Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = post-collisional

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4459 KB  
Article
Geochemical Constraints on Antimony Mineralization in the Gutaishan Au–Sb Deposit, China: Insights from Trace Elements in Quartz and Sulfur Isotopes in Stibnite
by Jingping Feng, Linyan Kang, Bin Li and Peixuan Kang
Minerals 2025, 15(9), 953; https://doi.org/10.3390/min15090953 - 6 Sep 2025
Viewed by 236
Abstract
The Gutaishan Au–Sb deposit is situated in the southern segment of the Jiangnan Orogenic Belt, a region characterized by a concentration of Au–Sb–W deposits. Previous research has predominantly concentrated on Au mineralization, whereas studies addressing the equally important Sb mineralization are relatively scarce. [...] Read more.
The Gutaishan Au–Sb deposit is situated in the southern segment of the Jiangnan Orogenic Belt, a region characterized by a concentration of Au–Sb–W deposits. Previous research has predominantly concentrated on Au mineralization, whereas studies addressing the equally important Sb mineralization are relatively scarce. To investigate key scientific questions regarding the source of ore-forming materials, the physicochemical conditions, and mineralization mechanisms of Sb in the Gutaishan deposit, we conducted systematic analyses of trace elements in hydrothermal quartz and sulfur isotopes in stibnite. Li, Al, Sb, B, Na, K, Ti, Ge, and As are the dominant trace elements in hydrothermal quartz from the Gutaishan deposit. The dominant substitution mechanism is (Al3+, Sb3+) + (Li+, Na+, K+, H+) ↔ Si4+. The relatively low but variable Al concentrations indicate that quartz precipitated from fluids with fluctuating pH and weakly acidic conditions, while variations in Ti and Ge reflect significant temperature changes. These features suggest that fluid mixing was the primary mineralization mechanism in the Gutaishan deposit. Hydrothermal quartz contains anomalously high B concentrations (14.36–30.64 ppm), far exceeding typical hydrothermal levels, while stibnite displays consistent magmatic sulfur isotope signatures (−3.50‰ to −4.2‰, with an average of −3.99 ± 0.2‰), which are markedly different from the in situ δ34S values of sedimentary sulfides (+7.0‰ to +23.3‰) in the host rocks. This combination of evidence indicates a magmatic–hydrothermal origin for Sb mineralization. Integrating previous geochronological and isotopic constraints with our new observations, we interpret that the Gutaishan deposit represents an intrusion-related Au–Sb deposit formed in a post-collisional extensional setting, where Sb was precipitated after Au mineralization as a result of fluid mixing. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

27 pages, 22239 KB  
Article
Crystallization Conditions of Basaltic Lavas Based on Clinopyroxene and Olivine Phenocryst Petrology: A Case Study from the Neogene Lavarab Alkaline Basaltic Lavas (LABL), Eastern Iran
by Sara Houshmand-Manavi, Mehdi Rezaei-Kahkhaei, Urs Klötzli and Habibollah Ghasemi
Minerals 2025, 15(9), 915; https://doi.org/10.3390/min15090915 - 28 Aug 2025
Viewed by 415
Abstract
This paper focuses on delineating and charactering of the magma crystallization conditions of the post-collision Lavarab Alkaline Basaltic Lavas in East Iran. The lavas consist mainly of alkali basalt and basanite, with subordinate trachybasalt. Olivine mostly shows forsterite, chrysolite and hyalo-siderite compositions. Clinopyroxenes [...] Read more.
This paper focuses on delineating and charactering of the magma crystallization conditions of the post-collision Lavarab Alkaline Basaltic Lavas in East Iran. The lavas consist mainly of alkali basalt and basanite, with subordinate trachybasalt. Olivine mostly shows forsterite, chrysolite and hyalo-siderite compositions. Clinopyroxenes are diopside and augite, belonging to peralkaline to subalkaline magmatic series within post-collisional tectonic settings. Estimates of temperature and pressure obtained from single clinopyroxene thermobarometers suggest that crystallization temperatures vary between approximately 1110 and 1260 °C, with pressures ranging from about 0.05 to 1.35 GPa, which correspond to depths of roughly 2 to 51 km at high oxygen fugacity in both the lower and upper continental crust. Olivine-liquid thermometry yields temperatures of ~1385 to ~1393 °C for basanites and ~1275 to ~1339 °C for alkali basalts, assuming a constant pressure of 1.4 GPa. The chemical compositions of phenocrysts in the studied basaltic lavas provide evidence of magma recharge, occurring through multiple pulses of new magma injected into the existing reservoir prior to eruptions. Petrographic evidence, including absorption features, rounded crystal morphologies, patchy zones in olivine, and sieve textures in clinopyroxene, support this interpretation. Additionally, microprobe analyses reveal oscillatory variations in crystal composition from core to rim, confirming the hypothesis of dynamic magma replenishment. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

34 pages, 17975 KB  
Article
Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt
by Heba S. Mubarak, Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Paul D. Asimow and Mona Kabesh
Minerals 2025, 15(9), 898; https://doi.org/10.3390/min15090898 - 24 Aug 2025
Viewed by 505
Abstract
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is [...] Read more.
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is extensively fractionated, enriched in large ion lithophile elements and high field strength elements, and depleted in Ba, Sr, K, and Ti. Normalized rare earth element patterns are nearly flat, without any lanthanide tetrad anomalies, but with distinct negative Eu anomalies (Eu/Eu* = 0.14–0.22) due to feldspar fractionation. Paired Zr-Hf and Y-Ho element systematics indicate igneous rather than hydrothermal processes. The petrogenesis of the comparatively unaltered GUS intrusion offers an opportunity to refine the standard model for post-collisional felsic magmatism in the Neoproterozoic Arabian–Nubian Shield. It is explained by the partial melting of juvenile crust induced by lithospheric delamination, followed by extensive fractional crystallization. A quantitative mass-balance model shows that the granite varieties of the GUS intrusion plausibly represent liquids along a single liquid line of descent; but, if so, the more evolved, later pulses display anomalous enrichment in Rb, Nb, Ta, U, and REE. The most plausible source for this enrichment is the extraction of small-degree residual melts from earlier pulses and the mixing of the melts into the later pulses, an energetically favorable process we call “auto-assimilation”. A quantitative model shows that the residual liquid after 97.5% crystallization of the syenogranite can fit the major oxide and trace element data in the alkali feldspar granite if 0.07% by mass of this melt is added to the evolving system for each 1% crystal fractionation by mass. The GUS intrusion represents an example of moderate rare metal enrichment and concentration to sub-economic grade by auto-assimilation. Similar processes may affect intrusions that feature higher grade mineralization, but the evidence is often obscured by the extensive alteration of those deposits. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 7821 KB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 - 4 Aug 2025
Viewed by 418
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 6611 KB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 - 31 Jul 2025
Viewed by 360
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 5465 KB  
Article
Molybdenite Re-Os Isotopic Ages of Two Late Mesozoic Giant Mo Deposits in the Eastern Qinling Orogenic Belt, Central China
by Yuanshuo Zhang, Li Yang, Herong Gui, Dejin Wang, Mengqiu He and Jun He
Minerals 2025, 15(8), 800; https://doi.org/10.3390/min15080800 - 30 Jul 2025
Viewed by 397
Abstract
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we [...] Read more.
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we propose two major events of Mo mineralization in this orogenic belt occurring during the Late Mesozoic: the early stage of 156–130 Ma and late stage of 122–114 Ma. Results of molybdenite Re-Os isotopic analysis reveal that the Jinduicheng deposit formed at 139.2 ± 2.9 Ma, while the Donggou deposit exhibited two-stage mineralization at 115.4 ± 1.6 Ma and 111.9 ± 1.3 Ma. These isotopic ages align with the spatiotemporal evolution of coeval ore-barren granites exposed in eastern Qinling, pointing to a close genetic relationship between the magmatism and mineralization that was controlled by the same tectonic activity, likely in a post-collisional setting. This highlights the multiple-stage Mo mineralization and provides evidence for further understanding the geodynamics and metallogenic process in the eastern Qinling orogenic belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 32586 KB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1856
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

23 pages, 25056 KB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 515
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 14630 KB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 415
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

34 pages, 4392 KB  
Article
Post-Collisional Mantle Processes and Magma Evolution of the El Bola Mafic–Ultramafic Intrusion, Arabian-Nubian Shield, Egypt
by Khaled M. Abdelfadil, Hatem E. Semary, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, A. Aldukeel and Moustafa M. Mogahed
Minerals 2025, 15(7), 705; https://doi.org/10.3390/min15070705 - 2 Jul 2025
Viewed by 769
Abstract
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate [...] Read more.
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate textures. Mineralogical and geochemical analyses reveal a coherent trend of fractional crystallization. Compositions of whole rock and minerals indicate a parental magma of ferropicritic affinity, derived from partial melting of a hydrous, metasomatized spinel-bearing mantle source, likely modified by subduction-related fluids. Geothermobarometric calculations yield crystallization temperatures from ~1120 °C to ~800 °C and pressures from ~5.2 to ~3.1 kbar, while oxygen fugacity estimates suggest progressive oxidation (log fO2 from −17.3 to −15.7) during differentiation. The EBMU displays Light Rare Earth element (LREE) enrichment, trace element patterns marked by Large Ion Lithophile Element (LILE) enrichment, Nb-Ta depletion and high LILE/HFSE (High Field Strength Elements) ratios, suggesting a mantle-derived source that remained largely unaffected by crustal contribution and was metasomatized by slab-derived fluids. Tectonic discrimination modeling suggests that EBMU magmatism was triggered by asthenospheric upwelling and slab break-off. Considering these findings alongside regional geologic features, we propose that the mafic–ultramafic intrusion from the ANS originated in a tectonic transition between subduction and collision (slab break-off) following the assembly of Gondwana. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 6412 KB  
Article
Geochemistry and Zircon U-Pb Chronology of West Kendewula Late Paleozoic A-Type Granites in the East Kunlun Orogenic Belt: Implications for Post-Collision Extension
by Bang-Shi Dong, Wen-Qin Wang, Gen-Hou Wang, Pei-Lie Zhang, Peng-Sheng Li, Zhao-Lei Ding, Ze-Jun He, Pu Zhao, Jing-Qi Zhang and Chao Bo
Appl. Sci. 2025, 15(12), 6661; https://doi.org/10.3390/app15126661 - 13 Jun 2025
Viewed by 615
Abstract
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites [...] Read more.
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites in the western Kendewula area. The granites, dated between 413.7 Ma and 417.7 Ma, indicate emplacement during the Early Devonian period. The granite is characterized by high silicon content (72.45–78.96 wt%), high and alkali content (7.59–9.35 wt%), high 10,000 × Ga/Al values, and low Al2O3 (11.29–13.32 wt%), CaO (0.07–0.31 wt%), and MgO contents (0.16–0.94 wt%). The rocks exhibit enrichment in large-ion lithophile element (LILE) content and high-field-strength element (HFSE) content, in addition to strong losses, showing significant depletion in Ba, Sr, P and Eu. These geochemical characteristics correspond to A2-type granites. The values of Rb/N and Ba/La and the higher zircon saturation temperature (800~900 °C) indicate that the magma source is mainly crustal, with the participation of mantle materials, although limited. In addition, the zircon εHf(t) values (−4.3–3.69) also support this view. In summary, the A2-type granite exposed in the western Kendewula region formed against a post-collisional extensional setting background, suggesting that the Southern Kunlun Terrane (SKT) entered a post-orogenic extensional phase in the evolution stage since the Early Devonian. The upwelling of the asthenospheric mantle of the crust, triggered by crustal detachment and partial melting, likely contributed to the flare-up of A2-type granite during this period. By studying the nature of granite produced during orogeny, the evolution process of the formation of orogenic belts is discussed, and our understanding of orogenic is enhanced. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

19 pages, 8020 KB  
Article
Homrit Akarem Post-Collisional Intrusion, Southeastern Desert, Egypt: Petrogenesis of Greisen Formed in a Cupola Structure and Enrichment in Strategic Minerals
by Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Ahmed A. Elnazer, Mustafa A. Elsagheer, Heba S. Mubarak, Amany M. A. Seddik, Hadeer Sobhy and Mohamed O. Osama
Geosciences 2025, 15(6), 200; https://doi.org/10.3390/geosciences15060200 - 26 May 2025
Viewed by 614
Abstract
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with [...] Read more.
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with sharp intrusive contacts. The marginal parts of the Homrit Akarem intrusion underwent extensive post-magmatic metasomatism, resulting in the formation of albitized granite and greisens. The Homrit Akarem greisens occur as veins and stockworks, which can be classified into four types: muscovite-rich, cassiterite-rich, topaz-rich, and beryl-rich greisens. Based on petrographic inspection, we identified ore minerals (cassiterite, beryl, topaz, muscovite, Nb-Ta oxides, tourmaline, fluorite, and corundum) in the greisens using electron probe microanalysis. The Homrit Akarem mineralized greisens were formed in a magmatic cupola above A-type magma, where fluid–rock interactions played a significant role in their formation. The accumulation of residual volatile-rich melt and exsolved fluids in the apical part of the magma chamber produced albitized granite, greisens, and quartz veins that intruded into the peripheries of the granitic intrusion and its surrounding country rocks. The variation in the mineralogy of the studied greisens indicates the diverse chemical composition of both the hydrothermal/magmatic fluids and the host granites. The simultaneous decrease in temperature and pressure is considered a crucial factor that controlled mineralization in the apical parts of the magma chamber. The occurrence of cassiterite, beryl, topaz, tourmaline, muscovite, and Nb-Ta oxides in the studied greisens suggests a potential polymetallic deposit of industrial minerals. Full article
Show Figures

Figure 1

27 pages, 15247 KB  
Article
Geochronological Evolution of the Safaga–Qena Transect, Northern Eastern Desert, Egypt: Implications of Zircon U-Pb Dating
by Sherif Mansour, Abdelghafar M. Abu-Elsaoud, Faouzi Haouala, Mohamed Zaki Khedr, Akihiro Tamura and Noriko Hasebe
Minerals 2025, 15(5), 532; https://doi.org/10.3390/min15050532 - 17 May 2025
Viewed by 819
Abstract
The granitic rocks and the Dokhan Volcanics at the transect between Safaga and Qena, the Egyptian Northern Eastern Desert represent the northern termination of the Arabian–Nubian Shield (ANS), which, in turn, represents the northern part of the East African Orogeny (EAO). The geochronological [...] Read more.
The granitic rocks and the Dokhan Volcanics at the transect between Safaga and Qena, the Egyptian Northern Eastern Desert represent the northern termination of the Arabian–Nubian Shield (ANS), which, in turn, represents the northern part of the East African Orogeny (EAO). The geochronological development of the magmatic activities that constructed the ANS is critical in understanding these orogenies. The ANS was constructed through pre-collisional, syn-collisional, and post-collisional magmatic phases. The transition between these magmatic phases marks tectonic shifting from subduction to compressional and extensional tectonic settings, respectively. The chronological constraints of these tectonic–magmatic phases are still questionable. Our study aims to refine these chronological constraints through the dating of four calc-alkaline granitic rocks (722 ± 5 Ma–561 ± 4 Ma), five alkaline granitic rocks (758 ± 5 Ma–555 ± 4 Ma), and three Dokhan Volcanic rocks (618 ± 5 Ma–606 ± 5 Ma). Our results suggest the absence of any pre-collisional rocks. The syn-collisional magmatism extended here from 758 ± 5 Ma to 653 ± 7 Ma, demonstrating the chronological domination of the syn-orogenic compressional regime in the NED. The Dokhan Volcanic activity marked the shifting of the tectonic setting from a compressional to an extensional regime at 618 ± 5 Ma. Post-collisional plutonism dominated between 583 ± 5 Ma and 555 ± 4 Ma in the studied region, suggesting that ANS magmatic activity was extended to the Phanerozoic edge. These findings refute the classical interpretations of older magmatism as calc-alkaline granitoids and younger magmatism as alkaline granitoids. Pre-Neoproterozoic (pre-ANS) xenocrysts with ages of 1879 ± 22, 1401 ± 25, 1385 ± 12, 1232 ± 27, 1210 ± 18, and 1130 ± 15 Ma were yielded, which might support a local reworked ancient magmatic source. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 21759 KB  
Article
Origin and Tectonic Implication of Cenozoic Alkali-Rich Porphyry in the Beiya Au-Polymetallic Deposit, Western Yunnan, China
by Yun Zhong, Yajuan Yuan, Ye Lu and Bin Xia
Minerals 2025, 15(5), 531; https://doi.org/10.3390/min15050531 - 16 May 2025
Viewed by 390
Abstract
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this [...] Read more.
Cenozoic alkali-rich porphyries are widely distributed in the junction zone between the Sanjiang Orogenic belt and the Yangtze Plate. They are of great significance for understanding the regional geodynamics, tectonic evolution, and metallogenesis. However, the origin of these porphyries remains controversial. In this study, new petrological, geochemical, and geochronological data are presented for Cenozoic syenite porphyry from the Beiya porphyry Au-polymetallic deposit in western Yunnan. Zircon U-Pb dating results show that the Beiya syenite porphyries formed around 36.3–35.0 Ma, coinciding with the magmatic peak in the Jinshajiang-Red River (JSJ-RR) alkali-rich porphyry belt. Geochemical analyses indicate that the Beiya porphyries have potassic characteristics and an arc-like geochemical affinity, with C-type adakite affinity, suggesting a post-collisional setting. The JSJ-RR fault zone is unlikely to be the primary mechanism responsible for the formation of this alkali-rich porphyry magmatism. Instead, the development of the Beiya alkali-rich porphyries is likely associated with the convective removal of the lower part of the overthickened lithospheric mantle and asthenospheric upwelling during the Eocene–Oligocene. Their magmas probably originated from the partial melting of Paleo–Mesoproterozoic garnet amphibolite facies rocks in the thickened lower continental crust, with the addition of shoshonitic mafic magmas produced by the partial melting of metasomatized lithospheric mantle triggered by asthenospheric upwelling. This study provides additional reliable evidence to further constrain the origin of Cenozoic alkali-rich porphyries in the JSJ-RR belt. Full article
Show Figures

Figure 1

36 pages, 16597 KB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 817
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop