Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = powersphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5385 KB  
Article
Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere
by Tiefeng He, Guobing Pan, Guoliang Zheng, Zikun Xu, Zhijian Lv, Qingyang Wu, Lili Wan, Haixuan Huang and Tianyu Shi
Photonics 2024, 11(2), 128; https://doi.org/10.3390/photonics11020128 - 29 Jan 2024
Cited by 4 | Viewed by 1447
Abstract
The powersphere is a spherical enclosed receiver composed of multiple photovoltaic cells. It serves as a replacement for traditional photovoltaic panels in laser wireless power transmission systems for optoelectronic conversion. The ideal powersphere aims to achieve a uniform distribution of light within the [...] Read more.
The powersphere is a spherical enclosed receiver composed of multiple photovoltaic cells. It serves as a replacement for traditional photovoltaic panels in laser wireless power transmission systems for optoelectronic conversion. The ideal powersphere aims to achieve a uniform distribution of light within the cavity through infinite reflections, reducing energy losses in the circuit. However, due to the high absorption rate of the photovoltaic cells, the direct irradiation area on the inner surface of the powersphere exhibits a significantly higher light intensity than the reflected area, resulting in a suboptimal level of light uniformity and certain circuit losses. To address the aforementioned issues, a method of intra-cavity beam splitting in the powersphere is proposed. This solution aims to increase the area of direct illumination and reduce the intensity difference between direct and reflected lights, thereby improving the light uniformity on the inner surface of the powersphere. Utilizing the transformation matrix of Gaussian beams, the q parameters for each optical path with beam splitting were calculated, and the equality of corresponding q values was demonstrated. Further, based on the q parameter expression for the electric field of Gaussian beams, the intensities for each optical path were calculated, and it was demonstrated that their values are equal. Additionally, an optical software was utilized to establish a model for intra-cavity beam splitting in the powersphere. Based on this model, a beam-splitting system was designed using a semi-transparent and semi-reflective lens as the core component. The light uniformity performance of the proposed system was analyzed through simulations. To further validate the effectiveness of the calculations, design, and simulations, multiple lenses were employed to construct the beam-splitting system. An experimental platform was set up, consisting of a semiconductor laser, monocrystalline silicon photovoltaic cells, beam expander, Fresnel lens, beam-splitting system, and powersphere. An experimental verification was conducted, and the results aligned with the theoretical calculations and simulated outcomes. The above theory, simulations, and experiments demonstrate that the intra-cavity beam-splitting method effectively enhances the optical uniformity within the powersphere. Full article
Show Figures

Figure 1

17 pages, 11338 KB  
Article
Analysis and Experiment of Laser Energy Distribution of Laser Wireless Power Transmission Based on a Powersphere Receiver
by Tiefeng He, Guoliang Zheng, Qingyang Wu, Haixuan Huang, Lili Wan, Keyan Xu, Tianyu Shi and Zhijian Lv
Photonics 2023, 10(7), 844; https://doi.org/10.3390/photonics10070844 - 21 Jul 2023
Cited by 9 | Viewed by 4682
Abstract
Laser wireless power transmission (WPT) is one of the most important technologies in the field of long-range power transfer. This technique uses a laser as a transmission medium instead of conventional physical or electrical connections to perform WPT. It has the characteristics of [...] Read more.
Laser wireless power transmission (WPT) is one of the most important technologies in the field of long-range power transfer. This technique uses a laser as a transmission medium instead of conventional physical or electrical connections to perform WPT. It has the characteristics of long transmission distance and flexible operation. The existing laser wireless power transmission system uses photovoltaic cells as a receiver, which convert light into electricity. Due to the contradiction between the Gaussian distribution of laser and the uniform illumination requirements of photovoltaic cells, the laser wireless power transmission technology has problems such as low transmission efficiency and small output power. Therefore, understanding the energy distribution changes in the laser during transmission, especially the energy change after the laser is transmitted to each key device, and analyzing the influencing factors of the energy distribution state, are of great significance in improving the transmission efficiency and reducing the energy loss in the system. This article utilizes the optical software Lighttools as a tool to establish a laser wireless power transmission model based on a powersphere. This model is used to study the energy distribution changes in the laser as it passes through various components, and to analyze the corresponding influencing factors. To further validate the simulation results, an experimental platform was constructed using a semiconductor laser, beam expander, Fresnel lens, and powersphere as components. A beam quality analyzer was used to measure and analyze the laser energy distribution of each component except for the powersphere. The output voltage and current values of various regions of the powersphere were measured using a multimeter. The energy distribution of the powersphere was reflected based on the linear relationship between photo-generated current, voltage, and light intensity. The experimental results obtained were in good agreement with the simulation results. Simulations and experiments have shown that using a beam expander can reduce divergence angle and energy loss, while employing large-aperture focusing lens can enhance energy collection and output power, providing a basis for improving the efficiency of laser wireless power transfer. Full article
Show Figures

Figure 1

15 pages, 5538 KB  
Article
Design and Fabrication of Large-Size Powersphere for Wireless Energy Transmission via Laser
by Tiefeng He, Guobing Pan, Libin Zhang, Fang Xu, Can Yang, Chi Chiu Chan, Meng Wang and Guoliang Zheng
Photonics 2021, 8(2), 35; https://doi.org/10.3390/photonics8020035 - 30 Jan 2021
Cited by 8 | Viewed by 3225
Abstract
The powersphere is a device used for maximizing the conversion of light in wireless energy transmission via laser. It is a spherical structure made up of thousands of photovoltaic cells. Due to the large dimensions and existence of many holes in the spherical [...] Read more.
The powersphere is a device used for maximizing the conversion of light in wireless energy transmission via laser. It is a spherical structure made up of thousands of photovoltaic cells. Due to the large dimensions and existence of many holes in the spherical surface, there are some drawbacks in machining, such as limited movement space of the machines, long cycle, low precision, and high cost. In this context, with a powersphere irradiated by the laser as the model, the principle of powersphere is deduced theoretically. It is proven that the illuminance value at any position on the inner wall of the powersphere is equal, and the calculation formula of this value is derived. Based on this theory and the comparative analysis of processing methods and the results of processing experiments, the structure of the powersphere is designed. The experimental processing of the powersphere is carried out by selecting the welding method. Finally, two hemispherical powersphere frames are processed, which are connected by screws to form a ball frame for the installation of photovoltaic cells. The results show that the improved design and fabricating method can process the powersphere quickly, accurately, and economically. A comparative experiment of powersphere and photovoltaic panel was carried out. The experimental results show that the powersphere has the function of light uniformity and repeated use of laser. So, the designed and processed powersphere is consistent with the theoretical analysis. Full article
(This article belongs to the Special Issue Optical Instrumentation)
Show Figures

Figure 1

Back to TopTop