Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (281)

Search Parameters:
Keywords = polarization insensitive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4346 KB  
Article
Tunable Ultra-Wideband VO2–Graphene Hybrid Metasurface Terahertz Absorption Devices Based on Dual Regulation
by Kele Chen, Zhengning Wang, Meizhang Guan, Shubo Cheng, Hongyu Ma, Zao Yi and Boxun Li
Photonics 2025, 12(10), 987; https://doi.org/10.3390/photonics12100987 - 5 Oct 2025
Viewed by 340
Abstract
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an [...] Read more.
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an absorption efficiency exceeding 90% (average 97.06%) in the range of 2.25–6.07 THz (bandwidth 3.82 THz), showing excellent absorption performance. At 318 K (insulated state), the device achieves 67.66–69.51% transmittance in the 0.1–2.14 THz and 7.51–10 THz bands while maintaining a broadband absorption of 3.6–5.08 THz (an average of 81.99%). Compared with traditional devices, the design breaks through the performance limitations by integrating phase change material control with 2D materials. The patterned graphene design simplifies the fabrication process. System analysis reveals that the device is polarization-insensitive and tunable via graphene Fermi energy and relaxation time. The device’s excellent temperature response and wide angular stability provide a novel solution for terahertz switching, stealth technology, and sensing applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

13 pages, 1644 KB  
Article
Modeling and Simulation of Highly Efficient and Eco-Friendly Perovskite Solar Cells Enabled by 2D Photonic Structuring and HTL-Free Design
by Ghada Yassin Abdel-Latif
Electronics 2025, 14(18), 3607; https://doi.org/10.3390/electronics14183607 - 11 Sep 2025
Viewed by 438
Abstract
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce [...] Read more.
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce fabrication complexity and overall production costs, a hole-transport-layer-free (HTL-free) configuration is employed. Simulation results reveal a significant enhancement in photovoltaic performance compared to conventional planar structures, achieving an ultimate efficiency of 42.3%, compared to 36.6% for the traditional design—an improvement of over 16%. Electromagnetic field distributions are analyzed to elucidate the physical mechanisms behind the enhanced absorption. The improved optical performance is attributed to strong coupling between photonic modes and surface plasmon polaritons (SPPs), which enhances light–matter interaction. Furthermore, the device exhibits polarization-insensitive and angle-independent absorption characteristics, maintaining high performance for both transverse magnetic (TM) and transverse electric (TE) polarizations at incidence angles up to 60°. These findings highlight a promising pathway toward the development of cost-effective, lead-free perovskite solar cells with high efficiency and simplified fabrication processes. Full article
Show Figures

Figure 1

12 pages, 4086 KB  
Article
Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting
by Lejia Wu, Xin Chen and Dawei Zhang
Nanomaterials 2025, 15(16), 1263; https://doi.org/10.3390/nano15161263 - 16 Aug 2025
Viewed by 589
Abstract
We investigated a metasurface broadband absorber composed entirely of iron and featuring a simple bilayer structure: a metallic iron substrate topped with an iron nanodisk-patterned layer. This absorber structure achieved over 90% absorption across the visible spectrum, with an average absorption of 97%. [...] Read more.
We investigated a metasurface broadband absorber composed entirely of iron and featuring a simple bilayer structure: a metallic iron substrate topped with an iron nanodisk-patterned layer. This absorber structure achieved over 90% absorption across the visible spectrum, with an average absorption of 97%. The designed metasurface structure had an aspect ratio of less than 1, which facilitated high-quality sample fabrication. In contrast to precious or rare metals typically utilized in visible broadband metasurface absorbers, this absorber offers a significant cost advantage. Furthermore, it exhibits polarization insensitivity and maintains a stable performance under oblique incidence over a wide angular range, making it suitable for practical applications. Additionally, the high melting point and favorable thermal conductivity of iron satisfy the requirements for solar harvesting and photothermal conversion devices. Therefore, this paper presents a highly efficient, low-cost, easy-to-fabricate, and operationally stable solution that is amenable to large-scale deployment in solar energy-harvesting devices. Full article
Show Figures

Figure 1

14 pages, 2905 KB  
Article
Optimal Design of a Lightweight Terahertz Absorber Featuring Ultra-Wideband Polarization-Insensitive Characteristics
by Yafeng Hao, Tengteng Li, Pu Zhu, Fupeng Ma, Huijia Wu, Cheng Lei, Meihong Liu, Ting Liang and Jianquan Yao
Photonics 2025, 12(8), 787; https://doi.org/10.3390/photonics12080787 - 4 Aug 2025
Cited by 1 | Viewed by 1321
Abstract
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz [...] Read more.
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz absorbers. To solve these problems, we propose a polystyrene (PS)-based ultra-broadband metamaterial absorber integrated with a polyethylene terephthalate (PET) double-sided adhesive layer and a patterned indium tin oxide (ITO) film through the simulation method, which operates in the THz band. The electromagnetic wave absorption properties and underlying physical absorption mechanisms of the proposed metamaterial absorbers are comprehensively modeled and rigorously numerically simulated. The research demonstrates the metamaterial absorber can achieve absorption performance of over 90% for fully polarized incident waves in the ultra-wideband range of 1.2–10 THz, especially achieving perfect absorption characteristics of over 99.9% near 1.8–1.9 THz and 5.8–6.2 THz. The proposed absorber has a lightweight physical property of 0.7 kg/m2 and polarization-insensitive characteristic, and it achieves a broad-angle that allows a range of incidence angles up to 60°. The simulation research results of this article provide theoretical support for the design of terahertz absorbers with ultra-wideband absorption characteristics. Full article
(This article belongs to the Special Issue Metamaterials and Nanophotonics: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 3092 KB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Cited by 1 | Viewed by 652
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

20 pages, 1526 KB  
Article
Chroma Backdoor: A Stealthy Backdoor Attack Based on High-Frequency Wavelet Injection in the UV Channels
by Yukang Fan, Kun Zhang, Bing Zheng, Yu Zhou, Jinyang Zhou and Wenting Pan
Symmetry 2025, 17(7), 1014; https://doi.org/10.3390/sym17071014 - 27 Jun 2025
Viewed by 769
Abstract
With the widespread adoption of deep learning in critical domains, such as computer vision, model security has become a growing concern. Backdoor attacks, as a highly stealthy threat, have emerged as a significant research topic in AI security. Existing backdoor attack methods primarily [...] Read more.
With the widespread adoption of deep learning in critical domains, such as computer vision, model security has become a growing concern. Backdoor attacks, as a highly stealthy threat, have emerged as a significant research topic in AI security. Existing backdoor attack methods primarily introduce perturbations in the spatial domain of images, which suffer from limitations, such as visual detectability and signal fragility. Although subsequent approaches, such as those based on steganography, have proposed more covert backdoor attack schemes, they still exhibit various shortcomings. To address these challenges, this paper presents HCBA (high-frequency chroma backdoor attack), a novel backdoor attack method based on high-frequency injection in the UV chroma channels. By leveraging discrete wavelet transform (DWT), HCBA embeds a polarity-triggered perturbation in the high-frequency sub-bands of the UV channels in the YUV color space. This approach capitalizes on the human visual system’s insensitivity to high-frequency signals, thereby enhancing stealthiness. Moreover, high-frequency components exhibit strong stability during data transformations, improving robustness. The frequency-domain operation also simplifies the trigger embedding process, enabling high attack success rates with low poisoning rates. Extensive experimental results demonstrate that HCBA achieves outstanding performance in terms of both stealthiness and evasion of existing defense mechanisms while maintaining a high attack success rate (ASR > 98.5%). Specifically, it improves the PSNR by 25% compared to baseline methods, with corresponding enhancements in SSIM as well. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

30 pages, 8576 KB  
Review
Recent Advances in Chiral and Achiral Metasurfaces Under Symmetry Preservation and Breaking
by Xingcheng Wan, Yangyang Li, Yixin Wang, Yifan Li and Chao Zhang
Symmetry 2025, 17(7), 1001; https://doi.org/10.3390/sym17071001 - 25 Jun 2025
Viewed by 1133
Abstract
Structural symmetry preservation and breaking play important roles in optical manipulation at subwavelength scales. By precisely engineering the symmetry of the nanostructures, metasurfaces can effectively realize various optical functions such as polarization control, wavefront shaping, and on-chip optical integration, with promising applications in [...] Read more.
Structural symmetry preservation and breaking play important roles in optical manipulation at subwavelength scales. By precisely engineering the symmetry of the nanostructures, metasurfaces can effectively realize various optical functions such as polarization control, wavefront shaping, and on-chip optical integration, with promising applications in information photonics, bio-detection, and flexible devices. In this article, we review the recent advances in chiral and achiral metasurfaces based on symmetry manipulation. We first introduce the fundamental principles of chiral and achiral metasurfaces, including methods for characterizing chirality and mechanisms for phase modulation. Then, we review the research on chiral metasurfaces based on material type and structural dimensions and related applications in high-sensitivity chiral sensing, reconfigurable chiral modulation, and polarization-selective imaging. We then describe the developments in the application of achiral metasurfaces, particularly in polarization-multiplexed holography, phase-gradient imaging, and polarization-insensitive metalenses. Finally, we provide an outlook on the future development of chiral and achiral metasurfaces. Full article
(This article belongs to the Special Issue Studies of Optoelectronics in Symmetry)
Show Figures

Figure 1

12 pages, 1406 KB  
Article
Switchable THz Bi-Functional Device for Absorption and Dual-Band Linear-to-Circular Polarization Conversion Based on Vanadium Dioxide–Graphene
by Yiqu Wang, Haohan Xie, Rong Liu and Jun Dong
Sensors 2025, 25(12), 3644; https://doi.org/10.3390/s25123644 - 10 Jun 2025
Cited by 1 | Viewed by 730
Abstract
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2 [...] Read more.
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2, the suggested metamaterial device can achieve both broadband absorption and dual-band linear-to-circular polarization conversion (LCPC) in the terahertz frequency range. When VO2 is in its metallic state and the Fermi level of graphene is set to zero electron volts (eV), the device shows remarkable broadband absorption. Specifically, it attains an absorption rate exceeding 90% within the frequency span of 2.28–3.73 terahertz (THz). Moreover, the device displays notable polarization insensitivity and high resistance to changes in the incident angle. Conversely, when VO2 shifts to its insulating state and the Fermi level of graphene stays at 0 eV, the device operates as a highly effective polarization converter. It attains the best dual-band linear-to-circular polarization conversion within the frequency ranges of 4.31–5.82 THz and 6.77–7.93 THz. Following the alteration of the Fermi level of graphene, the device demonstrated outstanding adjustability. The designed multi-functional device features a simple structure and holds significant application potential in terahertz technologies, including cloaking technology, reflectors, and spatial modulators. Full article
Show Figures

Figure 1

17 pages, 3338 KB  
Article
Multimode Switching Broadband Terahertz Metamaterial Absorbing Micro-Devices Based on Graphene and Vanadium Oxide
by Xin Ning, Qianju Song, Zao Yi, Jianguo Zhang and Yougen Yi
Nanomaterials 2025, 15(11), 867; https://doi.org/10.3390/nano15110867 - 4 Jun 2025
Cited by 2 | Viewed by 684
Abstract
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well [...] Read more.
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well as a VO2 layer pattern composed of four identical rectangular boxes and small rectangles embedded in the dielectric layer. VO2 can regulate conductivity via temperature, the Fermi level of graphene depends on the external voltage, and the graphene layer and VO2 layer produce resonance responses at different frequencies, resulting in high absorption. The proposed absorption microdevices have three modes: Mode 1 (2.52–4.52 THz), Mode 2 (3.91–9.66 THz), and Mode 3 (2.14–10 THz), which are low-band absorption, high-band absorption, and ultra-wideband absorption. At 2.96 THz in Mode 1, the absorption rate reaches 99.98%; at 8.04 THz in Mode 2, the absorption rate reaches 99.76%; at 5.04 THz in Mode 3, the absorption rate reaches 99.85%; and at 8.4 THz, the absorption rate reaches 99.76%. We explain the absorption mechanism by analyzing the electric field distribution and local plasma resonance, and reveal the high-performance absorption mechanism by using the relative impedance theory. In addition, absorption microdevices have the advantages of polarization insensitivity, incident angle insensitivity, multi-mode switching, ultra-wideband absorption, large manufacturing tolerance, etc., and have potential research and application value in electromagnetic stealth devices, filters and optical switches. Full article
Show Figures

Figure 1

9 pages, 1953 KB  
Communication
Polarization-Insensitive Silicon Photonic Variable Optical Attenuator
by Meixin Li, Yuxuan Zhang, Hao Jiang, Haoran Wang, Danni Luo, Jing Yang, Yabin Li and Zanyun Zhang
Photonics 2025, 12(6), 549; https://doi.org/10.3390/photonics12060549 - 29 May 2025
Viewed by 647
Abstract
We propose and demonstrate a polarization-insensitive silicon photonic variable optical attenuator. The designed device uses a two-dimensional apodized grating coupler as a surface-normal coupling interface, which has the advantages of low-cost fiber packaging and polarization insensitivity. For optical attenuation, PIN diodes are inserted [...] Read more.
We propose and demonstrate a polarization-insensitive silicon photonic variable optical attenuator. The designed device uses a two-dimensional apodized grating coupler as a surface-normal coupling interface, which has the advantages of low-cost fiber packaging and polarization insensitivity. For optical attenuation, PIN diodes are inserted into each waveguide to act as optical absorbers. The compact device, featuring a footprint of 250 × 850 μm2, exhibits a fiber-to-fiber insertion loss of 6 dB. Under a 3 V bias voltage, wavelength-dependent attenuation of 18 dB at 1295 nm and 26 dB at 1315 nm is achieved. Systematic characterization across diverse input polarization states confirms polarization-dependent loss below 0.5 dB under arbitrary polarization states, validating the device’s robust polarization insensitivity for wavelength-division multiplexing systems. Full article
(This article belongs to the Special Issue Silicon Photonics: From Fundamentals to Future Directions)
Show Figures

Figure 1

11 pages, 3869 KB  
Article
A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting
by Zhihui Guo, Juan Yu and Lin Dong
Micromachines 2025, 16(6), 611; https://doi.org/10.3390/mi16060611 - 23 May 2025
Cited by 1 | Viewed by 718
Abstract
This paper presents a rectifying metasurface (RMS) that enables wide-angle, polarization-insensitive wireless energy harvesting in the Wi-Fi frequency range. The RMS consists of a metasurface integrated with rectifying diodes, a low-pass filter (LPF), and a resistive load. In the structural design, the RMS [...] Read more.
This paper presents a rectifying metasurface (RMS) that enables wide-angle, polarization-insensitive wireless energy harvesting in the Wi-Fi frequency range. The RMS consists of a metasurface integrated with rectifying diodes, a low-pass filter (LPF), and a resistive load. In the structural design, the RMS incorporates four Schottky diodes placed on the bottom structure and connected to the top structure through four metallized vias. This configuration facilitates impedance matching between the metasurface and the diodes, omitting the need for conventional rectifier circuits or external matching networks and removing the impact of soldering variations. A 3 × 3 RMS prototype was manufactured and subjected to experimental validation. The measurements confirm that the RMS achieves a peak RF-to-DC conversion efficiency of 68.3% at 5.8 GHz with a 12.5 dBm input power, while maintaining stable performance across a wide range of incident angles and polarization states. Full article
Show Figures

Figure 1

9 pages, 4010 KB  
Communication
Broadband Achromatic Hybrid Metalens Module with 100° Field of View for Visible Imaging
by Peixuan Wu, Xingyi Li, Yuanyuan Xing, Jiaojiao Wang, Wujie Zheng, Zekun Wang and Yaoguang Ma
Sensors 2025, 25(10), 3202; https://doi.org/10.3390/s25103202 - 20 May 2025
Viewed by 1633
Abstract
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses [...] Read more.
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses and a polarization-insensitive metalens to achieve broadband achromatic imaging within 400–700 nm and a wide FOV up to 100°. The system exhibits negligible variation in focal length (~1.2%) across the visible range (460–656 nm) and consistently achieves modulation transfer function (MTF) values > 0.2 at 167 lp/mm across all wavelengths and incident angles. We also demonstrate integrated lens modules that capture high-quality images from distances ranging between 0.5 and 4 m without post-processing, showcasing its potential for compact, wide-angle optical systems. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

15 pages, 6801 KB  
Article
TiN-Only Metasurface Absorber for Solar Energy Harvesting
by Hongfu Liu, Jijun Li, Hua Yang, Junqiao Wang, Boxun Li, Han Zhang and Yougen Yi
Photonics 2025, 12(5), 443; https://doi.org/10.3390/photonics12050443 - 3 May 2025
Cited by 55 | Viewed by 1457
Abstract
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure [...] Read more.
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure with square holes, which is constructed from titanium nitride (TiN). The calculation results indicate that, for plane waves, the average absorption of this solar absorber across the wavelength range of 300–2500 nm reaches 92.4%. Moreover, its absorption rate of the solar spectrum corresponding to AM1.5 reaches 94.8%. The analysis of the characteristics within the electric and magnetic field profiles indicates that the superior absorption properties arise from a cooperative resonance effect. This effect originates from the interaction among surface plasmon resonance, guided-mode resonance, and cavity resonance. In this study, the geometric parameters of the solar absorber’s structure significantly influence its absorption performance. Therefore, we optimized these parameters to obtain the optimal values. Even at a large incident angle, this absorber maintains high absorption performance and shows insensitivity to the polarization angle. The findings expected from this study are likely to be of considerable practical importance within the realm of solar photothermal conversion. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

9 pages, 1596 KB  
Article
Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
by Shenglan Wu, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong and Shuang Liu
Nanomaterials 2025, 15(9), 678; https://doi.org/10.3390/nano15090678 - 29 Apr 2025
Viewed by 717
Abstract
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance [...] Read more.
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance of the absorber reaches the peak values of 0.87 and 1.0 in the target bands (3–5 μm and 8–14 μm), while maintaining a low absorptance of about 0.2 in the non-working bands of 5–8 μm, with excellent spectral selectivity. By analyzing the Poynting vector and loss distribution, the synergistic mechanism of the ultra-thin metal localized enhancement effect, impedance matching, and intrinsic absorption of the material is revealed. This structure exhibits good polarization-insensitive characteristics and angle robustness within a large incident angle range, showing strong adaptability to complex optical field environments. Moreover, the proposed planarized structure design is compatible with standard fabrication processes and has good scalability, which can be applied to other electromagnetic wave bands. This research provides new design ideas and technical solutions for advanced optoelectronic applications such as radiation cooling, infrared stealth, and thermal radiation regulation. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

19 pages, 5431 KB  
Article
Polarization-Insensitive Silicon Grating Couplers via Subwavelength Metamaterials and Metaheuristic Optimization
by Jorge Parra
Photonics 2025, 12(5), 428; https://doi.org/10.3390/photonics12050428 - 29 Apr 2025
Cited by 1 | Viewed by 1138
Abstract
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains [...] Read more.
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains a challenge due to the birefringence of silicon waveguides. Here, we address this issue by proposing polarization-insensitive grating couplers based on subwavelength dielectric metamaterials and metaheuristic optimization. Subwavelength periodic structures were engineered to act as uniaxial homogeneous linear (UHL) materials, enabling tailored anisotropy. On the other hand, particle swarm optimization (PSO) was employed to optimize the coupling efficiency, bandwidth, and polarization-dependent loss (PDL). Numerical simulations demonstrated that a pitch of 100 nm ensures UHL behavior while minimizing leaky waves. Optimized grating couplers achieved coupling efficiencies higher than −3 dB and a PDL of below 1 dB across the telecom C-band (1530–1565 nm). Three optimization strategies were explored, balancing efficiency, the bandwidth, and the PDL while considering the Pareto front. This work establishes a robust framework combining metamaterial engineering with computational optimization, paving the way for high-performance polarization-insensitive grating couplers with potential uses in advanced photonic applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

Back to TopTop