Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = post-tectonic Capinha granite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 8617 KB  
Article
Geochemical Signature and Magnetic Fabric of Capinha Massif (Fundão, Central Portugal): Genesis, Emplacement and Relation with W–Sn Mineralizations
by Ana Gonçalves, Helena Sant’Ovaia and Fernando Noronha
Minerals 2020, 10(6), 557; https://doi.org/10.3390/min10060557 - 20 Jun 2020
Cited by 8 | Viewed by 4313
Abstract
The Fundão–Serra da Estrela–Capinha (FSEC) region is characterized by peraluminous to metaluminous Variscan granites intrusive in a complex and thick metasedimentary sequence. This work seeks to characterize the Capinha granite (CG), understand its spatial and genetic relationship with the host Peroviseu–Seia (PS), Belmonte–Covilhã [...] Read more.
The Fundão–Serra da Estrela–Capinha (FSEC) region is characterized by peraluminous to metaluminous Variscan granites intrusive in a complex and thick metasedimentary sequence. This work seeks to characterize the Capinha granite (CG), understand its spatial and genetic relationship with the host Peroviseu–Seia (PS), Belmonte–Covilhã (BC) and Fáguas granites, and evaluate its metallogenic potential. To achieve these goals, a multidisciplinary approach was undertaken, including field work and identification of the petrography and microstructures, whole rock geochemistry and anisotropy of magnetic susceptibility. Four distinct and independent differentiation trends were identified in the granites, namely, PS, BC, Fráguas and CG. The PS and BC played a role as host rocks for the W and Sn mineralizations. The Fráguas granite is anomalous in Sn and spatially related to the Sn–Li mineralizations, while the CG is anomalous in W and spatially related to W–Sn mineralizations. The post-tectonic CG is a peraluminous ilmenite-type whose ascent and emplacement were tectonically controlled. The Capinha magma used the intersection between the 25° N and 155° N strike–slip crustal scale faults for passive ascent and emplacement during the late-Variscan extensional phases. The magnetic fabric was drawn using an asymmetric tongue-shaped laccolith for CG. CG experienced two brittle deformation stages that marked the maximum compressive rotation from NE–SW to NNW–SSE. Full article
(This article belongs to the Special Issue Granite-Related Mineralization Systems)
Show Figures

Figure 1

Back to TopTop