Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,583)

Search Parameters:
Keywords = power allocation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6172 KB  
Article
Resource Scheduling Algorithm for Edge Computing Networks Based on Multi-Objective Optimization
by Wenrui Liu, Jiale Zhu, Xiangming Li, Yichao Fei, Hai Wang, Shangdong Liu, Xiaoyao Zheng and Yimu Ji
Appl. Sci. 2025, 15(19), 10837; https://doi.org/10.3390/app151910837 - 9 Oct 2025
Abstract
Edge computing networks represent an emerging technological paradigm that enhances real-time responsiveness for mobile devices by reallocating computational resources from central servers to the network’s edge. This shift enables more efficient computing services for mobile devices. However, deploying computing services on inappropriate edge [...] Read more.
Edge computing networks represent an emerging technological paradigm that enhances real-time responsiveness for mobile devices by reallocating computational resources from central servers to the network’s edge. This shift enables more efficient computing services for mobile devices. However, deploying computing services on inappropriate edge nodes can result in imbalanced resource utilization within edge computing networks, ultimately compromising service efficiency. Consequently, effectively leveraging the resources of edge computing devices while minimizing the energy consumption of terminal devices has become a critical issue in resource scheduling for edge computing. To tackle these challenges, this paper proposes a resource scheduling algorithm for edge computing networks based on multi-objective optimization. This approach utilizes the entropy weight method to assess both dynamic and static metrics of edge computing nodes, integrating them into a unified computing power metric for each node. This integration facilitates a better alignment between computing power and service demands. By modeling the resource scheduling problem in edge computing networks as a multi-objective Markov decision process (MOMDP), this study employs multi-objective reinforcement learning (MORL) and the proximal policy optimization (PPO) algorithm to concurrently optimize task transmission latency and energy consumption in dynamic environments. Finally, simulation experiments demonstrate that the proposed algorithm outperforms state-of-the-art scheduling algorithms in terms of latency, energy consumption, and overall reward. Additionally, it achieves an optimal hypervolume and Pareto front, effectively balancing the trade-off between task transmission latency and energy consumption in multi-objective optimization scenarios. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
17 pages, 1033 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
Show Figures

Figure 1

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

20 pages, 670 KB  
Article
Cooperative Jamming and Relay Selection for Covert Communications Based on Reinforcement Learning
by Jin Qian, Hui Li, Pengcheng Zhu, Aiping Zhou, Shuai Liu and Fengshuan Wang
Sensors 2025, 25(19), 6218; https://doi.org/10.3390/s25196218 - 7 Oct 2025
Abstract
To overcome the obstacles of maintaining covert transmissions in wireless networks employing collaborative wardens, we develop a reinforcement learning framework that jointly optimizes cooperative jamming strategies and relay selection mechanisms. The study focuses on a multi-relay-assisted two-hop network, where potential relays dynamically act [...] Read more.
To overcome the obstacles of maintaining covert transmissions in wireless networks employing collaborative wardens, we develop a reinforcement learning framework that jointly optimizes cooperative jamming strategies and relay selection mechanisms. The study focuses on a multi-relay-assisted two-hop network, where potential relays dynamically act as information relays or cooperative jammers to enhance covertness. A reinforcement learning-based relay selection scheme (RLRS) is employed to dynamically select optimal relays for signal forwarding and jamming; the framework simultaneously maximizes covert throughput and guarantees warden detection failure probability, subject to rigorous power budgets. Numerical simulations reveal that the developed reinforcement learning approach outperforms conventional random relay selection (RRS) across multiple performance metrics, achieving (i) higher peak covert transmission rates, (ii) lower outage probabilities, and (iii) superior adaptability to dynamic network parameters including relay density, power allocation variations, and additive white Gaussian noise (AWGN) fluctuations. These findings validate the effectiveness of reinforcement learning in optimizing relay and jammer selection for secure covert communications under colluding warden scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

0 pages, 728 KB  
Article
Curriculum–Skill Gap in the AI Era: Assessing Alignment in Communication-Related Programs
by Burak Yaprak, Sertaç Ercan, Bilal Coşan and Mehmet Zahid Ecevit
Journal. Media 2025, 6(4), 171; https://doi.org/10.3390/journalmedia6040171 - 6 Oct 2025
Viewed by 244
Abstract
Artificial intelligence is rapidly reshaping skill expectations across media, marketing, and journalism, however, university curricula are not evolving at a comparable speed. To quantify the resulting curriculum–skill gap in communication-related programs, two synchronous corpora were assembled for the period July 2024–June 2025: 66 [...] Read more.
Artificial intelligence is rapidly reshaping skill expectations across media, marketing, and journalism, however, university curricula are not evolving at a comparable speed. To quantify the resulting curriculum–skill gap in communication-related programs, two synchronous corpora were assembled for the period July 2024–June 2025: 66 course descriptions from six leading UK universities and 107 graduate-to-mid-level job advertisements in communications, digital media, advertising, and public relations. Alignment around AI, datafication, and platform governance was assessed through a three-stage natural-language-processing workflow: a dual-tier AI-keyword index, comparative TF–IDF salience, and latent Dirichlet allocation topic modeling with bootstrap uncertainty. Curricula devoted 6.0% of their vocabulary to AI plus data/platform terms, whereas job ads allocated only 2.3% (χ2 = 314.4, p < 0.001), indicating a conceptual-critical emphasis on ethics, power, and societal impact in the academy versus an operational focus on SEO, multichannel analytics, and campaign performance in recruitment discourse. Topic modeling corroborated this divergence: universities foregrounded themes labelled “Politics, Power & Governance”, while advertisers concentrated on “Campaign Execution & Performance”. Environmental and social externalities of AI—central to the Special Issue theme—were foregrounded in curricula but remained virtually absent from job advertisements. The findings are interpreted as an extension of technology-biased-skill-change theory to communication disciplines, and it is suggested that studio-based micro-credentials in automation workflows, dashboard visualization, and sustainable AI practice be embedded without relinquishing critical reflexivity, thereby narrowing the curriculum–skill gap and fostering environmentally, socially, and economically responsible media innovation. With respect to the novelty of this research, it constitutes the first large-scale, data-driven corpus analysis that empirically assessed the AI-related curriculum–skill gap in communication disciplines, thereby extending technology-biased-skill-change theory into this field. Full article
Show Figures

Figure 1

18 pages, 1562 KB  
Article
Adaptive OTFS Frame Design and Resource Allocation for High-Mobility LEO Satellite Communications Based on Multi-Domain Channel Prediction
by Senchao Deng, Zhongliang Deng, Yishan He, Wenliang Lin, Da Wan, Wenjia Wang, Zibo Feng and Zhengdao Fan
Electronics 2025, 14(19), 3939; https://doi.org/10.3390/electronics14193939 - 4 Oct 2025
Viewed by 114
Abstract
In Low Earth Orbit (LEO) satellite communication systems, providing reliable data transmission for ultra-high-speed mobile terminals faces severe challenges from dramatic Doppler effects and fast time-varying channels. Orthogonal Time Frequency Space (OTFS) modulation is a promising technique for high-mobility Low Earth Orbit (LEO) [...] Read more.
In Low Earth Orbit (LEO) satellite communication systems, providing reliable data transmission for ultra-high-speed mobile terminals faces severe challenges from dramatic Doppler effects and fast time-varying channels. Orthogonal Time Frequency Space (OTFS) modulation is a promising technique for high-mobility Low Earth Orbit (LEO) satellite communications, but its performance is often limited by inaccurate Channel State Information (CSI) prediction and suboptimal resource allocation, particularly in dynamic channels with coupled parameters like SNR, Doppler, and delay. To address these limitations, this paper proposes an adaptive OTFS frame configuration scheme based on multi-domain channel prediction. We utilize a Long Short-Term Memory (LSTM) network to jointly predict multi-dimensional channel parameters by leveraging their temporal correlations. Based on these predictions, the OTFS transmitter performs two key optimizations: dynamically adjusting the pilot guard bands in the Delay-Doppler domain to reallocate guard resources to data symbols, thereby improving spectral efficiency while maintaining channel estimation accuracy; and performing optimal power allocation based on predicted sub-channel SNRs to minimize the system’s Bit Error Rate (BER). The simulation results show that our proposed scheme reduces the required SNR for a BER of 1×103 by approximately 1.5 dB and improves spectral efficiency by 10.5% compared to baseline methods, demonstrating its robustness and superiority in high-mobility satellite communication scenarios. Full article
Show Figures

Figure 1

23 pages, 2752 KB  
Article
AI-Driven Outage Management with Exploratory Data Analysis, Predictive Modeling, and LLM-Based Interface Integration
by Kian Ansarinejad, Ying Huang and Nita Yodo
Energies 2025, 18(19), 5244; https://doi.org/10.3390/en18195244 - 2 Oct 2025
Viewed by 282
Abstract
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that [...] Read more.
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that suggest outage management strategies. By integrating exploratory data analysis, predictive modeling, and a Large Language Model (LLM)-based interface integration, as well as data visualization techniques, we identify and present critical drivers of outage duration and frequency. A random forest regressor trained on features including planned duration, facility name, outage owner, priority, season, and equipment type proved highly effective for predicting outage duration with high accuracy. This predictive framework underscores the practical value of incorporating planning information and seasonal context in anticipating outage timelines. The findings of this study not only deepen the understanding of temporal and spatial outage dynamics but also provide valuable insights for utility companies and researchers. Utility companies can use these results to better predict outage durations, allocate resources more effectively, and improve service restoration time. Researchers can leverage this analysis to enhance future models and methodologies for studying outage patterns, ensuring that artificial intelligence (AI)-driven methods can contribute to improving management strategies. The broader impact of this study is to ensure that the insights gained can be applied to strengthen the reliability and resilience of power grids or energy systems in general. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Viewed by 352
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

17 pages, 1302 KB  
Article
Multi-Objective Collaborative Optimization of Distribution Networks with Energy Storage and Electric Vehicles Using an Improved NSGA-II Algorithm
by Runquan He, Jiayin Hao, Heng Zhou and Fei Chen
Energies 2025, 18(19), 5232; https://doi.org/10.3390/en18195232 - 2 Oct 2025
Viewed by 227
Abstract
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable [...] Read more.
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable and non-dispatchable electric vehicles. A three-dimensional objective system is constructed, incorporating investment cost, reliability metrics, and network loss indicators, forming a comprehensive multi-objective optimization model. To solve this complex planning problem, an improved version of the NSGA-II is employed, integrating hybrid encoding, feasibility constraints, and fuzzy decision-making for enhanced solution quality. The proposed method is applied to the IEEE 33-bus distribution system to validate its practicality. Simulation results demonstrate that the framework effectively addresses key challenges in modern distribution networks, including renewable intermittency, dynamic load variation, resource coordination, and computational tractability. It significantly enhances system operational efficiency and electric vehicles charging flexibility under varying conditions. In the IEEE 33-bus test, the coordinated optimization (Scheme 4) reduced the expected load loss from 100 × 10−4 yuan to 51 × 10−4 yuan. Network losses also dropped from 2.7 × 10−4 yuan to 2.5 × 10−4 yuan. The findings highlight the model’s capability to balance economic investment and reliability, offering a robust solution for future intelligent distribution network planning and integrated energy resource management. Full article
Show Figures

Figure 1

24 pages, 8077 KB  
Article
A Cooperative Car-Following Eco-Driving Strategy for a Plug-In Hybrid Electric Vehicle Platoon in the Connected Environment
by Zhenwei Lv, Tinglin Chen, Junyan Han, Kai Feng, Cheng Shen, Xiaoyuan Wang, Jingheng Wang, Quanzheng Wang, Longfei Chen, Han Zhang and Yuhan Jiang
Vehicles 2025, 7(4), 111; https://doi.org/10.3390/vehicles7040111 - 1 Oct 2025
Viewed by 286
Abstract
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the [...] Read more.
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the Connected and Autonomous Plug-in Hybrid Electric Vehicle (CAPHEV) platoon. To this end, a hierarchical eco-driving strategy is proposed, which aims to enhance driving efficiency and fuel economy while ensuring the safety and comfort of the platoon. Firstly, an improved car-following model is proposed, which considers the motion states of multiple preceding vehicles. On this basis, a platoon cooperative car-following decision-making method based on model predictive control is designed. Secondly, a distributed energy management strategy is constructed, and a bionic optimization algorithm based on the behavior of nutcrackers is introduced to solve nonlinear problems, so as to solve the energy distribution and management problems of powertrain systems. Finally, the tests are conducted under the driving cycle of the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET). The results show that the proposed strategy can ensure the driving safety of the CAPHEV platoon in different scenes, and has excellent tracking accuracy and driving comfort. Compared with the rule-based strategy, the equivalent energy consumption of UDDS and HWFET is reduced by 20.7% and 5.5% in the battery’s healthy charging range, respectively. Full article
Show Figures

Figure 1

27 pages, 16191 KB  
Article
Far Transfer Effects of Multi-Task Gamified Cognitive Training on Simulated Flight: Short-Term Theta and Alpha Signal Changes and Asymmetry Changes
by Peng Ding, Chen Li, Zhengxuan Zhou, Yang Xiang, Shaodi Wang, Xiaofei Song and Yingwei Li
Symmetry 2025, 17(10), 1627; https://doi.org/10.3390/sym17101627 - 1 Oct 2025
Viewed by 254
Abstract
Cognitive deficiencies are significant factors affecting aviation piloting capabilities. However, due to the limited stability resulting from the insufficient appeal of traditional attention or memory cognitive training, multi-task gamified cognitive training (MTGCT) may be more beneficial in generating far transfer effects in task [...] Read more.
Cognitive deficiencies are significant factors affecting aviation piloting capabilities. However, due to the limited stability resulting from the insufficient appeal of traditional attention or memory cognitive training, multi-task gamified cognitive training (MTGCT) may be more beneficial in generating far transfer effects in task performance. This study explores the enhancement effects of simulated flight operation capabilities based on visuo-spatial attention and working memory MTGCT. Additionally, we explore the neurophysiological impacts through changes in EEG power spectral density (PSD) characteristics and brain asymmetry, and whether these impacts exhibit a certain retention effect. This study designed a 28-day simulated flight operation capability enhancement experiment. In addition, the behavioral performance and EEG signal changes in 28 college students (divided into control and training groups) were analyzed. The results indicated that MTGCT significantly enhanced simulated flight operational capabilities, and the neural framework formed by physiological changes remains effective for at least two weeks. The physiological changes included a decrease in the θ band PSD and an increase in the α band PSD in the frontal and parietal lobes due to optimized cognitive resource allocation, as well as the frontal θ band leftward asymmetry and the frontoparietal α band rightward asymmetry due to the formation of neural activity patterns. These findings support, to some extent, the feasibility and effectiveness of using MTGCT as a periodic training method to enhance the operational and cognitive abilities of aviation personnel. Full article
(This article belongs to the Special Issue Advances in Symmetry/Asymmetry and Biomedical Engineering)
Show Figures

Figure 1

20 pages, 3505 KB  
Article
Optimization Method for Regulating Resource Capacity Allocation in Power Grids with High Penetration of Renewable Energy Based on Seq2Seq Transformer
by Chunyuan Nie, Hualiang Fang, Xuening Xiang, Wei Xu, Qingsheng Lei, Yan Li, Yawen Wang and Wei Yang
Energies 2025, 18(19), 5218; https://doi.org/10.3390/en18195218 - 1 Oct 2025
Viewed by 150
Abstract
With the high penetration of renewable energy integrated into the power grid, the system exhibits strong randomness and volatility. To balance these uncertainties, a large amount of flexible regulating resources is required. This paper proposes an optimization method based on a Seq2Seq Transformer [...] Read more.
With the high penetration of renewable energy integrated into the power grid, the system exhibits strong randomness and volatility. To balance these uncertainties, a large amount of flexible regulating resources is required. This paper proposes an optimization method based on a Seq2Seq Transformer model, which takes stochastic renewable energy and load data as inputs and outputs the allocation ratios of various regulating resources. The method considers renewable energy stochasticity, power flow constraints, and adjustment characteristics of different regulating resources, while constructing a multi-objective loss function that integrates ramping response matching and cost minimization for comprehensive optimization. Furthermore, a multi-feature perception attention mechanism for stochastic renewable energy is introduced, enabling better coordination among resources and improved ramping speed adaptation during both model training and result generation. A multi-solution optimization framework with Pareto-optimal filtering is designed, where the Decoder outputs multiple sets of diverse and balanced allocation ratio combinations. Simulation studies based on a regional power grid demonstrate that the proposed method effectively addresses the problem of regulating resource capacity optimization in new-type power systems. Full article
(This article belongs to the Special Issue Advancements in Power Electronics for Power System Applications)
Show Figures

Figure 1

17 pages, 2361 KB  
Article
Joint Power Allocation Algorithm Based on Multi-Agent DQN in Cognitive Satellite–Terrestrial Mixed 6G Networks
by Yifan Zhai, Zhongjun Ma, Bo He, Wenhui Xu, Zhenxing Li, Jie Wang, Hongyi Miao, Aobo Gao and Yewen Cao
Mathematics 2025, 13(19), 3133; https://doi.org/10.3390/math13193133 - 1 Oct 2025
Viewed by 194
Abstract
The Cognitive Satellite–Terrestrial Network (CSTN) is an important infrastructure for the future development of 6G communication networks. This paper focuses on a potential communication scenario, where satellite users (SUs) dominate and are selected as the primary users, and terrestrial base station users (TUs) [...] Read more.
The Cognitive Satellite–Terrestrial Network (CSTN) is an important infrastructure for the future development of 6G communication networks. This paper focuses on a potential communication scenario, where satellite users (SUs) dominate and are selected as the primary users, and terrestrial base station users (TUs) are the secondary users. Additionally, each terrestrial base station owns multiple antennae, and the interference of TUs to SUs in the CSTN is limited to a low level or below. In this paper, based on the observation of diversity and the time-varying characteristics of a variety of user requirements, a multi-agent deep Q-network algorithm under interference limitation (MADQN-IL) was proposed, where the power of each antenna in the base station is allocated to maximize the total system throughput while meeting the interference constraints in the CSTN. In our proposed MADQN-IL, the base stations play the role of intelligent agents, and each agent selects the antenna power allocation and cooperates with other agents through sharing system states and the total rewards. Through a simulation comparison, it was discovered that the MADQN-IL algorithm can achieve a higher system throughput than the adaptive resource adjustment (ARA) algorithm and the fixed power allocation methods. Full article
Show Figures

Figure 1

26 pages, 1076 KB  
Article
NL-COMM: Enabling High-Performing Next-Generation Networks via Advanced Non-Linear Processing
by Chathura Jayawardena, George Ntavazlis Katsaros and Konstantinos Nikitopoulos
Future Internet 2025, 17(10), 447; https://doi.org/10.3390/fi17100447 - 30 Sep 2025
Viewed by 210
Abstract
Future wireless networks are expected to deliver enhanced spectral efficiency while being energy efficient. MIMO and other non-orthogonal transmission schemes, such as non-orthogonal multiple access (NOMA), offer substantial theoretical spectral efficiency gains. However, these gains have yet to translate into practical deployments, largely [...] Read more.
Future wireless networks are expected to deliver enhanced spectral efficiency while being energy efficient. MIMO and other non-orthogonal transmission schemes, such as non-orthogonal multiple access (NOMA), offer substantial theoretical spectral efficiency gains. However, these gains have yet to translate into practical deployments, largely due to limitations in current signal processing methods. Linear transceiver processing, though widely adopted, fails to fully exploit non-orthogonal transmissions, forcing massive MIMO systems to use a disproportionately large number of RF chains for relatively few streams, increasing power consumption. Non-linear processing can unlock the full potential of non-orthogonal schemes but is hindered by high computational complexity and integration challenges. Moreover, existing message-passing receivers for NOMA depend on specially designed sparse signals, limiting resource allocation flexibility and efficiency. This work presents NL-COMM, an efficient non-linear processing framework that translates the theoretical gains of non-orthogonal transmissions into practical benefits for both the uplink and downlink. NL-COMM delivers over 200% spectral efficiency gains, enables 50% reductions in antennas and RF chains (and thus base station power consumption), and increases concurrently supported users by 450%. In distributed MIMO deployments, the antenna reduction halves fronthaul bandwidth requirements, mitigating a key system bottleneck. Furthermore, NL-COMM offers the flexibility to unlock new NOMA schemes. Finally, we present both hardware and software architectures for NL-COMM that support massively parallel execution, demonstrating how advanced non-linear processing can be realized in practice to meet the demands of next-generation networks. Full article
(This article belongs to the Special Issue Key Enabling Technologies for Beyond 5G Networks—2nd Edition)
Show Figures

Figure 1

29 pages, 4141 KB  
Article
Integrating Structured Time-Series Modeling and Ensemble Learning for Strategic Performance Forecasting
by Liqing Tang, Shuxin Wang, Jintian Ji, Siyuan Yin, Robail Yasrab and Chao Zhou
Algorithms 2025, 18(10), 611; https://doi.org/10.3390/a18100611 - 29 Sep 2025
Viewed by 232
Abstract
Forecasting outcomes in high-stakes competitive spectacles like the Olympic Games, World Cups, and professional league championships has grown increasingly vital, directly impacting strategic planning, resource allocation, and performance optimization across a multitude of fields. However, accurate forecasting remains challenging due to complex, nonlinear [...] Read more.
Forecasting outcomes in high-stakes competitive spectacles like the Olympic Games, World Cups, and professional league championships has grown increasingly vital, directly impacting strategic planning, resource allocation, and performance optimization across a multitude of fields. However, accurate forecasting remains challenging due to complex, nonlinear interactions inherent in high-dimensional time-series data, further complicated by socioeconomic indicators, historical influences, and host-country advantages. In this study, we propose a comprehensive forecasting framework integrating structured time-series modeling with ensemble learning. We extract key structural features via two novel indices: the Advantage Index (measuring a competitor’s dominance in specific areas) and the Herfindahl Index (quantifying performance outcome concentration). We also evaluate host-country advantage using a Difference-in-Differences (DiD) approach. Leveraging these insights, we develop a dual-branch predictive model combining an Attention-augmented Long Short-Term Memory (Attention-LSTM) network and a Random Forest classifier. Attention-LSTM captures long-term dependencies and dynamic patterns in structured temporal data, while Random Forest handles predictions for unrecognized contenders, addressing zero-inflation issues. Extensive stability and comparative analyses demonstrate that our model outperforms traditional and state-of-the-art methods, exhibiting strong resilience to input perturbations, consistent performance across multiple runs, and appropriate sensitivity to key features. Our key contributions include the development of a novel integrated forecasting framework, the introduction of two innovative structural indices for competitive dynamics analysis, and the demonstration of robust predictive performance that bridges technical innovation with practical strategic application. Finally, we transform our modeling insights into actionable strategic insights. This translation is powered by interpretable feature importance rankings and stability analysis that rigorously validate the robustness of key predictors. These insights apply across multiple dimensions—encompassing advantage assessment, resource distribution, strategic simulation, and breakthrough potential identification—providing comprehensive decision support for strategic planners and policymakers navigating competitive environments. Full article
(This article belongs to the Topic Applications of NLP, AI, and ML in Software Engineering)
Show Figures

Figure 1

Back to TopTop