 30 May 2025
Viewed by 566
Abstract
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of [...] Read more.
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of particular ionic liquids (ILs) in capturing CO2 for the sweetening of natural and other gases. The solubility of CO2 was measured in three distinct ILs, which shared a common anion (triflate, TfO) but differed in their cations. The selected ionic liquids were {1-butyl-3-methylimidazolium triflate [BMIM][TfO], 1-butyl-1-methylpyrrolidinium triflate [BMP][TfO], and 1-butyl-4-methylpyridium triflate [MBPY][TfO]}. The solvents were screened based on results from a molecular computational study that predicted low CO2 Henry’s Law constants. Solubility measurements were conducted at 303.15 K, 323.15 K, and 343.15 K and pressures up to 1.5 MPa using a gravimetric microbalance (IGA-003). The CO2 experimental results were modeled using the Peng–Robinson Equation of state with three mixing rules: van der Waals one (vdWI), van der Waals two (vdWII), and the non-random two-liquid (NRTL) Wong–Sandler (WS) mixing rule. For the three ILs, the NRTL-WS mixing rule regressed the data with the lowest average deviation percentage of 1.24%. The three solvents had similar alkyl chains but slightly different polarities. [MBPY][TfO], with the largest size, exhibited the highest CO2 solubility at all three temperatures. Calculation of its relative polarity descriptor (N) shows it was the least polar of the three ILs. Conversely, [BMP][TfO] showed the highest Henry’s Law constant (lowest solubility) across the studied temperature range. Comparing the results to published data, the study concludes that triflate-based ionic liquids with three fluorine atoms had lower capacity for CO2 compared to bis(trifluoromethylsulfonyl) imide (Tf2N)-based ionic liquids with six fluorine atoms. Additionally, the study provided data on the enthalpy and entropy of absorption. A final comparison shows that the ILs had a lower CO2 capacity than Selexol, a solvent widely used in commercial carbon capture operations. Compared to other ILs, the results confirm that the type of anion had a more significant impact on solubility than the cation. Full article
Show Figures

Figure 1

16 pages, 4117 KB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 770
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop