Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = polyextreme condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3942 KB  
Article
Quantitative Evaluation of Endogenous Reference Genes for RT-qPCR and ddPCR Gene Expression Under Polyextreme Conditions Using Anaerobic Halophilic Alkalithermophile Natranaerobius thermophilus
by Xinyi Tao, Qinghua Xing, Yingjie Zhang, Belsti Atnkut, Haozhuo Wei, Silva Ramirez, Xinwei Mao and Baisuo Zhao
Microorganisms 2025, 13(8), 1721; https://doi.org/10.3390/microorganisms13081721 - 23 Jul 2025
Viewed by 469
Abstract
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability [...] Read more.
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability of eight candidate RGs in the anaerobic halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT under combined salt, alkali, and thermal stresses. The stability of these candidate RGs was assessed using five statistical algorithms: Delta CT, geNorm, NormFinder, BestKeeper, and RefFinder. Results indicated that recA exhibited the highest expression stability across all tested conditions and proved adequate as a single RG for normalization in both RT-qPCR and droplet digital PCR (ddPCR) assays. Furthermore, recA alone or combined with other RGs (sigA, rsmH) effectively normalized the expression of seven stress-response genes (proX, opuAC, mnhE, nhaC, trkH, ducA, and pimT). This work represents the first systematic validation of RGs under polyextreme stress conditions, providing essential guidelines for future gene expression studies in extreme environments and aiding research on microbial adaptation mechanisms in halophilic, alkaliphilic, and thermophilic microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 7933 KB  
Article
Strategies of Environmental Adaptation in the Haloarchaeal Genera Haloarcula and Natrinema
by Dáša Straková, Cristina Sánchez-Porro, Rafael R. de la Haba and Antonio Ventosa
Microorganisms 2025, 13(4), 761; https://doi.org/10.3390/microorganisms13040761 - 27 Mar 2025
Cited by 1 | Viewed by 861
Abstract
Haloarchaea, a group of extremophilic archaea, thrive in hypersaline environments characterized not only by high salinity but also by other extreme conditions, such as intense UV radiation, high osmotic pressure, heavy metal contamination, oxidative stress, and fluctuating temperatures. This study investigates the environmental [...] Read more.
Haloarchaea, a group of extremophilic archaea, thrive in hypersaline environments characterized not only by high salinity but also by other extreme conditions, such as intense UV radiation, high osmotic pressure, heavy metal contamination, oxidative stress, and fluctuating temperatures. This study investigates the environmental adaptation strategies of species of two genera, Haloarcula and Natrinema, the second and third largest haloarchaeal genera, respectively, after Halorubrum. Comparative genomic analyses were conducted on 48 species from both genera to elucidate their genomic diversity, metabolic potential, and stress-tolerance mechanisms. The genomes revealed diverse metabolic pathways, including rhodopsin-mediated phototrophy, nitrogen assimilation, and thiamine biosynthesis, which support their survival and adaptation to extreme conditions. The analysis identified mechanisms for oxidative stress mitigation, DNA repair, “salt-in” and “salt-out” osmoregulatory strategies, adaptations to temperature shifts and heavy metal exposure, and immune defense. Experimental validation of four representative species, Haloarcula terrestris S1AR25-5AT, Haloarcula saliterrae S1CR25-12T, Haloarcula onubensis S3CR25-11T, and Natrinema salsiterrestre S1CR25-10T, isolated from the heavy-metal-rich hypersaline soils in the Odiel Saltmarshes (Huelva, Spain), demonstrated their tolerance, especially to arsenic, corroborating genomic predictions. This study advances our understanding of the resilience of haloarchaea under poly-extreme conditions and underscores their ecological significance and promise for biotechnological applications, such as the bioremediation of heavy-metal-polluted environments and the production of valuable biomolecules. Full article
(This article belongs to the Special Issue Halophilic Microorganisms, 3rd Edition)
Show Figures

Figure 1

15 pages, 1505 KB  
Article
Isolation of Thermophilic Bacteria from Extreme Environments in Northern Chile
by Bernardita Valenzuela, Francisco Solís-Cornejo, Rubén Araya and Pedro Zamorano
Microorganisms 2024, 12(3), 473; https://doi.org/10.3390/microorganisms12030473 - 27 Feb 2024
Cited by 8 | Viewed by 5025
Abstract
The northern region of Chile boasts unique geographical features that support the emergence of geothermal effluents, salt lagoons, and coastal creeks. These extreme climate conditions create polyextreme habitats for microorganisms, particularly adapted to survive these harsh environments. These extremophilic microorganisms hold immense potential [...] Read more.
The northern region of Chile boasts unique geographical features that support the emergence of geothermal effluents, salt lagoons, and coastal creeks. These extreme climate conditions create polyextreme habitats for microorganisms, particularly adapted to survive these harsh environments. These extremophilic microorganisms hold immense potential as a source of hydrolytic enzymes, among other biotechnological applications. In this study, we isolated 15 strains of aerobic thermophilic bacteria (45–70 °C) from sediment samples collected at five different ecological sites, including hot springs, geothermal fields, and lagoons in the Atacama Desert and Andes high planes. Analyses of the 16S rRNA gene sequences of the isolates showed a close genetic similarity (98–100%) with microorganisms of the genera Parageobacillus, Geobacillus, Anoxybacillus, and Aeribacillus. Notably, these thermophiles exhibited significant hydrolytic enzyme activity, particularly amylases, lipases, and proteases. These findings underscore the potential of using these thermophilic bacterial strains as an invaluable source of thermozymes with wide-ranging applications in diverse industries, such as detergent formulations, pharmaceutical processing, and food technology. This research highlights the ecological significance of these extreme environments in the Atacama Desert and Andes high plains, which serve as vital ecological niches housing extremophilic bacteria as a genetic source of relevant thermozymes, promising great potential for innovation in the biotechnology industry. Full article
(This article belongs to the Special Issue Bacterial and Antibiotic Resistance in the Environment)
Show Figures

Figure 1

27 pages, 11834 KB  
Article
Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert
by Smail Mehda, Maria Ángeles Muñoz-Martín, Mabrouka Oustani, Baelhadj Hamdi-Aïssa, Elvira Perona and Pilar Mateo
Microorganisms 2021, 9(3), 487; https://doi.org/10.3390/microorganisms9030487 - 25 Feb 2021
Cited by 30 | Viewed by 5480
Abstract
The Sahara Desert is characterized by extreme environmental conditions, which are a unique challenge for life. Cyanobacteria are key players in the colonization of bare soils and form assemblages with other microorganisms in the top millimetres, establishing biological soil crusts (biocrusts) that cover [...] Read more.
The Sahara Desert is characterized by extreme environmental conditions, which are a unique challenge for life. Cyanobacteria are key players in the colonization of bare soils and form assemblages with other microorganisms in the top millimetres, establishing biological soil crusts (biocrusts) that cover most soil surfaces in deserts, which have important roles in the functioning of drylands. However, knowledge of biocrusts from these extreme environments is limited. Therefore, to study cyanobacterial community composition in biocrusts from the Sahara Desert, we utilized a combination of methodologies in which taxonomic assignation, for next-generation sequencing of soil samples, was based on phylogenetic analysis (16S rRNA gene) in parallel with morphological identification of cyanobacteria in natural samples and isolates from certain locations. Two close locations that differed in microenvironmental conditions were analysed. One was a dry salt lake (a “chott”), and the other was an extension of sandy, slightly saline soil. Differences in cyanobacterial composition between the sites were found, with a clear dominance of Microcoleus spp. in the less saline site, while the chott presented a high abundance of heterocystous cyanobacteria as well as the filamentous non-heterocystous Pseudophormidium sp. and the unicellular cf. Acaryochloris. The cyanobacteria found in our study area, such as Microcoleus steenstrupii, Microcoleus vaginatus, Scytonema hyalinum, Tolypothrix distorta, and Calothrix sp., are also widely distributed in other geographic locations around the world, where the conditions are less severe. Our results, therefore, indicated that some cyanobacteria can cope with polyextreme conditions, as confirmed by bioassays, and can be considered extremotolerant, being able to live in a wide range of conditions. Full article
Show Figures

Figure 1

20 pages, 6102 KB  
Article
Aquatic Thermal Reservoirs of Microbial Life in a Remote and Extreme High Andean Hydrothermal System
by Vilma Pérez, Johanna Cortés, Francisca Marchant, Cristina Dorador, Verónica Molina, Marcela Cornejo-D’Ottone, Klaudia Hernández, Wade Jeffrey, Sergio Barahona and Martha B. Hengst
Microorganisms 2020, 8(2), 208; https://doi.org/10.3390/microorganisms8020208 - 3 Feb 2020
Cited by 7 | Viewed by 4358
Abstract
Hydrothermal systems are ideal to understand how microbial communities cope with challenging conditions. Lirima, our study site, is a polyextreme, high-altitude, hydrothermal ecosystem located in the Chilean Andean highlands. Herein, we analyze the benthic communities of three nearby springs in a gradient of [...] Read more.
Hydrothermal systems are ideal to understand how microbial communities cope with challenging conditions. Lirima, our study site, is a polyextreme, high-altitude, hydrothermal ecosystem located in the Chilean Andean highlands. Herein, we analyze the benthic communities of three nearby springs in a gradient of temperature (42–72 °C represented by stations P42, P53, and P72) and pH, and we characterize their microbial diversity by using bacteria 16S rRNA (V4) gene metabarcoding and 16S rRNA gene clone libraries (bacteria and archaea). Bacterial clone libraries of P42 and P53 springs showed that the community composition was mainly represented by phototrophic bacteria (Chlorobia, 3%, Cyanobacteria 3%, at P42; Chlorobia 5%, and Chloroflexi 5% at P53), Firmicutes (32% at P42 and 43% at P53) and Gammaproteobacteria (13% at P42 and 29% at P53). Furthermore, bacterial communities that were analyzed by 16S rRNA gene metabarcoding were characterized by an overall predominance of Chloroflexi in springs with lower temperatures (33% at P42), followed by Firmicutes in hotter springs (50% at P72). The archaeal diversity of P42 and P53 were represented by taxa belonging to Crenarchaeota, Diapherotrites, Nanoarchaeota, Hadesarchaeota, Thaumarchaeota, and Euryarchaeota. The microbial diversity of the Lirima hydrothermal system is represented by groups from deep branches of the tree of life, suggesting this ecosystem as a reservoir of primitive life and a key system to study the processes that shaped the evolution of the biosphere. Full article
(This article belongs to the Special Issue Microbial Diversity in Extreme Environments)
Show Figures

Figure 1

Back to TopTop