Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,986)

Search Parameters:
Keywords = power to Liquid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 416 KiB  
Article
Low-Carbon Economic Model of Multi-Energy Microgrid in a Park Considering the Joint Operation of a Carbon Capture Power Plant, Cooling, Heating, and Power System, and Power-to-Gas Equipment
by Jie Li, Yafei Li, Xiuli Wang, Hengyuan Zhang and Yunpeng Xiao
Energies 2025, 18(11), 2905; https://doi.org/10.3390/en18112905 (registering DOI) - 1 Jun 2025
Abstract
Multi-energy microgrids (MEMs) can achieve efficient and low-carbon energy utilization by relying on the coordination, complementarity, and coupling conversion of different energy sources, which is of great significance for new energy consumption and energy cascade utilization. In this paper, a low-carbon economic dispatch [...] Read more.
Multi-energy microgrids (MEMs) can achieve efficient and low-carbon energy utilization by relying on the coordination, complementarity, and coupling conversion of different energy sources, which is of great significance for new energy consumption and energy cascade utilization. In this paper, a low-carbon economic dispatch model of a multi-energy microgrid that uses a joint carbon capture–CHP-P2G operation is proposed. Firstly, the basic structure of the power–electrolysis–methanol energy (PEME) is established. Secondly, a flexible mechanism for the joint operation of CCPPs and CHP is analyzed, and a flexible joint operation model for carbon capture–CHP-P2G is proposed. Finally, considering the system’s low-carbon operation and economy, a low-carbon economic dispatch model for a multi-energy microgrid in a park is established, with the goal of minimizing the total operating cost of PEME in the park. The results illustrate that the introduction of a liquid storage tank reduces the total cost and carbon emissions of the MEM by 4.04% and 8.49%, respectively. The application of an electric boiler and ORC effectively alleviates the problem of peak–valley differences in the electric heating load. Our joint operation model realizes the dual optimization of the MEM’s flexibility and low-carbon requirement through the collaboration of multiple pieces of technology. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
21 pages, 4590 KiB  
Article
Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach
by Athirah Mohd Tamidi, Kok Keong Lau, Ven Chian Quek and Tengku M. Uzaini Tengku Mat
Processes 2025, 13(6), 1737; https://doi.org/10.3390/pr13061737 (registering DOI) - 1 Jun 2025
Abstract
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement [...] Read more.
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement of mass transfer in the gas–liquid carbon dioxide (CO2) absorption system. Computational Fluid Dynamic (CFD) simulation is one of the powerful tools that can be used to model the complex hydrodynamic behavior induced by the propagation of ultrasound waves in the liquid medium. In this study, the ultrasonic irradiation forces were simulated via the momentum source term method using commercial CFD software (ANSYS Fluent V19.1). In addition, a parametric study was conducted to investigate the influences of absorber height and ultrasonic power on the hydrodynamic mixing performance. The simulation results indicated that enhanced mixing and a higher intensification factor were achieved with increased fountain flow velocity, particularly at the lowest absorber height and highest ultrasonic power. Conversely, the energy efficiency was improved with the increase of absorber height and decrease of ultrasonic power. To determine the optimal combination of absorber height and ultrasonic power, this trade-off between the energy efficiency and intensification in the ultrasonic-assisted absorption system (UAAS) is a crucial consideration during process scale-up. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

16 pages, 2450 KiB  
Article
Development and Validation of a Simple and Cost-Effective LC-MS/MS Method for the Quantitation of the Gut-Derived Metabolite Trimethylamine N-Oxide in Human Plasma of Healthy and Hyperlipidemic Volunteers
by Nikolaos A. Parisis, Panoraia Bousdouni, Aikaterini Kandyliari, Maria-Helen Spyridaki, Amalia Despoina Koutsogianni, Christina Telli, Konstantinos K. Tsilidis, Antonios E. Koutelidakis and Andreas G. Tzakos
Molecules 2025, 30(11), 2398; https://doi.org/10.3390/molecules30112398 - 30 May 2025
Viewed by 106
Abstract
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite of dietary precursors, including choline and carnitine. Elevated levels of TMAO in human plasma have been associated with several diseases such as cardiovascular, diabetes mellitus, chronic kidney disease, neurological disorders, and cancer. This has led [...] Read more.
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite of dietary precursors, including choline and carnitine. Elevated levels of TMAO in human plasma have been associated with several diseases such as cardiovascular, diabetes mellitus, chronic kidney disease, neurological disorders, and cancer. This has led to an increased interest in the accurate determination of TMAO in human blood, for which a reliable, cost-effective and sensitive analytical method should be established. LC-MS/MS has emerged as a powerful tool for the determination of TMAO due to its high sensitivity, specificity, and ability to handle complex matrices. Herein, we describe the development and validation of an LC-MS/MS method for the determination of TMAO in human blood plasma. Our method involves a simple sample preparation protocol, involving a protein precipitation step along with a non-deuterated IS, followed by a Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis using a triple quadrupole mass spectrometer. Additionally, the method was adapted and implemented on an UPLC-QTOF/MS. The method was validated using the guidelines set by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for assay performance and robustness in human plasma and successfully applied to plasma derived from healthy and hyperlipidemic volunteers. The developed method was found to be specific, sensitive, and accurate for the determination of TMAO in human plasma, with a lower limit of quantification of 0.25 µM. The intra- and inter-assay precision and trueness were within acceptable limits. Full article
Show Figures

Graphical abstract

22 pages, 1315 KiB  
Article
Mathematical Model of Fluid Flow Machine Unit for a Small-Scale Compressed Gas Energy Storage System
by Piotr Lis, Jarosław Milewski, Pavel Shuhayeu, Jan Paczucha and Paweł Ryś
Energies 2025, 18(11), 2874; https://doi.org/10.3390/en18112874 - 30 May 2025
Viewed by 52
Abstract
This study presents a comprehensive dynamic model of a small-scale, solar-powered hydraulic gas compression energy storage system tailored for renewable energy applications. Addressing the intermittency of renewable energy sources, the model incorporates mass, momentum, and energy conservation principles and is implemented using GT-Suite [...] Read more.
This study presents a comprehensive dynamic model of a small-scale, solar-powered hydraulic gas compression energy storage system tailored for renewable energy applications. Addressing the intermittency of renewable energy sources, the model incorporates mass, momentum, and energy conservation principles and is implemented using GT-Suite simulation software v2025.0. The system, based on a liquid piston mechanism, was analyzed under both adiabatic and isothermal compression scenarios. Validation against experimental data showed maximum deviations under 10% for pressure and 5 °C for temperature. Under ideal isothermal conditions, the system stored up to 8 MJ and recovered 6.1 MJ of energy, achieving a round-trip efficiency of 76.3%. In contrast, adiabatic operation yielded 52.6% efficiency due to thermal losses. Sensitivity analyses revealed the importance of heat transfer enhancement, with performance varying by over 15% depending on spray cooling intensity. These findings underscore the potential of thermally integrated hydraulic systems for efficient, scalable, and cost-effective energy storage in distributed renewable energy networks. Full article
38 pages, 2540 KiB  
Review
Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care
by Rahul Kumar, Kyle Sporn, Akshay Khanna, Phani Paladugu, Chirag Gowda, Alex Ngo, Ram Jagadeesan, Nasif Zaman and Alireza Tavakkoli
Diagnostics 2025, 15(11), 1377; https://doi.org/10.3390/diagnostics15111377 - 29 May 2025
Viewed by 104
Abstract
Musculoskeletal tumors present a diagnostic challenge due to their rarity, histological diversity, and overlapping imaging features. Accurate characterization is essential for effective treatment planning and prognosis, yet current diagnostic workflows rely heavily on invasive biopsy and subjective radiologic interpretation. This review explores the [...] Read more.
Musculoskeletal tumors present a diagnostic challenge due to their rarity, histological diversity, and overlapping imaging features. Accurate characterization is essential for effective treatment planning and prognosis, yet current diagnostic workflows rely heavily on invasive biopsy and subjective radiologic interpretation. This review explores the evolving role of radiogenomics and machine learning in improving diagnostic accuracy for bone and soft tissue tumors. We examine integrating quantitative imaging features from MRI, CT, and PET with genomic and transcriptomic data to enable non-invasive tumor profiling. AI-powered platforms employing convolutional neural networks (CNNs) and radiomic texture analysis show promising results in tumor grading, subtype differentiation (e.g., Osteosarcoma vs. Ewing sarcoma), and predicting mutation signatures (e.g., TP53, RB1). Moreover, we highlight the use of liquid biopsy and circulating tumor DNA (ctDNA) as emerging diagnostic biomarkers, coupled with point-of-care molecular assays, to enable early and accurate detection in low-resource settings. The review concludes by discussing translational barriers, including data harmonization, regulatory challenges, and the need for multi-institutional datasets to validate AI-based diagnostic frameworks. This article synthesizes current advancements and provides a forward-looking view of precision diagnostics in musculoskeletal oncology. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
21 pages, 5951 KiB  
Article
The Study of Waste Heat Recovery of the Thermal Management System of Electric Vehicle Based on Simulation and Experimental Analyses
by Weiwei Lu, Qingxia Yang, Liyou Xu and Xiuqing Li
World Electr. Veh. J. 2025, 16(6), 298; https://doi.org/10.3390/wevj16060298 - 28 May 2025
Viewed by 36
Abstract
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace [...] Read more.
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace traditional 3-way and 4-way valves to enhance the coupling between coolant circuits. Six operating modes were realized via the switching function of the 10-way valve, including the mode of waste heat recovery. A highly integrated TMS model was developed on the AMEsim2304 platform, followed by parameter matching. The accuracy of the model was validated through comparative analysis with laboratory and environmental chamber test results. Based on the designed highly integrated TMS, a classical fuzzy Proportional-Integral-Derivative Control (PID) control strategy was introduced to regulate the coolant circulation pump. Simulation analyses and experimental results demonstrated that the optimized system could reduce the battery pack heating time by approximately 300 s compared to the pre-optimized configuration. Moreover, the waste heat recovery could improve the cabin heating rate from 1.9 °C/min to 3.4 °C/min, representing a 43.7% enhancement. Furthermore, the output power of the high-pressure liquid heater remained low, resulting in a 10% reduction in overall heating energy consumption. Based on simulation and experimental analyses, this research can promote the progress of thermal management system technology for electric vehicles to a certain extent. Full article
(This article belongs to the Special Issue Thermal Management System for Battery Electric Vehicle)
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Ecofriendly Extraction of Polyphenols from Ampelopsis grossedentata Leaves Coupled with Response Surface Methodology and Artificial Neural Network–Genetic Algorithm
by Xubo Huang, Chen Li, Yanbin Wang, Jinrong Jiang, Weizhi Wu, Shifeng Wang, Ming Lin and Liang He
Molecules 2025, 30(11), 2354; https://doi.org/10.3390/molecules30112354 - 28 May 2025
Viewed by 47
Abstract
This study aimed to optimize a novel deep eutectic solvents (DESs)-assisted extraction process for polyphenols in the leaves of Ampelopsis grossedentata (AGPL) with response surface methodology (RSM) and a genetic algorithm–artificial neural network (GA-ANN). Under the influence of ultrasonic excitation, the L-carnitine-1,4-butanediol system [...] Read more.
This study aimed to optimize a novel deep eutectic solvents (DESs)-assisted extraction process for polyphenols in the leaves of Ampelopsis grossedentata (AGPL) with response surface methodology (RSM) and a genetic algorithm–artificial neural network (GA-ANN). Under the influence of ultrasonic excitation, the L-carnitine-1,4-butanediol system was selected for the phenolics extraction process. The ideal conditions for AGPL extraction were the following: liquid to solid ratio of 35.5 mL/g, ultrasonic power of 697 W and extraction duration of 46 min. Under those conditions, the actual AGPL yield was 15.32% ± 0.12%. The statistical analysis showed that both models could predict AGPL yield well and GA-ANN had relatively higher accuracy in the prediction of AGPL output, supported by the coefficient of determination (R2 = 0.9809) in GA-based ANN compared to R2 = 0.9145 in RSM, as well as lower values for mean squared error (MSE = 0.0279), root mean squared error (RMSE = 0.1669) and absolute average deviation (AAD = 0.1336) in the GA-ANN model. Moreover, the extracted polyphenols were determined by HPLC-MS to have 20 phenolic compounds corresponding to some bioactive acids such as nonadecanoic acid and neochlorogenic acid. The in vitro ORAC assay revealed that Carn-Bu4 assisted AGPL extract exhibited a notable antioxidant capacity of 275.3 ± 0.64 μmol TE/g. Full article
Show Figures

Graphical abstract

20 pages, 8839 KiB  
Article
Microheterogeneity in Liquid Water Associated with Hydrogen-Bond Cooperativity-IR Spectroscopic and MD Simulation Study of Temperature Effect
by Paulina Filipczak, Marcin Kozanecki, Joanna Szala-Rearick and Dorota Swiatla-Wojcik
Int. J. Mol. Sci. 2025, 26(11), 5187; https://doi.org/10.3390/ijms26115187 - 28 May 2025
Viewed by 44
Abstract
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions [...] Read more.
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions revealed inhomogeneity arising from patches of continuously connected, four-bonded molecules embedded within a less ordered, space-filling hydrogen-bond network. The size of these patches follows a statistical distribution that is strongly temperature-dependent. With increasing temperature, the average size of the patches decreases, whereas the contribution of molecules forming the inter-patch zones becomes more pronounced. The nature of microheterogeneity is evidenced by temperature-dependent changes in the asymmetry of calculated power spectra as well as in the measured IR absorption within the stretching, bending, and combination band regions. A novel method for band analysis incorporates the calculation of skewness and a mirroring procedure for more accurate determination of FWHM of asymmetric bands. Discontinuities in the temperature dependence of spectral parameters observed within the 5–80 °C range correspond to the thermodynamic anomalies of liquid water. We show that structural microheterogeneity persists near 100 °C, suggesting that aqueous processes are better described by statistical distributions than by uniform models. Molecular simulations and IR spectroscopy offer key insights into these distributions. Full article
Show Figures

Figure 1

16 pages, 6298 KiB  
Article
Electronic Modulation of Cu Catalytic Interfaces by Functionalized Ionic Liquids for Enhanced CO2 Reduction
by Chuanhui Wang, Wei Zhou, Jiamin Ma, Zhi Wang and Congyun Zhang
Molecules 2025, 30(11), 2352; https://doi.org/10.3390/molecules30112352 - 28 May 2025
Viewed by 58
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) into value-added multi-carbon C2+ products holds significant promise for sustainable chemical synthesis and carbon-neutral energy cycles. Among the various strategies developed to enhance CO2RR, the use of ionic liquids (ILs) has [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) into value-added multi-carbon C2+ products holds significant promise for sustainable chemical synthesis and carbon-neutral energy cycles. Among the various strategies developed to enhance CO2RR, the use of ionic liquids (ILs) has emerged as a powerful approach for modulating the local microenvironment and electronic structure of Cu-based metal catalysts. In this study, to unravel the molecular-level mechanisms underlying these enhancements, density functional theory calculations (DFTs) were employed to systematically explore how ILs with different terminal groups modulate the electronic reconstruction of the Cu surface, further affecting the *CO–*CO coupling and product selectivity. Electronic structure analyses reveal that ILs bearing polar moieties (–SH, –COOH) can synergistically enhance the interfacial electron accumulation and induce an upshift of the Cu d-band center, thereby strengthening *CO adsorption. In contrast, nonpolar IL (CH3) exhibits negligible effects, underscoring the pivotal role of ILs’ polarity in catalyst surface-state engineering. The free energy diagrams and transition state analyses reveal that ILs with polar groups significantly lower both the reaction-free energy and activation barrier associated with the *CO–*CO coupling step. This energetic favorability selectively inhibits the C1 product pathways and hydrogen evolution reaction (HER), further improving the selectivity of C2 products. These theoretical insights not only unveil the mechanistic origins of IL-induced performance enhancement but also offer predictive guidance for the rational design of advanced IL–catalyst systems for efficient CO2 electroreduction. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry, 2nd Edition)
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 64
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

49 pages, 3392 KiB  
Review
Solid-State Batteries: Chemistry, Battery, and Thermal Management System, Battery Assembly, and Applications—A Critical Review
by Emre Biçer, Ahmet Aksöz, Recep Bakar, Çağla Odabaşı, Willar Vonk, Maria Inês Soares, Rafaela Gonçalves, Emanuel Lourenço, Atakan Uzel, Tülay Aksoy, Zeynep Özserçe Haste, Burcu Oral, Ömer Eroğlu, Burçak Asal and Saadin Oyucu
Batteries 2025, 11(6), 212; https://doi.org/10.3390/batteries11060212 - 27 May 2025
Viewed by 251
Abstract
Li-ion batteries (LIBs) have become the preferred choice in electric vehicles (EVs) for reducing CO2 emissions, enhancing energy efficiency, and enabling rechargeability. They are extensively used in mobile electronics, EVs, grid storage, and other applications due to their high power, low self-discharge [...] Read more.
Li-ion batteries (LIBs) have become the preferred choice in electric vehicles (EVs) for reducing CO2 emissions, enhancing energy efficiency, and enabling rechargeability. They are extensively used in mobile electronics, EVs, grid storage, and other applications due to their high power, low self-discharge rate, wide operating temperature range, lack of memory effect, and environmental friendliness. However, commercial LIBs face safety and energy density challenges, primarily due to volatile and flammable liquid electrolytes and moderate energy densities. To address these issues, advanced materials are being explored for improved performance in battery components such as the anode, cathode, and electrolyte. All-solid-state batteries (ASSEBs) emerge as a promising alternative to liquid electrolyte LIBs, offering higher energy density, better stability, and enhanced safety. Despite challenges like lower ionic transport, ongoing research is advancing ASSEBs’ commercial viability. This paper critically reviews the state of the art in ASSEBs, including electrolyte compositions, production techniques, battery management systems (BMSs), thermal management systems, and environmental performance. It also assesses ASSEB applications in EVs, consumer electronics, aerospace, defense, and renewable energy storage, highlighting the potential for a more sustainable and efficient energy future. Full article
(This article belongs to the Special Issue Electrolytes for Solid State Batteries—2nd Edition)
Show Figures

Figure 1

17 pages, 3324 KiB  
Article
Ultrasonic-Assisted Extraction of Polysaccharides from Schizochytrium limacinum Meal Using Eutectic Solvents: Structural Characterization and Antioxidant Activity
by Xinyu Li, Jiaxian Wang, Guangrong Huang, Zhenbao Jia, Manjun Xu and Wenwei Chen
Foods 2025, 14(11), 1901; https://doi.org/10.3390/foods14111901 - 27 May 2025
Viewed by 181
Abstract
To address the underutilization of Schizochytrium limacinum meal, polysaccharides from Schizochytrium limacinum meal (SLMPs) were prepared via ultrasonic-assisted eutectic-solvent-based extraction. Although polysaccharides exhibit promising application potential, the structural ambiguity of SLMPs necessitates systematic investigation to elucidate their structure–activity relationships, thereby providing a scientific [...] Read more.
To address the underutilization of Schizochytrium limacinum meal, polysaccharides from Schizochytrium limacinum meal (SLMPs) were prepared via ultrasonic-assisted eutectic-solvent-based extraction. Although polysaccharides exhibit promising application potential, the structural ambiguity of SLMPs necessitates systematic investigation to elucidate their structure–activity relationships, thereby providing a scientific foundation for their subsequent development and utilization. Using response-surface methodology (RSM), the optimized extraction conditions were determined as follows: ultrasonic temperature of 52 °C, ultrasonic duration of 31 min, ultrasonic power of 57 W, water content of 29%, and a material-to-liquid ratio of 1:36 g/mL. Under these conditions, the maximum polysaccharide yield reached 9.25%, demonstrating a significant advantage over the conventional water extraction method (4.18% yield). Following purification, the antioxidant activity and structural characteristics of SLMPs were analyzed. The molecular weight, monosaccharide composition, reducing groups, and higher-order conformation were systematically correlated with antioxidant activity. Fourier-transform infrared spectroscopy (FTIR), monosaccharide composition analysis, and 1H nuclear magnetic resonance (NMR) spectroscopy revealed characteristic polysaccharide functional groups (C–O, O–H, and C=O). Monosaccharides such as glucose (Glc), galactose (Gal), and arabinose (Ara) were found to enhance antioxidant activity. High-performance gel permeation chromatography (HPGPC) indicated a molecular weight of 20.7 kDa for SLMPs, with low-molecular-weight fractions exhibiting superior antioxidant activity. Scanning electron microscopy (SEM) further demonstrated that ultrasonically extracted polysaccharides possess porous structures capable of chelating redox-active functional groups. These findings suggest that ultrasonic-assisted eutectic-solvent-based extraction is an efficient method for polysaccharide extraction while preserving antioxidant properties. Full article
Show Figures

Figure 1

16 pages, 13475 KiB  
Article
Low Thermal Stress and Instant Efficient Atomization of Narrow Viscous Microfluid Film Using a Paper Strip Located at the Edge of a Surface Acoustic Wave Atomizer
by Yulin Lei, Yusong Li, Jia Ning, Yu Gu, Chenhui Gai, Qinghe Ma, Yizhan Ding, Benzheng Wang and Hong Hu
Micromachines 2025, 16(6), 628; https://doi.org/10.3390/mi16060628 - 27 May 2025
Viewed by 97
Abstract
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an [...] Read more.
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an uneven particle size distribution and poor directional controllability, and a high heating phenomenon that can easily break the chip in the atomization process. This paper presents a novel atomization method: a paper strip located at the edge of the atomizer (PSLEA), which forms a micron-sized narrow liquid film at the junction of the atomization chip edge and the paper strip under the effect of acoustic wetting. By using this method, physical separation of the atomized aerosol and jetting droplets can be achieved at the initial stage of atomizer startup, and an ideal aerosol plume with no jetting of large droplets, a uniform particle size distribution, a vertical and stable atomization direction, and good convergence of the aerosol beam can be quickly formed. Furthermore, the effects of the input power, and different paper strips and liquid supply methods on the atomization performance, as well as the heating generation capacity of the liquid in the atomization zone during the atomization process were explored through a large number of experiments, which highlighted the advantages of PSLEA atomization. The experiments demonstrated that the maximum atomization rate under the PSLEA atomization mode reached 2.6 mL/min initially, and the maximum thermal stress was 45% lower compared with that in the traditional mode. Additionally, a portable handheld atomizer with stable atomization performance and a median aerosol particle size of 3.95 μm was designed based on the proposed PSLEA atomization method, showing the great potential of SAW atomizers in treating respiratory diseases. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

68 pages, 9522 KiB  
Review
Gel Electrolytes in the Development of Textile-Based Power Sources
by Ana Isabel Ribeiro, Cátia Alves, Marta Fernandes, José Abreu, Fábio Pedroso de Lima, Jorge Padrão and Andrea Zille
Gels 2025, 11(6), 392; https://doi.org/10.3390/gels11060392 - 27 May 2025
Viewed by 113
Abstract
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar [...] Read more.
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar cells. Traditional liquid electrolytes pose challenges in the development of textile-based electronics due to their potential for leakage, flammability, and limited flexibility. On the other hand, gel electrolytes offer solutions to these issues, making them suitable choices for these applications. There are several advantages to using gel electrolytes in textile-based electronics, namely higher safety, leak resistance, mechanical flexibility, improved interface compatibility, higher energy density, customizable properties, scalability, and easy integration into manufacturing processes. However, it is also essential to consider some challenges associated with these gels, such as lower conductivity and long-term stability. This review highlights the application of gel electrolytes to textile materials in various forms (e.g., fibers, yarns, woven, knit, and non-woven), along with the strategies for their integration and their resulting properties. While challenges remain in optimizing key parameters, the integration of gel electrolytes into textiles holds immense potential to enhance conductivity, flexibility, and energy storage, paving the way for advanced electronic textiles. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

18 pages, 1981 KiB  
Article
Ultrasound-Assisted Extraction Optimization and Cultivar Screening for Polyphenol Recovery from Thinned Peach Fruit: A Comprehensive Evaluation of 179 Cultivars
by Shenge Li, Jianlan Xu, Zhixiang Cai, Shaolei Guo, Mingliang Yu and Zhijun Shen
Foods 2025, 14(11), 1897; https://doi.org/10.3390/foods14111897 - 27 May 2025
Viewed by 181
Abstract
Thinned peach fruit represents a substantial source of polyphenols, primarily due to its early developmental stage. Utilizing ultrasound-assisted extraction optimized through a Box–Behnken design, we determined the optimal extraction parameters to be 45 min, 360 W, a liquid-to-solid ratio of 15:1 mL/g, and [...] Read more.
Thinned peach fruit represents a substantial source of polyphenols, primarily due to its early developmental stage. Utilizing ultrasound-assisted extraction optimized through a Box–Behnken design, we determined the optimal extraction parameters to be 45 min, 360 W, a liquid-to-solid ratio of 15:1 mL/g, and a temperature of 70 °C. Under these conditions, the total phenolic content (TPC) achieved was 1.12 g GAE/kg FW, with an extraction efficiency of 97.06%. Additionally, an extensive evaluation of 179 peach cultivars revealed that wild accessions possessed significantly higher polyphenol content, including TPC, total flavonoid content (TFC), and total anthocyanin content (TAC), alongside enhanced antioxidant activities as measured by ferric reducing antioxidant power (FRAP), 2,2′-Azino-di-3-ethylbenzthiazoline Sulfonic Acid (ABTS), and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays, in comparison to landraces and cultivated varieties. Notably, the wild accession ‘Gansu Peach 2’ exhibited the highest TPC (2.61 g GAE/kg FW), whereas the landrace ‘Early White Blossom Peach’ demonstrated the highest TFC (137.32 g RTE/kg FW), TAC (25.30 g PAE/kg FW), and antioxidant capacity. Additionally, as expected, significant positive correlations (0.73 < r < 0.96) were also observed between polyphenol components and antioxidant activities (p < 0.0001). This study establishes a foundational framework for the utilization of thinned peach fruit as valuable polyphenol-rich resources. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

Back to TopTop