Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = polyNHC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2160 KB  
Article
Conformational Locking of the Geometry in Photoluminescent Cyclometalated N^C^N Ni(II) Complexes
by Maryam Niazi, Iván Maisuls, Lukas A. Mai, Sascha A. Schäfer, Alex Oster, Lukas Santiago Diaz, Dirk M. Guldi, Nikos L. Doltsinis, Cristian A. Strassert and Axel Klein
Molecules 2025, 30(9), 1901; https://doi.org/10.3390/molecules30091901 - 24 Apr 2025
Cited by 1 | Viewed by 787
Abstract
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding [...] Read more.
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding amine groups (NH(C₆H₅) (LNHPh) and NH(C₆H₅CH₂), ClLNHBn). Molecular structures determined from experimental X-ray diffractometry and density functional theory (DFT) calculations in the ground state showed marked deviation of the Cl coligand (ancillary ligand) from the ideal planar coordination, with τ4 values of 0.35 and 0.33, respectively, along with hydrogen bonding interactions of the ligand NH function with the Cl coligand. The complexes exhibit long-wavelength absorption bands at approximately 425 nm in solution, with the experimental spectra being accurately reproduced through time-dependent density functional theory (TD-DFT) calculations. Vibrationally structured emission profiles and steady-state photoluminescence quantum yields of 30% for [Ni(LNHPh)Cl] and 40% for [Ni(LNHBn)Cl] (along with dual excited state lifetimes in the ns and in the ms range) were found in frozen 2-methyl-tetrahydrofuran (2MeTHF) glassy matrices at 77 K. Furthermore, within a poly(methyl methacrylate) matrix, the complexes showed emission bands centered at around 550 nm within a temperature range from 6 K to 300 K with lifetimes similar to 77 K. Based on TD-DFT potential scans along the metal–ligand (Ni–N) coordinate, we found that in a rigid environment that restricts the geometry to the Franck-Condon region, either the triplet T5 or the singlet S4 state could contribute to the photoluminescence. Full article
Show Figures

Graphical abstract

12 pages, 3655 KB  
Article
NHC Polymeric Particles Obtained by Self-Assembly and Click Approach of Calix[4]Arene Amphiphiles as Support for Catalytically Active Pd Nanoclusters
by Vladimir Burilov, Diana Mironova, Elsa Sultanova, Ramila Garipova, Vladimir Evtugyn, Svetlana Solovieva and Igor Antipin
Molecules 2021, 26(22), 6864; https://doi.org/10.3390/molecules26226864 - 14 Nov 2021
Cited by 7 | Viewed by 2751
Abstract
A new polymeric NHC carrier was synthesized by sequential supramolecular self-assembly and copper-catalyzed azide-alkyne cycloaddition (CuAAC) of amphiphilic imidazolium calix[4]arenes with octyl lipophilic fragments. Obtained polytriazole-imidazolium particles were found as monodisperse submicron particles, with the average diameter of 236 ± 34 nm and [...] Read more.
A new polymeric NHC carrier was synthesized by sequential supramolecular self-assembly and copper-catalyzed azide-alkyne cycloaddition (CuAAC) of amphiphilic imidazolium calix[4]arenes with octyl lipophilic fragments. Obtained polytriazole-imidazolium particles were found as monodisperse submicron particles, with the average diameter of 236 ± 34 nm and average molecular weight of 1380 ± 96 kDa. Successful CuAAC polymerization has been proved using IR spectroscopy and high-resolution ESI mass spectrometry. Polymeric particles, as well as aggregates made from precursor macrocycles, were decorated by Pd clusters (2 nm) for further catalytic investigations. Pd nanoclusters, supported on the polymeric surface, were found highly catalytically active in the model reduction of p-nitrophenol, giving reaction rates an order of magnitude higher compared to literature examples. The reaction was recycled using the same catalyst five times without any loss of activity. Full article
(This article belongs to the Special Issue Synthesis and Molecular Recognition of Macrocyclic Compounds)
Show Figures

Figure 1

17 pages, 8361 KB  
Article
Poly(imidazolium) Carbosilane Dendrimers: Synthesis, Catalytic Activity in Redox Esterification of α,β-Unsaturated Aldehydes and Recycling via Organic Solvent Nanofiltration
by Alena Krupková, Klára Kubátová, Lucie Červenková Šťastná, Petra Cuřínová, Monika Müllerová, Jindřich Karban, Jan Čermák and Tomáš Strašák
Catalysts 2021, 11(11), 1317; https://doi.org/10.3390/catal11111317 - 29 Oct 2021
Cited by 6 | Viewed by 2399
Abstract
Three series of poly(ionic) carbosilane dendrimers peripherally functionalized with imidazolium groups substituted on N-3 with methyl, isopropyl and 2,6-diisopropylphenyl (Dipp) were prepared up to the 3rd generation together with model monovalent imidazolium iodides and used as N-heterocyclic carbene (NHC) precursors. Catalytic activity of [...] Read more.
Three series of poly(ionic) carbosilane dendrimers peripherally functionalized with imidazolium groups substituted on N-3 with methyl, isopropyl and 2,6-diisopropylphenyl (Dipp) were prepared up to the 3rd generation together with model monovalent imidazolium iodides and used as N-heterocyclic carbene (NHC) precursors. Catalytic activity of model and dendritic NHCs generated in situ by deprotonation with DBU was tested in redox esterification of α,β-unsaturated aldehydes and the influence of substitution, dendrimer generation, temperature and substrate structure on the reaction outcome was evaluated. Dipp substituted NHCs showed high activity and selectivity in the reaction with primary alcohols. Effectiveness of organic solvent nanofiltration for the recycling of dendritic NHCs was demonstrated on the 1st generation Dipp substituted catalyst in model redox esterification of cinnamaldehyde with benzyl alcohol. A marked increase in both activity and selectivity in the first four reaction runs was observed and this improved performance was preserved in the following catalytic cycles. Full article
Show Figures

Graphical abstract

10 pages, 1755 KB  
Article
N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids
by Kuen Hee Eom, Seokhyeon Baek and Il Kim
Polymers 2021, 13(21), 3674; https://doi.org/10.3390/polym13213674 - 25 Oct 2021
Cited by 1 | Viewed by 2956
Abstract
Synthetic polypeptides prepared from N-carboxyanhydrides (NCAs) of α-amino acids are useful for elucidating the relationship between the primary structure of natural peptides and their immunogenicity. In this study, complex copolypeptide sequences were prepared using a recently developed technique; specifically, the random copolymerization [...] Read more.
Synthetic polypeptides prepared from N-carboxyanhydrides (NCAs) of α-amino acids are useful for elucidating the relationship between the primary structure of natural peptides and their immunogenicity. In this study, complex copolypeptide sequences were prepared using a recently developed technique; specifically, the random copolymerization of l-alanine NCA with NCAs of l-glutamic acid 5-benzylester (Bn-Glu NCA), S-benzyl-cysteine (Bn-Cys NCA), O-benzyl-l-serine (Bn-Ser NCA), and l-phenylalanine (Phe NCA) was performed using N-heterocyclic carbene (NHC) catalysts. The NHC-initiated Ala NCA/Bn-Glu NCA and Ala NCA/Bn-Cys NCA copolymerization reactions achieved 90% conversion within 30 min. The reactivity ratio values estimated using the Kelen and Tüdos method show that poly(Bn-Glu-co-Ala) and poly(Bn-Cys-co-Ala) have random repeating units with rich alternating sequences, whereas poly(Bn-Ser-co-Ala) and poly(Phe-co-Ala) contain a larger proportion of Ala-repeating units than Bn-Ser and Phe in random placement. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Korea (2020,2021))
Show Figures

Graphical abstract

18 pages, 7039 KB  
Review
Towards Dual-Metal Catalyzed Hydroalkoxylation of Alkynes
by Oscar F. González-Belman, Artur Brotons-Rufes, Michele Tomasini, Laura Falivene, Lucia Caporaso, Jose Oscar C. Jiménez-Halla and Albert Poater
Catalysts 2021, 11(6), 704; https://doi.org/10.3390/catal11060704 - 2 Jun 2021
Cited by 14 | Viewed by 4516
Abstract
Poly (vinyl ethers) are compounds with great value in the coating industry due to exhibiting properties such as high viscosity, soft adhesiveness, resistance to saponification and solubility in water and organic solvents. However, the main challenge in this field is the synthesis of [...] Read more.
Poly (vinyl ethers) are compounds with great value in the coating industry due to exhibiting properties such as high viscosity, soft adhesiveness, resistance to saponification and solubility in water and organic solvents. However, the main challenge in this field is the synthesis of vinyl ether monomers that can be synthetized by methodologies such as vinyl transfer, reduction of vinyl phosphate ether, isomerization, hydrogenation of acetylenic ethers, elimination, addition of alcohols to alkyne species etc. Nevertheless, the most successful strategy to access to vinyl ether derivatives is the addition of alcohols to alkynes catalyzed by transition metals such as molybdenum, tungsten, ruthenium, palladium, platinum, gold, silver, iridium and rhodium, where gold-NHC catalysts have shown the best results in vinyl ether synthesis. Recently, the hydrophenoxylation reaction was found to proceed through a digold-assisted process where the species that determine the rate of the reaction are PhO-[Au(IPr)] and alkyne-[Au(IPr)]. Later, the improvement of the hydrophenoxylation reaction by using a mixed combination of Cu-NHC and Au-NHC catalysts was also reported. DFT studies confirmed a cost-effective method for the hydrophenoxylation reaction and located the rate-determining step, which turned out to be quite sensitive to the sterical hindrance due to the NHC ligands. Full article
Show Figures

Graphical abstract

17 pages, 2073 KB  
Article
On the Different Mode of Action of Au(I)/Ag(I)-NHC Bis-Anthracenyl Complexes Towards Selected Target Biomolecules
by Francesca Binacchi, Federica Guarra, Damiano Cirri, Tiziano Marzo, Alessandro Pratesi, Luigi Messori, Chiara Gabbiani and Tarita Biver
Molecules 2020, 25(22), 5446; https://doi.org/10.3390/molecules25225446 - 20 Nov 2020
Cited by 17 | Viewed by 3369
Abstract
Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the [...] Read more.
Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides (single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations, mass spectrometry together with melting and viscometry tests show significant differences in the binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a mechanism where intercalation plays the major role, but groove binding is also operative. The absence of an interaction with triplexes indicates the major role played by the geometrical constraints to drive the binding mode. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 2374 KB  
Article
Synthesis and Reactivity of Poly(propyleneimine) Dendrimers Functionalized with Cyclopentadienone N-Heterocyclic-Carbene Ruthenium(0) Complexes
by Cristiana Cesari, Riccardo Conti, Andrea Cingolani, Valerio Zanotti, Maria Cristina Cassani, Luca Rigamonti and Rita Mazzoni
Catalysts 2020, 10(2), 264; https://doi.org/10.3390/catal10020264 - 22 Feb 2020
Cited by 11 | Viewed by 3903
Abstract
Ligand design in metal chemistry is a fundamental step when pursuing compounds with specific reactivity. In this paper, the functionalization of the OH group in the lateral chain of the N-heterocyclic-carbene (NHC) ligand bound to a bis-carbonyl cyclopentadienone NHC ruthenium(0) complex [...] Read more.
Ligand design in metal chemistry is a fundamental step when pursuing compounds with specific reactivity. In this paper, the functionalization of the OH group in the lateral chain of the N-heterocyclic-carbene (NHC) ligand bound to a bis-carbonyl cyclopentadienone NHC ruthenium(0) complex allowed the decoration of five generations of poly(propyleneimine) (PPIs) dendrimers with up to 64 organometallic moieties. The coupling was achieved by employing carbonyldiimidazole and the formation of carbamate linkages between dendritic peripheral NH2 and lateral OH groups on ruthenium complexes. The synthetic procedure, chemical purification, and spectroscopic characterization of the five generations of dendrimers (3g15) are here described. The ruthenium-modified dendrimers were activated as catalysts in the transfer hydrogenation of the model compound 4-fluoroacetophenone in the presence of cerium ammonium nitrate as their mononuclear congeners. The catalytic activity, being similar for the five generations, shows a decrease if compared to mononuclear complexes. This detrimental effect might be ascribed to the –CH2NH– functionalization, largely present in dendrimer skeleton and that can compete with the hydrogen transfer mechanism, but also partially to a dendritic effect caused by steric encumbrance. Full article
(This article belongs to the Special Issue Ligand Design in Metal Chemistry: Reactivity and Catalysis)
Show Figures

Graphical abstract

10 pages, 1260 KB  
Communication
Ruthenium-Based Catalytic Systems Incorporating a Labile Cyclooctadiene Ligand with N-Heterocyclic Carbene Precursors for the Atom-Economic Alcohol Amidation Using Amines
by Cheng Chen, Yang Miao, Kimmy De Winter, Hua-Jing Wang, Patrick Demeyere, Ye Yuan and Francis Verpoort
Molecules 2018, 23(10), 2413; https://doi.org/10.3390/molecules23102413 - 20 Sep 2018
Cited by 14 | Viewed by 4680
Abstract
Transition-metal-catalyzed amide-bond formation from alcohols and amines is an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates, including sterically hindered ones, could be directly transformed into [...] Read more.
Transition-metal-catalyzed amide-bond formation from alcohols and amines is an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates, including sterically hindered ones, could be directly transformed into the corresponding amides with the catalyst loading as low as 0.25 mol.%. In this system, we replaced the p-cymene ligand of the Ru source with a relatively labile cyclooctadiene (cod) ligand so as to more efficiently obtain the corresponding poly-carbene Ru species. Expectedly, the weaker cod ligand could be more easily substituted with multiple mono-NHC ligands. Further high-resolution mass spectrometry (HRMS) analyses revealed that two tetra-carbene complexes were probably generated from the in situ catalytic system. Full article
(This article belongs to the Special Issue Amide Bond Activation)
Show Figures

Graphical abstract

20 pages, 12400 KB  
Article
Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor
by Yang Wang, Miao Hong, Travis S. Bailey and Eugene Y.-X. Chen
Molecules 2017, 22(9), 1564; https://doi.org/10.3390/molecules22091564 - 18 Sep 2017
Cited by 6 | Viewed by 6585
Abstract
A synthetic method that taps into the facile Lewis base (LB)→Lewis acid (LA) adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The [...] Read more.
A synthetic method that taps into the facile Lewis base (LB)→Lewis acid (LA) adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene) (P3HT) macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC) LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells. Full article
Show Figures

Graphical abstract

Back to TopTop