Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,185)

Search Parameters:
Keywords = pollutant degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3531 KB  
Article
Research on Reliability of Vehicle Line Detection and Lane Keeping Systems
by Vytenis Surblys, Vidas Žuraulis and Tadas Tinginys
Sustainability 2025, 17(22), 10222; https://doi.org/10.3390/su172210222 (registering DOI) - 15 Nov 2025
Abstract
This research focuses on vehicle Advanced Driver Assistance Systems (ADAS), with particular emphasis on Lane Keeping Assist (LKA) systems which is designed to help drivers keep a vehicle centered within its lane and reduce the risk of unintentional lane departures. These kinds of [...] Read more.
This research focuses on vehicle Advanced Driver Assistance Systems (ADAS), with particular emphasis on Lane Keeping Assist (LKA) systems which is designed to help drivers keep a vehicle centered within its lane and reduce the risk of unintentional lane departures. These kinds of systems detect lane boundaries using computer vision algorithms applied to video data captured by a forward-facing camera and interpret this visual information to provide corrective steering inputs or driver alerts. The research investigates the performance, reliability, sustainability, and limitations of LKA systems under adverse road and environmental conditions, such as wet pavement and in the presence of degraded, partially visible, or missing horizontal road markings. Improving the reliability of lane detection and keeping systems enhances road safety, reducing traffic accidents caused by lane departures, which directly supports social sustainability. For the theoretical test, a modified road model using MATLAB software was used to simulate poor road markings and to investigate possible test outcomes. A series of field tests were conducted on multiple passenger vehicles equipped with LKA technologies to evaluate their response in real-world scenarios. The results show that it is very important to ensure high quality horizontal road markings as specified in UNECE Regulation No. 130, as lane keeping aids are not uniformly effective. Furthermore, the study highlights the need to develop more robust line detection algorithms capable of adapting to diverse road and weather conditions, thereby enhancing overall driving safety and system reliability. LKA system research supports sustainable mobility strategies promoted by international organizations—aiming to transition to safer, smarter, and less polluting transportation systems. Full article
Show Figures

Figure 1

19 pages, 2145 KB  
Review
A Review on the Application of Catalytic Membranes Technology in Water Treatment
by Jun Dai, Yan Zhuang, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(11), 1081; https://doi.org/10.3390/catal15111081 - 14 Nov 2025
Abstract
For effective water purification, the combination of membrane separation and catalytic degradation technologies not only permits continuous pollutant degradation but also successfully reduces membrane fouling. In recent years, catalytic membranes (CMs) have garnered a lot of interest in the water treatment industry. The [...] Read more.
For effective water purification, the combination of membrane separation and catalytic degradation technologies not only permits continuous pollutant degradation but also successfully reduces membrane fouling. In recent years, catalytic membranes (CMs) have garnered a lot of interest in the water treatment industry. The main benefits of CMs are methodically explained in this review, emphasizing the synergistic effect of membrane separation and catalysis. These benefits include stable catalyst loading achieved through membrane structure manipulation, nanoconfinement, and effective degradation of organic pollutants. The application of catalytic membranes in water treatment is then thoroughly summarized, and they are separated into five main groups based on their unique catalytic reaction mechanisms: ozone catalytic membranes, photocatalytic membranes, electrocatalytic membranes, Fenton-type catalytic membranes, and persulfate catalytic membranes. The mechanisms and performance characteristics of each kind of CM are looked at in greater detail. Finally, research directions and future prospects for water treatment using catalytic membranes are proposed. This review provides recommendations for future research and development to ensure the effective use of catalytic membranes in water treatment, in addition to providing a thorough examination of the advancements made in their application in the treatment of various wastewaters. Full article
(This article belongs to the Special Issue Nanomaterial Catalysts for Wastewater Treatments)
Show Figures

Graphical abstract

15 pages, 5406 KB  
Article
Synthesis of Straw-Based Hydrothermal Carbonation Carbon and Its Photocatalytic Removal of Cr(VI) and Microcystin-LR
by Yu Luo, Xunxian Chen, Zhen Wan and Yingming Chen
Molecules 2025, 30(22), 4399; https://doi.org/10.3390/molecules30224399 - 14 Nov 2025
Abstract
As a cost-effective and environmentally benign photocatalyst, hydrothermal carbonation carbon (HTCC) has been extensively studied in the fields of resource utilization and environmental remediation. In this study, HTCC photocatalysts with efficient photocatalytic performances were prepared from straw using acid modification under hydrothermal conditions. [...] Read more.
As a cost-effective and environmentally benign photocatalyst, hydrothermal carbonation carbon (HTCC) has been extensively studied in the fields of resource utilization and environmental remediation. In this study, HTCC photocatalysts with efficient photocatalytic performances were prepared from straw using acid modification under hydrothermal conditions. The as-prepared HTCC photocatalysts were applied to the degradation of microcystin-LR and the reduction of aqueous Cr(VI). The critical role of acid modification in the photocatalytic performances of the HTCC photocatalysts was systematically investigated. The results demonstrated that acid-modified photocatalysts exhibited a significantly enhanced removal efficiency for Cr(VI) and microcystin-LR under visible light irradiation. A series of characterization techniques, including Raman spectroscopy and N2 adsorption–desorption analysis, revealed that the superior photocatalytic activities of acid-modified HTCC could be attributed to its higher aromatization level, enhanced light-harvesting ability, and increased concentration of active sites compared with pristine HTCC. Furthermore, electron spin resonance (ESR) and trapping experiments indicated that hydrogen radicals (·H) served as the primary active species in the photocatalytic Cr(VI) reduction of straw-based HTCC. This work provides both practical and theoretical insights into the resource utilization of agricultural waste and the remediation of environmental pollution. Full article
(This article belongs to the Special Issue Photocatalysis for Organic Pollutants Degradation)
Show Figures

Figure 1

21 pages, 1775 KB  
Article
Solar-Driven Photocatalytic Degradation of Clothianidin Using Green NiO-GO Composite
by Atta ul Haq, Rageh K. Hussein, Sandeep Panchal, Muhammad Saeed, Hafiz Muhammad Abubakar and Sharif Abu Alrub
Catalysts 2025, 15(11), 1078; https://doi.org/10.3390/catal15111078 - 13 Nov 2025
Abstract
The extensive use of clothianidin pesticide poses significant risks to non-target organisms and water resources. In this study, NiO-GO is reported as an effective photocatalyst for the degradation of clothianidin in aqueous medium. Nickel oxide (NiO) nanoparticles were synthesized by a green method [...] Read more.
The extensive use of clothianidin pesticide poses significant risks to non-target organisms and water resources. In this study, NiO-GO is reported as an effective photocatalyst for the degradation of clothianidin in aqueous medium. Nickel oxide (NiO) nanoparticles were synthesized by a green method using Pisum sativum (pea) peel extract, which serves as a natural reducing and stabilizing agent, and subsequently integrated with graphene oxide (GO) through ultrasonication to form a NiO-GO composite in a 1:1 ratio. The materials were characterized by various techniques. Photocatalytic degradation of clothianidin under natural sunlight was systematically investigated, assessing the effects of pH, catalyst dosage, initial pollutant concentration, and agitation speed. The NiO-GO composite exhibited superior photocatalytic performance (96% degradation at pH 3 within 60 min) compared to pristine NiO and GO, with a rate constant 4.4 and 3.3 times higher, respectively. The as-prepared NiO-GO photocatalyst exhibited nearly consistent degradation efficiency over two successive cycles, demonstrating its excellent structural stability and reusability. The enhanced performance is attributed to improved charge separation afforded by GO support. This low-cost, green, and efficient NiO-GO photocatalyst demonstrates promising potential for sustainable pesticide remediation in aqueous environments. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

11 pages, 1111 KB  
Article
Nitrate Pollution of Water Bodies from Agricultural Sources: The Role of Training in Enhancing Awareness and Knowledge in Andalusia
by Aurora Moreno-Lora, Samir Sayadi-Gmada, M. Milagros Fernández-Fernández and Elisa M. Suárez-Rey
Nitrogen 2025, 6(4), 103; https://doi.org/10.3390/nitrogen6040103 - 13 Nov 2025
Abstract
Nitrate pollution from agricultural activities is a major cause of surface and groundwater degradation across Europe. In Andalusia, southern Spain, approximately 26% of the regional territory is affected by this type of contamination. To mitigate and prevent nitrate pollution, a regulatory framework has [...] Read more.
Nitrate pollution from agricultural activities is a major cause of surface and groundwater degradation across Europe. In Andalusia, southern Spain, approximately 26% of the regional territory is affected by this type of contamination. To mitigate and prevent nitrate pollution, a regulatory framework has been implemented, establishing specific restrictions and recommendations for agricultural practices and nitrogen fertilization management in designated areas. However, the effectiveness of these measures is often constrained by limited awareness of the issue, insufficient understanding of existing regulations, and a general lack of training in nitrogen fertilization management among farmers. To address these challenges, a specialized training program on crop fertilization was developed for agricultural professionals. This initiative aimed to raise awareness of the environmental impacts of nitrate pollution, disseminate information about relevant legislation, and strengthen technical knowledge related to nitrogen fertilization planning and management, thereby enhancing on-farm decision-making. This study analysed the impact of this training activity on the level of awareness and knowledge regarding nitrate-related issues in Andalusia. Full article
Show Figures

Figure 1

20 pages, 4746 KB  
Article
The Efficiency and Mechanism of FeOCl/Ce-Catalyzed Persulfate for the Degradation of Caffeine Under Visible Light
by Zhao Bai, Mingyue Hu, Minrui Li, Weidong Wu, Chi Zhou and Yuru Wang
Molecules 2025, 30(22), 4381; https://doi.org/10.3390/molecules30224381 - 13 Nov 2025
Abstract
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis [...] Read more.
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis method and systematically characterized their physicochemical properties. The results show that Ce doping significantly lowers the bandgap energy of the photocatalyst, enhances its visible light absorption ability, and effectively suppresses the recombination of photogenerated electron–hole pairs, thereby markedly improving photocatalytic performance under visible light. Analyses including XRD, EDS, XPS, and FT-IR confirm that Ce is incorporated into the FeOCl matrix and modulates the radial growth behavior of FeOCl without altering its intrinsic crystal structure. Morphological observations reveal that FeOCl/Ce exhibits a uniform nanosheet layered structure, with larger particles formed by the aggregation of smaller nanosheets. The nitrogen adsorption–desorption isotherm of FeOCl/Ce shows characteristics of Type IV with a relatively small BET surface area. The broadened optical absorption edge of FeOCl/Ce and the results of PL spectra and I-T curves further confirm its enhanced visible light absorption capacity and reduced electron–hole recombination compared to pure FeOCl. At an initial caffeine (CAF) concentration of 10 μM, FeOCl/Ce dose of 0.5 g/L, PS concentration of 1 mM, and initial pH of 5.06, the FeOCl/Ce-catalyzed PS system under visible light irradiation can degrade 91.2% of CAF within 30 min. An acidic environment is more favorable for CAF degradation, while the presence of SO42−, Cl, and NO3 inhibits the process performance to varying degrees, possibly due to competitive adsorption on the photocatalyst surface or quenching of reactive species. Cyclic stability tests show that FeOCl/Ce maintains good catalytic performance over multiple runs. Mechanistic analysis indicates that OH and holes are the dominant reactive species for CAF degradation, while PS mainly acts as an electron acceptor to suppress electron–hole recombination. Overall, the FeOCl/Ce photocatalytic system demonstrates high efficiency, good stability, and visible light responsiveness in CAF degradation, with potential applications for removing CAF and other emerging organic pollutants from aquatic environments. Full article
Show Figures

Figure 1

39 pages, 3494 KB  
Review
Iron Redox Cycling in Persulfate Activation: Strategic Enhancements, Mechanistic Insights, and Environmental Applications—A Review
by Zutao Zhang, Fengyang Du, Hongliang Shi, Huanzheng Du and Peiyuan Xiao
Nanomaterials 2025, 15(22), 1712; https://doi.org/10.3390/nano15221712 - 12 Nov 2025
Viewed by 209
Abstract
Iron-based catalysts for peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation represent a cornerstone of advanced oxidation processes (AOPs) in environmental remediation, prized for their cost-effectiveness, environmental compatibility, and high catalytic potential. These catalysts, including zero-valent iron, iron oxides, and iron-organic frameworks, activate PMS/PDS through [...] Read more.
Iron-based catalysts for peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation represent a cornerstone of advanced oxidation processes (AOPs) in environmental remediation, prized for their cost-effectiveness, environmental compatibility, and high catalytic potential. These catalysts, including zero-valent iron, iron oxides, and iron-organic frameworks, activate PMS/PDS through heterogeneous and homogeneous pathways to generate reactive species such as sulfate radicals (SO4) and hydroxyl radicals (•OH). However, their large-scale implementation is constrained by inefficient iron cycling, characterized by sluggish Fe3+/Fe2+ conversion and significant iron precipitation, leading to catalyst passivation and oxidant wastage. This comprehensive review systematically dissects innovative strategies to augment iron cycling efficiency, encompassing advanced material design through elemental doping, heterostructure construction, and defect engineering; system optimization via reductant incorporation, bimetallic synergy, and pH modulation; and external field assistance using light, electricity, or ultrasound. We present a mechanistic deep-dive into these approaches, emphasizing facilitated electron transfer, suppression of iron precipitation, and precise regulation of radical versus non-radical pathways. The performance in degrading persistent organic pollutants—including antibiotics, per- and polyfluoroalkyl substances (PFASs), and pesticides—in complex environmental matrices is critically evaluated. We further discuss practical challenges related to scalability, long-term stability, and secondary environmental risks. Finally, forward-looking directions are proposed, focusing on rational catalyst design, integration of sustainable processes, and scalable implementation, thereby providing a foundational framework for developing next-generation iron-persulfate catalytic systems. Full article
Show Figures

Figure 1

18 pages, 7072 KB  
Article
A 1D [Ni(L)(H2O)3]n·nH2O Coordination Polymer as a Dual Function Material for Antibiotic Detection and Dye Photo-Degradation
by Fengli Yu, Mingxuan Zhu, Xiaoyu Weng, Dazhi Sun, Xingyuan Yu, Jiazhen Shi, Zhifang Liu and Xiaoyang Yu
Molecules 2025, 30(22), 4366; https://doi.org/10.3390/molecules30224366 - 12 Nov 2025
Viewed by 100
Abstract
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), [...] Read more.
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), was synthesized employing 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoic acid (H2L). Single-crystal X-ray diffraction analysis showed that L2− ligands connect Ni2+ ions into 1D Z-shaped chains via two coordination modes. The chains are further assembled into a 3D supramolecular structure through hydrogen bonding interactions. The photocatalytic test showed that complex 1 could effectively degrade the organic dye methylene blue (MB). Under the conditions of catalyst dosage 5 mg, MB initial concentration 20 ppm and pH 7, the degradation efficiency reached 87.7% within 180 min. In addition, complex 1 can be used for the electrochemical detection of norfloxacin (NOR) by differential pulse voltammetry (DPV), exhibiting a linear response in the concentration range of 2–197 μM and the detection limit (LOD) of 1.74 μM. These results demonstrate that complex 1 has bifunctional properties of photocatalytic degradation of organic dyes and electrochemical sensing of antibiotic NOR, making it a promising candidate material for the synergistic treatment of complex pollutants. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

20 pages, 3073 KB  
Review
Recent Advances in Functional Nanomaterials for Enhancing Biopolymer-Based Active Food Packaging: A Review
by Rui Zhang, Chuanhuan Liu, Congyu Lin, Hong Zhang, Longwei Jiang and Yingzhu Liu
Gels 2025, 11(11), 905; https://doi.org/10.3390/gels11110905 - 11 Nov 2025
Viewed by 194
Abstract
Food packaging serves a pivotal role in daily life, facilitating the efficient transportation of food and extending its shelf life. Petroleum-derived plastic packaging is extensively employed; however, its non-biodegradable nature poses significant environmental pollution and ecological degradation. Natural polymers (e.g., proteins such as [...] Read more.
Food packaging serves a pivotal role in daily life, facilitating the efficient transportation of food and extending its shelf life. Petroleum-derived plastic packaging is extensively employed; however, its non-biodegradable nature poses significant environmental pollution and ecological degradation. Natural polymers (e.g., proteins such as gelatin and corn gluten protein; polysaccharides including pectin, chitosan, starch, cellulose, and alginate) and synthetic polymers (e.g., polyvinyl alcohol, polylactic acid, and polyhydroxyalkanoates) can be utilized to fabricate food packaging films, thereby achieving green and eco-friendly objectives. Nevertheless, the inferior mechanical strength and inadequate antibacterial activity of biopolymer-based packaging have restricted their practical applications. In recent years, nanomaterials (e.g., nanoparticles, nanotubes, nanofibers, and nanosheets) have been employed to enhance the performance of food packaging, emerging as a research hotspot. Notably, nanoparticles possess unique properties, including a high specific surface area, excellent dispersibility, and multifunctionality, which enables them to be easily incorporated into film matrices. Owing to their unique chemical structures, nanoparticles form strong interactions with film matrices, leading to a denser spatial structure. This not only markedly enhances the mechanical strength of the films, but also simultaneously improves their antibacterial and antioxidant capabilities. This review classifies and summarizes common nanomaterials based on their chemical compositions, providing a theoretical foundation and technical reference for the future development and application of nanomaterials in the field of bio-based active food packaging. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function (2nd Edition))
Show Figures

Figure 1

23 pages, 4775 KB  
Article
Standardized Dataset and Image-Subspace-Based Method for Strip-Mode Synthetic Aperture Radar Block-Type Radio Frequency Interference Suppression
by Fuping Fang, Sinong Quan, Shiqi Xing, Dahai Dai and Yuanrong Tian
Remote Sens. 2025, 17(22), 3688; https://doi.org/10.3390/rs17223688 - 11 Nov 2025
Viewed by 263
Abstract
Synthetic aperture radar (SAR), as a high-resolution microwave remote sensing imaging technology, plays an indispensable role in both military and civilian applications. However, in complex electromagnetic countermeasure environments, radio frequency interference (RFI) severely degrades SAR imaging quality. SAR anti-interference, as a countermeasure method, [...] Read more.
Synthetic aperture radar (SAR), as a high-resolution microwave remote sensing imaging technology, plays an indispensable role in both military and civilian applications. However, in complex electromagnetic countermeasure environments, radio frequency interference (RFI) severely degrades SAR imaging quality. SAR anti-interference, as a countermeasure method, has significantly practical values. Although deep learning-based anti-interference techniques have demonstrated notable advantages, two key issues remain unresolved: 1. Strong coupling between interference suppression and SAR imaging—most existing methods rely on raw echo data, leading to a complex processing pipeline and error accumulation. 2. Scarcity of labeled data—the lack of high-quality labeled data severely restricts model deployment. To address these challenges, this work constructs a standardized dataset and conducts comprehensive validation experiments based on this dataset. The main contributions are as follows: Firstly, this work establishes the mathematical model for block-type interference, laying a theoretical foundation for the subsequent construction of RFI-polluted data. Secondly, this work constructs a block-type interference dataset, which includes the labeled data constructed by our laboratory and open-source data from the Sentinel-1 satellites, providing reliable data support for deep learning. Thirdly, this work proposes an image subspace-based interference suppression method, which eliminates the dependence on raw echo data and significantly simplifies the processing pipeline. Finally, this work makes a fair comparison of the current works, summarizes the existing problems, and looks forward to possible future research directions. Full article
Show Figures

Figure 1

22 pages, 5100 KB  
Article
Fe-Doped g-C3N4 for Enhanced Photocatalytic Degradation of Brilliant Blue Dye
by Rongjun Su, Haoran Liang, Hao Jiang, Guangshan Zhang and Chunyan Yang
Water 2025, 17(22), 3220; https://doi.org/10.3390/w17223220 - 11 Nov 2025
Viewed by 245
Abstract
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H [...] Read more.
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H2O2 to produce •OH. In addition, the effective separation of e- and h+ by light strengthens the direct oxidation of h+, and h+ reacts directly with OH to produce •OH, which can further promote the removal of organic pollutants. In this paper, g-C3N4 and Fe/g-C3N4 photocatalysts were prepared by the thermal polycondensation method. Fe/g-C3N4 of 15 wt% can reach 98.59% under the best degradation environment, and the degradation rate of g-C3N4 is only 7.6% under the same conditions. The photocatalytic activity of the catalysts was further studied. Through active species capture experiments, it is known that •OH and •O2 are the main active species in the system, and the action intensity of •OH is greater than that of •O2. The degradation reaction mechanism is that H2O2 combines with Fe2+ in Fe/g-C3N4 to generate a large amount of •OH and Fe3+, and the combination of Fe-N bonds accelerates the cycle of Fe3+/Fe2+ and promotes the formation of •OH, thereby accelerating the degradation of target pollutants. •O2 can reduce Fe3+ to Fe2+, Fe2+ reacts with H2O2 to produce •OH, which promotes degradation, and •O2 itself also plays a role in degradation. In addition, under the optimal experimental conditions obtained by response surface experiments, the fitting degree of first-order reaction kinetics is 0.96642, and the fitting degree of second-order reaction kinetics is 0.57884. Therefore, this reaction is more in line with first-order reaction kinetics. The adsorption rate is only proportional to the concentration of Fe/g-C3N4. Full article
(This article belongs to the Special Issue Advanced Oxidation Technologies for Water and Wastewater Treatment)
Show Figures

Figure 1

11 pages, 1577 KB  
Article
Ce3+/Ce4+-Modified TiO2 Nanoflowers: Boosting Solar Photocatalytic Efficiency
by Beatrice Polido, Letizia Liccardo, Benedetta Cattaneo, Enrique Rodríguez-Castellón, Alberto Vomiero and Elisa Moretti
Catalysts 2025, 15(11), 1069; https://doi.org/10.3390/catal15111069 - 11 Nov 2025
Viewed by 226
Abstract
Cerium-doped titania nanoflowers are obtained by hydrothermal synthesis, with different amounts of cerium (0.3, 0.5, and 1.0 at%). Both undoped nanoflowers (TNF) and Ce-doped TNF (Cex) are tested as photocatalysts in the degradation of the target pollutant (metronidazole) under simulated solar [...] Read more.
Cerium-doped titania nanoflowers are obtained by hydrothermal synthesis, with different amounts of cerium (0.3, 0.5, and 1.0 at%). Both undoped nanoflowers (TNF) and Ce-doped TNF (Cex) are tested as photocatalysts in the degradation of the target pollutant (metronidazole) under simulated solar light. The samples are rutile polymorphs with high crystallinity and present a nanoflower-like morphology of about 1 µm in diameter and are made up of nanoscale petals (in the range of 100–300 nm). EDX spectroscopy was coupled with SEM and performed on the Ce-doped samples to determine the elemental composition of the catalysts and the Ce distribution in each sample. Optical and electronic spectroscopies reveal that Ce loading narrows the band gap from 3.0 to 2.8 eV, extending light absorption into the visible range of the spectrum and thus enhancing the photocatalytic activity. The best sample, Ce1, achieved 67% degradation of metronidazole after 360 min under solar irradiation at pH 4, compared to bare TNF, which reached 35%. Reusability tests confirm the chemical stability and photocatalytic efficiency of Ce1 over three cycles, and free-radical trapping experiments confirmed ·O2 and ·OH as major active species in metronidazole degradation. This study highlights the synergistic impact of morphology and doping on solar-driven organic pollutant degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

19 pages, 4141 KB  
Article
Eco Rehabilitation at Real Scale of a Water Stream with Acid Mine Drainage Traits
by Teresa Borralho, Renata A. Ferreira, Adelaide Almeida and Anabela Durão
Sustainability 2025, 17(22), 10064; https://doi.org/10.3390/su172210064 - 11 Nov 2025
Viewed by 137
Abstract
The Água Forte (AF) stream located in the Southern Alentejo region (Portugal), is a tributary of the Roxo river. The AF stream has acid mining drainage (AMD) traits, which contributes to the degradation of the river’s water quality and the adjacent soils. The [...] Read more.
The Água Forte (AF) stream located in the Southern Alentejo region (Portugal), is a tributary of the Roxo river. The AF stream has acid mining drainage (AMD) traits, which contributes to the degradation of the river’s water quality and the adjacent soils. The use of ecological floating beds (EFBs) is an eco-rehabilitation strategy for polluted waters. This work aimed to evaluate the application of EFBs at real-scale as a water treatment system for the AF stream. Thus, three EFB, planted with Vetiveria zizanioides (3.3 m2·unit−1; density 40.5 plants·m−2), were placed on the stream. The water quality was monitored monthly, upstream (Inlet) and downstream (Outlet) of EFBs, from May 2020 to November 2021. With the use of the EFBs, the pH remained acidic, and the other main parameters showed average removal rates of around: 8% organic matter; 7% sulphates; 4% chlorides; 18% nitrogen, 30% copper, 29% zinc, 53% iron, and 10% manganese. Inlet and Outlet mass loads correlations showed high removal diversity. For the parameters under analysis, during the treatment period, the removal efficiency showed high variability due to the hydraulic conditions. The higher removal efficiencies were obtained for low-hydraulic retention times, except for heavy metals. Overall, EFBs showed some potential, but their efficiency was variable, highlighting the need for optimization under variable hydraulic conditions. Full article
Show Figures

Figure 1

16 pages, 4432 KB  
Article
Enhancing Biofilm Performance and Ammonia Removal in MBBR Systems Using Nanobubble Aeration: A Pilot-Scale Experimental Study
by Putu Ayustin Suriasni, Ferry Faizal, Camellia Panatarani, Wawan Hermawan, Ujang Subhan, Fitrilawati Fitrilawati and I Made Joni
Water 2025, 17(22), 3215; https://doi.org/10.3390/w17223215 - 11 Nov 2025
Viewed by 270
Abstract
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the [...] Read more.
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the Moving Bed Biofilm Reactor (MBBR), with bubble aeration, is important for promoting ammonia degradation. Bubble size impacts the effectiveness of bubble aeration, influencing both oxygen transfer and microbial activity. This research involved a 35-day experiment to evaluate the effects of bubble size, produced by nanobubble and coarse bubble aerators, on biofilm development and TAN decrease. The maximum biofilm thickness of 172.88 µm was recorded during nanobubble aeration, which also produced a higher quantity of microbial colonies (293 × 107 CFU) in comparison to coarse bubble aeration (89 × 107 CFU), as validated by Total Plate Count analysis. SEM–EDX imaging additionally demonstrated a more compact and consistent biofilm structure in the presence of nanobubbles. These results align with an increased TAN degradation efficiency, achieving 83.33% with nanobubble aeration, while coarse bubble aeration reached only 50%. The findings indicate that nanobubble aeration enhances biofilm functionality by improving bacterial dispersion and oxygen availability within the biofilm matrix, thereby promoting a more uniform distribution of microorganisms and nutrients. This mechanism represents a promising approach for improving water quality and overall treatment efficiency in recirculating aquaculture systems (RAS). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 2065 KB  
Article
Detection, Quantification, and Characterisation of Microplastics in Maltese Bottled Water
by Josmar Camilleri, Anthea Agius Anastasi and Sophie Marie Briffa
Microplastics 2025, 4(4), 88; https://doi.org/10.3390/microplastics4040088 - 11 Nov 2025
Viewed by 268
Abstract
Plastics play a pivotal role in various industries owing to their versatility in engineering their physical, mechanical, and chemical properties while exploiting their remarkable durability, light-weight nature, and cost-effectiveness. Yet, their widespread use has led to the pollution of Earth’s water systems. Over [...] Read more.
Plastics play a pivotal role in various industries owing to their versatility in engineering their physical, mechanical, and chemical properties while exploiting their remarkable durability, light-weight nature, and cost-effectiveness. Yet, their widespread use has led to the pollution of Earth’s water systems. Over time, plastic waste degrades into microplastics, particles smaller than 5 mm. Recent studies have highlighted the growing concerns associated with microplastics, especially in bottled beverages, including bottled water, with associated hazards still in the very early stages of being fully understood. Furthermore, the global understanding of the extent of microplastic contamination in the environment and along the food chain remains limited. This study aimed to detect, quantify, and characterise microplastics in bottled drinking water produced and sold in Malta. Samples from five brands were filtered, stained with Nile red, and quantified using fluorescence microscopy. The average microplastic concentration was found to be 35,877 ± 23,542 particles per litre, with 84% of samples exhibiting contamination, which was noted to be statistically significant. The average particle diameter was measured to be 2.3696 ± 0.0035 µm. Raman spectroscopy was used to chemically characterise 10 larger particles per brand (i.e., 50 samples), identifying the presence of cellulose, polyurethane, polymethyl methacrylate, polyethylene, and smaller quantities of other polymers. Morphological analysis classified 36 of the larger particles as fragments and 14 as fibres. Excluding laboratory-introduced contamination, the primary source of microplastic contamination in the analysed bottled water was traced to the bottle caps. Full article
Show Figures

Figure 1

Back to TopTop