Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (403)

Search Parameters:
Keywords = polypropylene particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14183 KB  
Article
The Exposure to Polypropylene Micro- and Nanoplastics Impairs Wound Healing and Tissue Regeneration in the Leech Hirudo verbana
by Camilla Bon, Alice Maretti, Laura Pulze, Nicolò Paris, Orlando Santoro, Stefania Pragliola, Lorella Izzo, Nicolò Baranzini and Annalisa Grimaldi
Microplastics 2025, 4(3), 56; https://doi.org/10.3390/microplastics4030056 - 27 Aug 2025
Viewed by 311
Abstract
Plastic pollution represents a persistent global issue, with catastrophic effects on ecosystems. Due to unique properties, these synthetic materials do not break down into biodegradable compounds when naturally dispersed, but degrade into smaller fragments, known as micro- (MPs) and nanoplastics (NPs), that easily [...] Read more.
Plastic pollution represents a persistent global issue, with catastrophic effects on ecosystems. Due to unique properties, these synthetic materials do not break down into biodegradable compounds when naturally dispersed, but degrade into smaller fragments, known as micro- (MPs) and nanoplastics (NPs), that easily enter the food chain. Among plastics, polypropylene (PP) is one of the most common, whose consumption has dramatically increased in recent years for single-use packaging and surgical masks. In this context, given the widespread detection of PP-MPs and NPs in various biological matrices, investigating their toxicity in living organisms is crucial. For these reasons, this study aims to assess how PP-MPs and NPs affect tissue regeneration following injury, proposing the freshwater leech Hirudo verbana as an established experimental model. Injured leeches were examined at different time points after plastic administration, and analyses were conducted using microscopy, immunofluorescence, and molecular biology techniques. The results demonstrate that plastic exposure induces fibrosis, disrupts tissue reorganization, delays wound repair, and activates the innate immune and oxidative stress responses. In summary, this project provides new insight into the adverse effects of PP particles on living organisms, highlighting for the first time their negative impact on proper tissue regeneration. Full article
Show Figures

Figure 1

22 pages, 2142 KB  
Article
Microplastic Distribution in a Small-Scale Aquatic System with Limited Anthropogenic Influence: A Case Study in Sasebo City, Japan
by Huiho Jeong, Daigo Fukuda, Ahmed Elwaleed, Quynh Thi Nguyen, Pyae Sone Soe, Byeong Kyu Min, Hyeon Seo Cho, Tetsuro Agusa and Yasuhiro Ishibashi
Microplastics 2025, 4(3), 55; https://doi.org/10.3390/microplastics4030055 - 26 Aug 2025
Viewed by 693
Abstract
This study presents the first investigation into the distribution of microplastics (MPs) in Sasebo City, Japan, using principal component analysis (PCA) in conjunction with water flow velocity and salinity variables. The mean MP abundance was 82.4 ± 47.7 items/m3 (SSB1–SSB4), showing no [...] Read more.
This study presents the first investigation into the distribution of microplastics (MPs) in Sasebo City, Japan, using principal component analysis (PCA) in conjunction with water flow velocity and salinity variables. The mean MP abundance was 82.4 ± 47.7 items/m3 (SSB1–SSB4), showing no significant difference among sampling points. The fragment-to-fiber ratio was 76:24, and polypropylene and polyethylene (each 41%) were the main polymers. Fragment abundance increased with decreasing particle size, while fibers were rare below 700 μm. PCA indicated distinct MP polymer and shape distributions corresponding to stagnant water (SSB1), high-flow conditions (SSB2 and SSB3), and seawater (SSB4). Based on the literature, the study area represents a case of a small-scale aquatic system with limited anthropogenic influence due to moderate population, short river length, efficient effluent discharge, minimal industry, good water quality, and the absence of significant spatial variation in MP abundance. The infrequent precipitation during the sampling event supports the findings of the present study as a reliable baseline for objectively assessing MP contamination. Compared to aquatic systems of varying scales and anthropogenic influence, this baseline is applicable to both small-scale and large-scale aquatic systems with significant influences. This will serve as a valuable reference for future MP studies across diverse freshwater environments. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

26 pages, 7205 KB  
Article
Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites
by Ilnur Fayzullin, Aleksandr Gorbachev, Svetoslav Volfson, Gulnur Zhakypova, Saken Uderbayev, Abdirakym Nakyp and Nurgali Akylbekov
J. Compos. Sci. 2025, 9(8), 443; https://doi.org/10.3390/jcs9080443 - 17 Aug 2025
Viewed by 553
Abstract
This study investigates the effect of rice husk content (0–60 wt.%) on the thermal, mechanical and rheological properties of polypropylene composites prepared by extrusion and injection molding. A temperature-invariant approach was applied to analyze the viscoelastic properties, allowing the combination of data obtained [...] Read more.
This study investigates the effect of rice husk content (0–60 wt.%) on the thermal, mechanical and rheological properties of polypropylene composites prepared by extrusion and injection molding. A temperature-invariant approach was applied to analyze the viscoelastic properties, allowing the combination of data obtained at different temperatures. The results show that as the husk content increases, the elastic modulus and hardness rise linearly, while the impact strength and elongation at break significantly decrease. Composites with 40–50% filler exhibit a balanced combination of strength and stiffness, as confirmed by the summary data in the table (provide references). The application of the temperature-invariant viscosity method confirmed its effectiveness in evaluating the flow properties of composite melts. The obtained results have practical significance for the development of eco-friendly polymer materials with natural fiber fillers. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

27 pages, 4903 KB  
Article
Biodegradation in Freshwater: Comparison Between Compostable Plastics and Their Biopolymer Matrices
by Valerio Bocci, Martina De Vivo, Sara Alfano, Simona Rossetti, Francesca Di Pippo, Loris Pietrelli and Andrea Martinelli
Polymers 2025, 17(16), 2236; https://doi.org/10.3390/polym17162236 - 17 Aug 2025
Viewed by 719
Abstract
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem [...] Read more.
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem of two compostable items, Mater-Bi® shopping bag and disposable dish, with their respective pure polymer matrices, poly(butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA). Additionally, biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and oil-based polypropylene (PP) were also tested. Changes in morphology, chemical composition and thermal and mechanical properties, as well as microbial colonization, were analyzed over time. A validated cleaning protocol was employed to ensure accurate surface analysis. Results showed detectable but limited degradation of pure polymers and their matrices in commercial products after 120 days of immersion with variations observed among polymer materials. Compostable materials exhibited significant leaching of fillers (starch, inorganic particles), leading to morphological changes and fragmentation. PHBV showed the fastest degradation among tested polyesters. PP exhibited only minor surface changes. Microbial colonization varied with polymer structure and degradability, but long-term degradation was limited by polymer properties and the gradual development of the plastisphere. This study highlights that standard laboratory tests may overestimate the environmental degradability of BPs and emphasizes the importance of in situ assessments, careful cleaning procedures and property characterizations to accurately assess polymer degradation in freshwater systems. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

33 pages, 11892 KB  
Article
Experimental Study on Mechanical Properties of Waste Steel Fiber Polypropylene (EPP) Concrete
by Yanyan Zhao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(15), 2680; https://doi.org/10.3390/buildings15152680 - 29 Jul 2025
Viewed by 364
Abstract
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) [...] Read more.
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) to enhance its strength and toughness. Using the volume fractions of EPP and WSF as variables, specimens of EPP concrete (EC) and waste steel fiber-reinforced EPP concrete (WSFREC) were prepared and subjected to cube compressive strength tests, splitting tensile strength tests, and four-point flexural strength tests. The results indicate that EPP particles significantly improve the toughness of concrete but inevitably lead to a considerable reduction in strength. The incorporation of WSF substantially enhanced the splitting tensile strength and flexural strength of EC, with increases of at least 37.7% and 34.5%, respectively, while the improvement in cube compressive strength was relatively lower at only 23.6%. Scanning electron microscopy (SEM) observations of the interfacial transition zone (ITZ) and WSF surface morphology in WSFREC revealed that the addition of EPP particles introduces more defects in the concrete matrix. However, the inclusion of WSF promotes the formation of abundant hydration products on the fiber surface, mitigating matrix defects, improving the bond between WSF and the concrete matrix, effectively inhibiting crack propagation, and enhancing both the strength and toughness of the concrete. Full article
Show Figures

Figure 1

33 pages, 3709 KB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Viewed by 683
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Graphical abstract

23 pages, 1285 KB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 887
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

16 pages, 3058 KB  
Article
A Study on Microplastic Emission from Disposable Straws and Its Dietary Relevance
by Bangyuan Peng and Shengwang Yu
Microplastics 2025, 4(3), 42; https://doi.org/10.3390/microplastics4030042 - 17 Jul 2025
Viewed by 1125
Abstract
This study systematically investigates microplastic (MP) release from polypropylene (PP) and polylactic acid (PLA) straws across beverage matrices (deionized water, cola, and skim milk) under thermal variations. A laboratory simulation system was developed to quantify MP release at ambient temperature (25 °C) and [...] Read more.
This study systematically investigates microplastic (MP) release from polypropylene (PP) and polylactic acid (PLA) straws across beverage matrices (deionized water, cola, and skim milk) under thermal variations. A laboratory simulation system was developed to quantify MP release at ambient temperature (25 °C) and characterize size reduction across thermal gradients (25 °C, 45 °C, and 65 °C). The integrated analytical approaches combining Fourier-transform infrared spectroscopy (FTIR), micro-FTIR, scanning electron microscopy (SEM), and optical microscopy were employed to systematically quantify and characterize MPs in terms of abundance, morphological features, and polymer composition. The findings reveal that PP straws released significantly higher MP quantities (26–28 particles/straw) than PLA counterparts (18–26 particles/straw) at 25 °C, with a pronounced burst release phase occurring within the initial 5 min of usage of straws. Thermal escalation experiments demonstrated progressive MP size reduction for both PP and PLA groups, with elevated temperatures inducing particles into smaller particles. Full article
Show Figures

Figure 1

17 pages, 2554 KB  
Article
Pilot Study of Microplastics in Snow from the Zhetysu Region (Kazakhstan)
by Azamat Madibekov, Laura Ismukhanova, Christian Opp, Botakoz Sultanbekova, Askhat Zhadi, Renata Nemkaeva and Aisha Madibekova
Appl. Sci. 2025, 15(14), 7736; https://doi.org/10.3390/app15147736 - 10 Jul 2025
Viewed by 813
Abstract
The pilot study is devoted to the assessment of both the accumulation and spatial distribution of microplastics in the snow cover of the Zhetysu region. The height of snow cover in the study area varied from 4.0 to 80.5 cm, with a volume [...] Read more.
The pilot study is devoted to the assessment of both the accumulation and spatial distribution of microplastics in the snow cover of the Zhetysu region. The height of snow cover in the study area varied from 4.0 to 80.5 cm, with a volume of melt water ranging from 1.5 to 143 L. The analysis of 53 snow samples taken at different altitudes (from 350 to 1500 m above sea level) showed the presence of microplastics in 92.6% of samples in concentrations from 1 to 12 particles per square meter. In total, 170 microplastic particles were identified. The main polymers identified by Raman spectroscopy were polyethylene (PE), polypropylene (PP), and polystyrene (PS). These are typical components of plastic waste. The spatial distribution of microplastics showed elevated concentrations near settlements and roads. Notable contaminations were also recorded in remote mountainous areas, confirming the significant role of long-range atmospheric transport. Particles smaller than 0.5 mm dominated, having high aerodynamic mobility and capable of long-range atmospheric transport. Quantitative and qualitative characteristics of microplastics in snow cover have been realized for the first time both in Kazakhstan and in the Central Asian region, which contributes to the formation of primary ideas and future approaches about microplastic pollution in continental inland regions. The obtained results demonstrate the importance of atmospheric transport in the distribution of microplastics. They indicate the need for further monitoring and microplastic pollution analyses in Central Asia, taking into account its detection even in hard-to-reach and remote areas. Full article
Show Figures

Figure 1

25 pages, 17922 KB  
Article
Application of Food Waste in Biodegradable Composites: An Ecological Alternative in Tribology
by Łukasz Wojciechowski, Zuzanna Sydow, Karol Bula and Tomasz Runka
Materials 2025, 18(14), 3216; https://doi.org/10.3390/ma18143216 - 8 Jul 2025
Viewed by 498
Abstract
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices [...] Read more.
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices were enhanced with three types of waste materials: powders derived from cherry and plum stones, and pomace extracted from flax seeds. The composites differed in the percentage content of filler (15 or 25 wt.%) and particle size (d < 400 µm or d > 400 µm). Thirty-minute block-on-ring friction tests were performed to determine frictional behaviour (when pairing with steel), and the wear mechanisms were analysed using optical microscopy and scanning electron microscopy, supplemented with Raman spectroscopy. A notable effect of cherry and plum stone fillers was observed as a reduction in motion resistance, as measured by the friction coefficient. This reduction was evident across all material configurations in polypropylene-based composites and was significant at the lowest concentrations and granulation in polylactic acid composites. The effect of flaxseed pomace filler was ambiguous for both composite bases. Full article
(This article belongs to the Special Issue Advances in Wear Behaviour and Tribological Properties of Materials)
Show Figures

Figure 1

16 pages, 1059 KB  
Review
Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics
by Kuan Chang, Yong Ma and Yulai Han
Microplastics 2025, 4(3), 39; https://doi.org/10.3390/microplastics4030039 - 2 Jul 2025
Viewed by 410
Abstract
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater [...] Read more.
Soil microplastic pollution poses a significant threat to the integrity of terrestrial ecosystems and agricultural sustainability. This review provides a comprehensive synthesis of recent progress on soil microplastic (MP) sources, ecological impacts, and separation technologies. Agricultural practices (e.g., residual plastic mulch and wastewater irrigation) and atmospheric deposition serve as primary drivers of contamination accumulation, with pronounced spatial heterogeneity observed across regions. Predominant MP types such as polyethylene, polystyrene, and polypropylene disrupt soil structure and biogeochemical processes through three core mechanisms: physical interference, chemical toxicity, and biological accumulation. These particles further form carrier–pollutant complexes, exacerbating ecotoxicological impacts across trophic levels. While emerging separation techniques like magnetic separation and solvent extraction demonstrate enhanced efficiency, their implementation faces challenges stemming from soil matrix complexity and high operational costs. This article underscores the need for global collaborative efforts to accelerate innovation in biodegradable polymers, offering practical pathways for sustainable soil management. Full article
Show Figures

Figure 1

35 pages, 1062 KB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Cited by 1 | Viewed by 3403
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

20 pages, 4236 KB  
Article
Valorisation of Red Gypsum Waste in Polypropylene Composites for Agricultural Applications
by Chiara Pedrotti, Damiano Rossi, Marco Sandroni, Irene Anguillesi, Chiara Riccardi, Pietro Leandri, Miriam Cappello, Sara Filippi, Patrizia Cinelli, Massimo Losa and Maurizia Seggiani
Polymers 2025, 17(13), 1821; https://doi.org/10.3390/polym17131821 - 30 Jun 2025
Viewed by 454
Abstract
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately [...] Read more.
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately 200 °C to remove residual moisture and chemically bound water, resulting in its anhydrous form (CaSO4). PP/RG composites were then formulated with RG loadings up to 20 wt.%, employing stearic acid (SA) as a compatibilizer. The resulting materials were thoroughly characterized and successfully processed through industrial-scale injection molding up to 250 °C. Morphological and FTIR analyses confirmed the role of SA in enhancing both filler dispersion and interfacial adhesion between RG and the PP matrix. SEM images revealed finer and more uniformly distributed RG particles, resulting in a reduced loss of ductility and elongation at break typically associated with filler addition. Specifically, the Young’s Modulus increased from 1.62 GPa (neat PP) up to 3.21 GPa with 20 wt.% RG and 0.6 wt.% SA. The addition of 0.6 wt.% SA also helped limit the reduction in stress at break from 46.68 MPa (neat PP) to 34.05 MPa and similarly mitigated the decrease in Charpy impact energy, which declined slightly from 2.66 kJ/m2 (neat PP) to 2.24 kJ/m2 for composites containing 20 wt.% RG. Preliminary phytotoxicity was assessed using germination tests on Lepidium sativum L. seeds. Eluates from both untreated and SA-treated RG powders resulted in germination indices below 80%, indicating phytotoxicity likely due to high sulfate ion concentrations. In contrast, eluates from composite pellets exhibited germination indices equal to or exceeding 100%, demonstrating the absence of phytotoxic effects. These results highlight the suitability of the developed composites for applications in floriculture and horticulture. The optimized composite pellets were successfully processed via injection molding to manufacture plant pots, which exhibited a dark brown coloration, confirming the effective pigmenting function of RG. These results demonstrate the potential of red gypsum to serve both as a functional filler and pigment in PP composites, providing a sustainable alternative to iron oxide pigments and promoting the valorization of industrial waste through resource recovery. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 2657 KB  
Article
Efficient Filtration Systems for Microplastic Elimination in Wastewater
by Jamal Sarsour, Benjamin Ewert, Bernd Janisch, Thomas Stegmaier and Götz T. Gresser
Microplastics 2025, 4(3), 36; https://doi.org/10.3390/microplastics4030036 - 30 Jun 2025
Viewed by 638
Abstract
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at [...] Read more.
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at filtering microplastic particles down to 1.5 µm. Polypropylene fabrics with pore sizes of 100, 50 and 20 µm and 3D warp-knitted fabrics with high porosity (96%) were used. Filtration tests were carried out with polyethylene model microplastic particles at a concentration of 167 mg/L. To regenerate the filter and restore its filtration performance, backwashing with filtered water and compressed air was applied. Field trials at an industrial laundry facility and a municipal wastewater treatment plant confirmed high removal efficiencies. The 3D textile sandwich structure promotes filter cake formation, allowing extended backwash intervals and the effective recovery of filtration capacity between 89.7% and 98.5%. The innovative use of 3D textile composites enables a high level of microplastic removal while extending the filter media lifetime. This makes a significant contribution to the reduction in microplastic emissions in the aquatic environment. The system is scalable, space and cost efficient and adaptable to various industrial applications and is thus a promising solution for advanced wastewater treatment. Full article
Show Figures

Figure 1

13 pages, 1726 KB  
Article
Microplastic Pollution in Shoreline Sediments of the Vondo Reservoir Along the Mutshindudi River, South Africa
by Thendo Mutshekwa, Samuel N. Motitsoe, Musa C. Mlambo, Lubabalo Mofu, Rabelani Mudzielwana and Lutendo Phophi
Water 2025, 17(13), 1935; https://doi.org/10.3390/w17131935 - 27 Jun 2025
Viewed by 500
Abstract
Rivers are recognized as significant pathways and transportation for microplastics (MPs), an emerging contaminant, to aquatic environments. However, there is limited evidence on how riverine reservoirs influence MPs transport. To fill this gap and provide baseline empirical data and insights to South African [...] Read more.
Rivers are recognized as significant pathways and transportation for microplastics (MPs), an emerging contaminant, to aquatic environments. However, there is limited evidence on how riverine reservoirs influence MPs transport. To fill this gap and provide baseline empirical data and insights to South African context, the current study assessed the seasonal variation in MP densities from sediments collected upstream, within the reservoir, and downstream of the Vondo Reservoir along the Mutshindudi River. We hypothesised that MP densities would be highest within the reservoir, due to the lack of constant flow that would otherwise transport accumulated particles downriver. Additionally, we expected the cool–dry season to be associated with the highest MP densities. As expected, high MP densities were observed within the reservoir (117.38–277.46 particles kg−1 dwt) when compared to the downstream (72.63–141.50 particles kg−1 dwt) and upstream (28.81–91.63 particles kg−1 dwt) sites of the reservoir. The cool–dry season (91.63–277.46 particles kg−1 dwt) exhibited the highest MP densities compared to the hot–wet season (28.81–141.50 particles kg−1 dwt). However, MP densities downstream the reservoir were higher during the hot–wet season (141.50 ± 24.34 particles kg−1 dwt) compared to the cool–dry season (72.63 ± 48.85 particles kg−1 dwt). The most dominant MP particles identified were white, transparent, and black fibres/filaments composed primarily of polypropylene (PP) and polyethylene (PE). This suggests diverse sources of MP particles. No significant correlations were found between water parameters and MP densities across sampling sites and seasons, indicating a widespread and context-independent presence of MPs. These findings contribute to MP studies in freshwater environments and further reinforce the role of sediments as sink for MPs and suggest that riverine reservoirs similar to dams can trap MPs, which may then be remobilized downstream during high-flow periods. Importantly, the results of this study can support local municipalities in implementing targeted plastic pollution mitigation strategies and public awareness campaigns, particularly because the Vondo Reservoir serves as a critical water resource for surrounding communities. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop