Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = preventive and planned conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7721 KB  
Article
Advanced Research and Engineering Application of Tunnel Structural Health Monitoring Leveraging Spatiotemporally Continuous Fiber Optic Sensing Information
by Gang Cheng, Ziyi Wang, Gangqiang Li, Bin Shi, Jinghong Wu, Dingfeng Cao and Yujie Nie
Photonics 2025, 12(9), 855; https://doi.org/10.3390/photonics12090855 - 26 Aug 2025
Viewed by 330
Abstract
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the [...] Read more.
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the construction process and monitoring method are not properly designed, it will often directly induce disasters such as tunnel deformation, collapse, leakage and rockburst. This seriously threatens the safety of tunnel construction and operation and the protection of the regional ecological environment. Therefore, based on distributed fiber optic sensing technology, the full–cycle spatiotemporally continuous sensing information of the tunnel structure is obtained in real time. Accordingly, the health status of the tunnel is dynamically grasped, which is of great significance to ensure the intrinsic safety of the whole life cycle for the tunnel project. Firstly, this manuscript systematically sorts out the development and evolution process of the theory and technology of structural health monitoring in tunnel engineering. The scope of application, advantages and disadvantages of mainstream tunnel engineering monitoring equipment and main optical fiber technology are compared and analyzed from the two dimensions of equipment and technology. This provides a new path for clarifying the key points and difficulties of tunnel engineering monitoring. Secondly, the mechanism of action of four typical optical fiber sensing technologies and their application in tunnel engineering are introduced in detail. On this basis, a spatiotemporal continuous perception method for tunnel engineering based on DFOS is proposed. It provides new ideas for safety monitoring and early warning of tunnel engineering structures throughout the life cycle. Finally, a high–speed rail tunnel in northern China is used as the research object to carry out tunnel structure health monitoring. The dynamic changes in the average strain of the tunnel section measurement points during the pouring and curing period and the backfilling period are compared. The force deformation characteristics of different positions of tunnels in different periods have been mastered. Accordingly, scientific guidance is provided for the dynamic adjustment of tunnel engineering construction plans and disaster emergency prevention and control. At the same time, in view of the development and upgrading of new sensors, large models and support processes, an innovative tunnel engineering monitoring method integrating “acoustic, optical and electromagnetic” model is proposed, combining with various machine learning algorithms to train the long–term monitoring data of tunnel engineering. Based on this, a risk assessment model for potential hazards in tunnel engineering is developed. Thus, the potential and disaster effects of future disasters in tunnel engineering are predicted, and the level of disaster prevention, mitigation and relief of tunnel engineering is continuously improved. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

35 pages, 11658 KB  
Article
An Approach to Risk Assessment and Planned Preventative Maintenance of Cultural Heritage: The Case of the Hypogeum Archaeological Site of Sigismund Street (Rimini, Italy)
by Anna Casarotto, Sara Fiorentino and Mariangela Vandini
Heritage 2025, 8(9), 344; https://doi.org/10.3390/heritage8090344 - 23 Aug 2025
Viewed by 358
Abstract
This study presents a comprehensive approach to risk management and planned preventative maintenance (PPM) for cultural heritage, focusing on the hypogeum archaeological site beneath the Chamber of Commerce in Rimini, Italy. Hypogeal environments pose unique conservation challenges due to their microclimates, biological threats, [...] Read more.
This study presents a comprehensive approach to risk management and planned preventative maintenance (PPM) for cultural heritage, focusing on the hypogeum archaeological site beneath the Chamber of Commerce in Rimini, Italy. Hypogeal environments pose unique conservation challenges due to their microclimates, biological threats, and structural vulnerabilities. Applying the ABC Method—developed by ICCROM and CCI—this research systematically identifies, analyzes, and prioritizes risks associated with agents of risks. The methodology was complemented by the Nara Grid to assess the site’s authenticity and cultural value, aiding in the delineation of risk areas and informing strategic conservation priorities. The study identifies efflorescence formation, flooding risks, and lack of management guidelines as extreme threats, proposing tailored treatments and practical interventions across multiple layers of control. Through environmental monitoring, empirical analysis, and a multidisciplinary framework, the research offers a replicable model for sustainable conservation and preventive heritage management in similar subterranean contexts. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

20 pages, 2524 KB  
Article
Wild Fauna in Oman: Foot-and-Mouth Disease Outbreak in Arabyan Oryx (Oryx leucorix)
by Massimo Giangaspero, Salah Al Mahdhouri, Sultan Al Bulushi and Metaab K. Al-Ghafri
Animals 2025, 15(16), 2389; https://doi.org/10.3390/ani15162389 - 14 Aug 2025
Viewed by 417
Abstract
The Sultanate of Oman boasts remarkable biodiversity, exemplified by such species as the Arabian leopard (Panthera pardus nimr) and the Arabian oryx (Oryx leucoryx), national symbols that highlight the extensive conservation efforts required to protect the country’s natural heritage. [...] Read more.
The Sultanate of Oman boasts remarkable biodiversity, exemplified by such species as the Arabian leopard (Panthera pardus nimr) and the Arabian oryx (Oryx leucoryx), national symbols that highlight the extensive conservation efforts required to protect the country’s natural heritage. During decades, Omani authorities have taken significant measures to safeguard wildlife and preserve the natural environment. A sanctuary dedicated to the reintroduction of the Arabian Oryx, after extinction in nature in 1972, was established in 1980 in the Al Wusta Governorate under the patronage of the Royal Diwan and currently administrated by the recently established Environment Authority. During the almost 40 years since the reintroduction and the creation of the sanctuary, the oryx population has grown slowly but constantly. In 2021, the sanctuary hosted 738 oryx, allowing the start of the reintroduction of the species into the natural environment. Small groups of animals were released into the wild in selected areas. No animal health adverse events were recorded, and mortality was generally due to injuries received as a consequence of fighting, in particular during mating season. Standard veterinary care, including control of internal and external parasites, was regularly provided. In some occasions, immunization against certain diseases, such as clostridial infections, pasteurellosis, or mycoplasmosis, was also applied. In 2023, an FMD outbreak in cattle reported in Dhofar, about 500 km from the Al Wusta sanctuary, motivated specific prophylactic actions to prevent the risk of diffusion to oryx. From December 2023 to January 2024, an immunization program was undertaken using an FMD vaccine against serotypes A, O, and SAT 1, mostly in male oryx, while pregnant oryx were avoided for abortion risk due to handling. The following year, in January 2025, a severe outbreak occurred in oryx herds held in the sanctuary. The rapid onset and the spread of clinical symptoms among animals (100% morbidity in the second day after the first appearance of signs in some individuals) were suggestive of a highly contagious disease. The animals suffered from severe depression and inappetence, rapidly followed by abundant salivation, erosions of the oral mucosa and tongue, and diarrhea, with a short course characterized by prostration and death of the animal in the most severe cases. Therapeutical attempts (administration of antibiotics and rehydration) were mostly ineffective. Laboratory investigations (ELISA and PCR) ruled out contagious bovine pleuropneumonia (CBPP), Johne’s disease and Peste des petits ruminants (PPR). Both serology and antigen detection showed positiveness to foot-and-mouth disease (FMD). Out of a total population of 669 present in the sanctuary at the beginning of the outbreak, 226 (33.78%) oryx died. Despite the vaccinal status, the 38.49% of dead animals resulted being vaccinated against FMD. Taking into account the incalculable value of the species, the outbreak represented a very dangerous event that risked wiping out the decades of conservation efforts. Therefore, all the available means, such as accrued biosecurity and adequate prophylaxis, should be implemented to prevent the recurrence of such health risks. The delicate equilibrium of wild fauna in Oman requires study and support for an effective protection, in line with the national plan “Vision 2040”, targeting the inclusion of the Sultanate within the 20 best virtuous countries for wildlife protection. Full article
(This article belongs to the Special Issue Wildlife Diseases: Pathology and Diagnostic Investigation)
Show Figures

Figure 1

21 pages, 12399 KB  
Article
Preventive Diagnosis of Biological Colonization and Salt-Related Decay on the Frescoes of the “Oratorio dell’Annunziata” (Riofreddo, Latium, Italy) to Improve Conservation Plans
by Flavia Bartoli, Annalaura Casanova Municchia, Marco Tescari, Ilaria Ciccone, Paolo Rosati, Alessandro Lazzara and Maria Catrambone
Appl. Sci. 2025, 15(15), 8762; https://doi.org/10.3390/app15158762 - 7 Aug 2025
Viewed by 381
Abstract
The frescoed Annunziata Oratory chapel in Riofreddo (Italy), a unique testimony to the pontificate of Martin V, sheds light on the trade routes of Ninfa in the first half of the 15th century. Despite having undergone several restorations in the past (the most [...] Read more.
The frescoed Annunziata Oratory chapel in Riofreddo (Italy), a unique testimony to the pontificate of Martin V, sheds light on the trade routes of Ninfa in the first half of the 15th century. Despite having undergone several restorations in the past (the most recent in the 2010s), the Oratory presents serious conservation issues. At first glance, there are no evident signs of biological colonization; rather, the most obvious damage is attributed to detachments and saline efflorescence. Biological colonization at several points was identified using various diagnostic field and laboratory techniques such as ATPase point analysis, field stereoscopy in visible and UV light, culture-based and molecular approaches, Raman spectroscopy, and SEM analysis, biological colonization at several points was identified. The characterization of salt efflorescence was carried out using ion chromatography analysis. The presence of bacteria, fungi and algae, which are also linked to saline efflorescence, was observed. A clear correlation between the biological colonization and salt efflorescence composition was highlighted by our results, as well as the potential sources of microorganisms and salts via the capillary rise of groundwater. This early diagnostic approach regarding the presence of lithobionts and salt efflorescence demonstrates the complex interplay between environmental factors and microbial colonization, which can lead to biodeterioration processes. Full article
(This article belongs to the Special Issue Application of Biology to Cultural Heritage III)
Show Figures

Graphical abstract

21 pages, 9265 KB  
Article
Towards a Sustainable Process of Conservation/Reuse of Built Cultural Heritage: A “Coevolutionary” Approach to Circular Economy in the Case of the Decommissioned Industrial Agricultural Consortium in the Corbetta, Metropolitan Area of Milan, Italy
by Mehrnaz Rajabi, Stefano Della Torre and Arian Heidari Afshari
Land 2025, 14(8), 1595; https://doi.org/10.3390/land14081595 - 5 Aug 2025
Viewed by 530
Abstract
This paper aims to explore the potentialities and systemic relationships between the ‘regenerative’ process and ‘circular economy’ concept within the conservation and reuse of a built cultural heritage framework through contextualizing the concept of ‘process programming’ of the Preventive and Planned Conservation methodology. [...] Read more.
This paper aims to explore the potentialities and systemic relationships between the ‘regenerative’ process and ‘circular economy’ concept within the conservation and reuse of a built cultural heritage framework through contextualizing the concept of ‘process programming’ of the Preventive and Planned Conservation methodology. As a case study, it depicts a decommissioned industrial agricultural silo in Corbetta—a small historic city with its hinterland located in the protected Southern Milan Regional Agricultural Park. The context includes the industrial agricultural lands of the 20th century, together with historical water infrastructure, farmhouses, and the typical flora of the Lombardy region, all evidences of Corbetta’s rural archaeological values and the sophisticated material culture of its past collective production/economy system—the locus in which the silo was once one of the main productive symbols of Corbetta’s agricultural identity. Within such a complex and challenging context, this paper argues in favor of the constructive role of such a methodology in upholding circular economy principles within the process of conservation and reuse of the silo, highlighting its broader application of the ‘coevolution’ concept from a multidisciplinary long-term perspective. Full article
Show Figures

Figure 1

18 pages, 389 KB  
Article
What Makes Consumers Behave Sustainably When It Comes to Food Waste? An Application of the Theory of Planned Behavior in Spain
by Julieth Lizcano-Prada, Radia Ayouaz, Francisco J. Mesías and Leydis-Marcela Maestre-Matos
Foods 2025, 14(13), 2306; https://doi.org/10.3390/foods14132306 - 29 Jun 2025
Viewed by 878
Abstract
Preventing food waste is a pressing global policy concern, with households being the main producers of food waste along the food supply chain. This study aims to analyze consumers’ food waste behavior and identify how different consumer profiles and sociodemographic characteristics influence food [...] Read more.
Preventing food waste is a pressing global policy concern, with households being the main producers of food waste along the food supply chain. This study aims to analyze consumers’ food waste behavior and identify how different consumer profiles and sociodemographic characteristics influence food waste. A survey was carried out in Spain with a representative sample of 717 participants, and the Theory of Planned Behavior (TPB) was applied to understand the influence of consumers’ attitudes, subjective norms, and perceived behavior control on their intention to reduce food waste and to find out the main drivers of their food waste behaviors. Results demonstrated that food waste reduction is mainly predicted by attitudes, followed by perceived behavior control, and lastly subjective norms. Finally, characteristics such as responsibility in food purchasing and cooking at home as well as sociodemographic factors played a relevant role in how much the intention to reduce food waste affects the final behavior. Our results suggest the potential of communication to reshape individual preferences towards valuing food conservation. Tailored strategies are recommended for specific groups, emphasizing the importance of targeted approaches in addressing food waste at various levels of society. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

18 pages, 873 KB  
Review
Beyond Endoleaks: A Holistic Management Approach to Late Abdominal Aortic Aneurysm Ruptures After Endovascular Repair
by Rafic Ramses and Obiekezie Agu
J. Vasc. Dis. 2025, 4(3), 24; https://doi.org/10.3390/jvd4030024 - 22 Jun 2025
Viewed by 456
Abstract
Late ruptures of abdominal aortic aneurysms post-endovascular aneurysm repair present a significant risk, occurring in about 0.9% of cases. The typical timeframe leading to rupture is roughly 37 months, with the primary factors often linked to endoleaks, especially types I and III, which [...] Read more.
Late ruptures of abdominal aortic aneurysms post-endovascular aneurysm repair present a significant risk, occurring in about 0.9% of cases. The typical timeframe leading to rupture is roughly 37 months, with the primary factors often linked to endoleaks, especially types I and III, which sustain pressure within the aneurysm sac. The approaches to managing late ruptures consist of endovascular approaches, open surgical interventions, and conservative care, each customised to the patient’s specific characteristics. When feasible endovascular repair is favoured, additional stent grafts are deployed to seal endoleaks and offer lower perioperative mortality rates compared to those for open surgery. Open repair is considered when endovascular solutions fail or are not feasible. Conservative management with active monitoring and supportive treatment can be considered for haemodynamically stable non-surgical patients. Endovascular repair methods like fenestrated/branched EVAR (F/BEVAR) and parallel grafting (PGEVAR) are effective for complicated anatomies and show high technical success with reduced morbidity compared to that with open repairs. Chimney techniques and physician-modified endografts may help regain and broaden the sealing zone. Limb extensions with or without embolisation, interposition endografting, and whole-body relining are helpful options for type IB and type 3–5 endoleaks. Open surgical repair carries a higher perioperative mortality but may be essential in preventing death due to rupture following failed EVAR. The choice depends on the patient’s clinical stability and fitness for surgery in the absence of a viable endovascular alternative. This article discusses the available options for treating late rupture after EVAR, emphasising the importance of individualised treatment plans and the need for rigorous postoperative surveillance to prevent such complications. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Figure 1

26 pages, 17182 KB  
Article
Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera
by Refky Adi Nata, Gaofeng Ren, Yongxiang Ge, Congrui Zhang, Luwei Zhang, Pulin Kang and Verra Syahmer
Sustainability 2025, 17(13), 5711; https://doi.org/10.3390/su17135711 - 20 Jun 2025
Viewed by 965
Abstract
Landslide prevention is crucial, particularly for protecting roads and infrastructure in rock landslide-prone areas. This global issue has garnered significant attention from researchers worldwide. This study addresses landslide prevention by modeling the factor of safety (FoS) for slope stability through the Geological Strength [...] Read more.
Landslide prevention is crucial, particularly for protecting roads and infrastructure in rock landslide-prone areas. This global issue has garnered significant attention from researchers worldwide. This study addresses landslide prevention by modeling the factor of safety (FoS) for slope stability through the Geological Strength Index (GSI), limit equilibrium method (LEM), and finite element method (FEM). A GSI analysis was conducted using RocLab software version 1.0, and slope modeling was performed using RocScience SLIDE version 6.0 and RS2 version 11. The results revealed various cohesion and friction angles across six slopes, with Slope 5 exhibiting the highest FoS values (up to 3.27 with the FEM) and Slope 1 exhibiting the lowest (1.59 with the FEM). All slopes, designed with a uniform geometry, remained stable, exhibiting FoS values greater than 1.1. This study further provides an optimal slope design for the open pit in the andesite mining plan at Anugerah Berkah Sejahtera. These findings highlight the important role of accurate modeling in the assessment of slope stability. With a suggested safe slope height of 10 m and an angle of 80° (FoS = 1.62), slope stability analysis based on the factor of safety (FoS) showed that single slopes made of andesite maintain stability at steep angles. Claystone slopes, however, have a maximum slope height of 30 m at 20° (FoS = 1.27) and 27 m at 50° (FoS = 1.34), requiring more conservative geometries to maintain their stability. For an overall slope that comprises both rock types, a height of 30 m with a slope angle of 60° is recommended (FoS = 1.23) to ensure stability. The critical design condition for a claystone slope occurs at a height of 30 m with a slope angle of 50°, yielding a factor of safety (FoS) of 0.92, which indicates instability (FoS < 1.1). Similarly, a 35 m-high slope with a slope angle of 20° produced an FoS of 1.04, and a 35 m-high slope with a slope angle of 50° produced an FoS of 0.89, further confirming instability. For the overall slope configuration, instability occurs at a height of 30 m with a slope angle of 65° that produces an FoS of 1.09. Full article
Show Figures

Figure 1

22 pages, 1846 KB  
Article
Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece
by Vassiliki Kati, Konstantina Spiliopoulou, Apostolis Stefanidis and Christina Kassara
Land 2025, 14(6), 1296; https://doi.org/10.3390/land14061296 - 17 Jun 2025
Viewed by 2116
Abstract
The REPowerEU Plan calls for a massive speed-up of renewable energy, which can undermine nature conservation. We explored the impact of an industrial-scale wind power project planned inside a Natura 2000 site (Special Protected Areas for birds) in the mountains of Central Evvoia, [...] Read more.
The REPowerEU Plan calls for a massive speed-up of renewable energy, which can undermine nature conservation. We explored the impact of an industrial-scale wind power project planned inside a Natura 2000 site (Special Protected Areas for birds) in the mountains of Central Evvoia, in Greece. If approved, the project could cause significant land artificialization, land take, and habitat fragmentation, having a land take intensity of 4.5 m2/MWh. An important part of forested land (14%) would be artificialized. The wilderness character would sharply decline from 49% to 4%, with a large roadless area (51.4 km2) shrinking by 77% and a smaller one (16.1 km2) lost. The project greatly overlaps with the Natura 2000 network (97%), a regional Key Biodiversity Area and Important Bird Area (84%), and a potential Global Key Biodiversity Area (27%). It might affect 23 globally threatened and 44 endemic species. This case study is a typical example of the poor implementation of the Natura 2000 and EIA legislation and highlights their recurring inability to prevent harmful human activities across Europe from affecting protected species of European interest and ecosystem functions. We conclude with policy recommendations to help increase renewables’ sustainability and minimize land artificialization in the EU. Full article
Show Figures

Figure 1

17 pages, 1269 KB  
Article
Key Influencing Factors in the Variation in Livestock Carbon Emissions in the Grassland Region of Gannan Prefecture, China (2009–2024)
by Guohua Chang, Jinxiang Wang, Panliang Liu, Qi Wang, Fanxiang Han, Chao Wang, Tawatchai Sumpradit and Tianpeng Gao
Agriculture 2025, 15(12), 1300; https://doi.org/10.3390/agriculture15121300 - 17 Jun 2025
Viewed by 561
Abstract
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s [...] Read more.
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s average annual carbon emissions from animal husbandry are 774,286 t C-eq (2,839,049 t CO2eq), with enteric emissions from cattle being the biggest contributor. However, as the number of locally raised cattle and sheep has decreased, carbon emissions have gradually fallen at an average annual rate of −1.0%. The annual average total carbon sequestration of vegetation in the region is 6,861,535 t C-eq, and the carbon content in underground biomass is higher than that in aboveground biomass, making it the main contributor to grassland carbon sequestration. Carbon sequestration from grassland vegetation is greater than the carbon emissions from animal husbandry, which means that the entire production system is currently a carbon sink. Meanwhile, the analysis of land-use carbon sequestration found that the annual average total sequestration by forests and grasslands over the same time period was 752,327 t C-eq, and sequestration is increasing at an annual rate of 1.4%, primarily driven by the progressive expansion of forested areas. Although the regional carbon emissions from animal husbandry are lower than the carbon sequestration, developing a science-based animal husbandry plan aligned with regional ecological thresholds, continuing to implement grass–livestock balance management measures, and preventing livestock numbers from exceeding their ecological carrying capacity remain critical to promoting sustainable coordination between livestock economies and ecological conservation. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 4767 KB  
Article
Risk Mitigation of a Heritage Bridge Using Noninvasive Sensors
by Ricky W. K. Chan and Takahiro Iwata
Sensors 2025, 25(12), 3727; https://doi.org/10.3390/s25123727 - 14 Jun 2025
Viewed by 417
Abstract
Bridges are fundamental components of transportation infrastructure, facilitating the efficient movement of people and goods. However, the conservation of heritage bridges introduces additional challenges, encompassing environmental, social, cultural, and economic dimensions of sustainability. This study investigates risk mitigation strategies for a heritage-listed, 120-year-old [...] Read more.
Bridges are fundamental components of transportation infrastructure, facilitating the efficient movement of people and goods. However, the conservation of heritage bridges introduces additional challenges, encompassing environmental, social, cultural, and economic dimensions of sustainability. This study investigates risk mitigation strategies for a heritage-listed, 120-year-old reinforced concrete bridge in Australia—one of the nation’s earliest examples of reinforced concrete construction, which remains operational today. The structure faces multiple risks, including passage of overweight vehicles, environmental degradation, progressive crack development due to traffic loading, and potential foundation scouring from an adjacent stream. Due to the heritage status and associated legal constraints, only non-invasive testing methods were employed. Ambient vibration testing was conducted to identify the bridge’s dynamic characteristics under normal traffic conditions, complemented by non-contact displacement monitoring using laser distance sensors. A digital twin structural model was subsequently developed and validated against field data. This model enabled the execution of various “what-if” simulations, including passage of overweight vehicles and loss of foundation due to scouring, providing quantitative assessments of potential risk scenarios. Drawing on insights gained from the case study, the article proposes a six-phase Incident Response Framework tailored for heritage bridge management. This comprehensive framework incorporates remote sensing technologies for incident detection, digital twin-based structural assessment, damage containment and mitigation protocols, recovery planning, and documentation to prevent recurrence—thus supporting the long-term preservation and functionality of heritage bridge assets. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

23 pages, 1050 KB  
Review
Integrating Environmental Sensitivity Analysis into Strategic Environmental Assessment for Sustainable Tourism Planning: A Review
by Diana Salciccia-Frezza, Teresa Rodríguez-Espinosa and José Navarro-Pedreño
Sustainability 2025, 17(12), 5439; https://doi.org/10.3390/su17125439 - 12 Jun 2025
Cited by 1 | Viewed by 741
Abstract
Tourism development frequently leads to significant environmental impacts, particularly in vulnerable areas. While strategic environmental assessment (SEA) serves as a crucial tool for integrating environmental considerations into policies and plans, its effectiveness in tourism destinations is often constrained by a lack of integrated [...] Read more.
Tourism development frequently leads to significant environmental impacts, particularly in vulnerable areas. While strategic environmental assessment (SEA) serves as a crucial tool for integrating environmental considerations into policies and plans, its effectiveness in tourism destinations is often constrained by a lack of integrated tools to assess environmental sensitivity. Environmental sensitivity analysis (ESA), which identifies areas sensitive to anthropogenic disturbance, is applied at the project level (environmental impact assessment), rather than being proactively integrated into strategic territorial planning for tourism. The analysis of this concept is crucial for identifying high-priority areas for conservation and sustainable tourism management. This systematic review addresses this gap by analyzing the inter-relationship between the conceptual aspects of SEA and ESA methodologies and the sustainable planning of territories. The central research question guiding this study is as follows: can the integration of ESA into the SEA of the tourism sector lead to improved territorial environmental management in areas with tourism potential? The research evidences the necessity for strategic environmental planning that effectively prevents impacts before tourism projects commence. The best way to achieve this goal is by integrating ESA into SEA. The notion of sustainable territorial management is particularly relevant in regions where tourism growth has the potential to affect local ecosystems and the quality of life of local communities. The incorporation of tools to better assess the environmental sensitivity of such areas is, therefore, essential to ensure policy decisions do not compromise the socio-environmental conditions of these areas. The study lays the groundwork for future research to develop and apply practical ESA methodologies for strategic and sustainable tourism planning. Full article
Show Figures

Figure 1

26 pages, 4661 KB  
Article
Relationship Between Landscape Character and Public Preferences in Urban Landscapes: A Case Study from the East–West Mountain Region in Wuhan, China
by Xingyuan Li, Wenqing Pang, Lizhi Han, Yufan Yan, Xianjie Pan and Diechuan Yang
Land 2025, 14(6), 1228; https://doi.org/10.3390/land14061228 - 6 Jun 2025
Cited by 1 | Viewed by 613
Abstract
The East–West Mountain Region (EWMR) of Wuhan is a vital natural and cultdural asset, characterized by its scenic nature landscapes and rich historical and cultural heritage. This study aims to address the problems of landscape character degradation and weakened public preferences caused by [...] Read more.
The East–West Mountain Region (EWMR) of Wuhan is a vital natural and cultdural asset, characterized by its scenic nature landscapes and rich historical and cultural heritage. This study aims to address the problems of landscape character degradation and weakened public preferences caused by rapid urbanization and proposes a research framework integrating landscape character assessment and public preferences. Initially, we utilize K-means cluster analysis to identify landscape character types based on six landscape elements, resulting in a landscape character map with 20 types. Subsequently, we employ emotion analysis based on Natural Language Processing (NLP) techniques to analyze user-generated content (UGC) from Weibo check-in data to establish perception characteristic indicators reflecting public preferences. Finally, we quantitatively identify the environmental factors influencing public preferences through the SoIVES model and compare and integrate the landscape character map with the public emotion value map. The results show that (1) public preferences hotspots are concentrated in three types: (a) urban construction-driven types, including areas dominated by commercial service functions and those characterized by mixed-function residential areas; (b) natural terrain-dominated types with well-developed supporting facilities; and (c) hybrid transition types predominated by educational and scientific research land uses. These areas generally feature a high degree of functional diversity and good transportation accessibility. (2) Landscapes eliciting stronger emotional responses integrate moderate slopes, multifunctional spaces, and robust public services, whereas areas with weaker responses are characterized by single-function use or excessive urbanization. (3) The emotional variations within categories could be influenced by (a) functional hybridity through enhanced environmental exploration; (b) spatial usage frequency through place attachment formation; and (c) visual harmony through cognitive overload prevention. These findings provide critical insights for formulating zoning optimization plans aimed at the refined conservation and utilization of urban landscape resources, as well as offering guidance for improving landscape planning and management in the EWMR. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

8 pages, 1153 KB  
Case Report
Brachial Plexopathy in Head and Neck Cancer Potentially Related to LET-Dependent RBE
by Abanob Hanna, Anthony Casper, Roi Dagan, Hardev S. Grewal, Jiyeon Park, Eric D. Brooks, Erik Traneus, Lars Glimelius, Perry B. Johnson, Mohammad Saki, Yawei Zhang, Twyla R. Willoughby, Julie A. Bradley, Jackson Browne and Mark E. Artz
Biophysica 2025, 5(2), 20; https://doi.org/10.3390/biophysica5020020 - 29 May 2025
Viewed by 713
Abstract
Proton beam therapy for head and neck cancers traditionally employs a fixed relative biological effectiveness (RBE) of 1.1, which may underestimate actual biological effects in critical structures. This study evaluates how Linear Energy Transfer (LET) optimization could potentially prevent radiation-induced brachial plexopathy (RIBP). [...] Read more.
Proton beam therapy for head and neck cancers traditionally employs a fixed relative biological effectiveness (RBE) of 1.1, which may underestimate actual biological effects in critical structures. This study evaluates how Linear Energy Transfer (LET) optimization could potentially prevent radiation-induced brachial plexopathy (RIBP). (1) Case presentation: A 65-year-old male with stage IVA p16-positive oropharyngeal squamous cell carcinoma received pencil-beam-scanning intensity-modulated proton therapy with concurrent cisplatin. Due to a right level 4 neck node, the high-risk target volume overlapped with the brachial plexus, resulting in a D0.1cc of 70.3 Gy (RBE = 1.1). Four years post-treatment, the patient developed progressive right upper extremity paresthesia, weakness, and dysesthesia. Electromyography revealed myokymia consistent with brachial plexopathy, while MRI showed hyperintensity of the right brachial plexus corresponding to the radiation field. Conservative treatment with pentoxifylline, gabapentin, and physical therapy improved his symptoms. (2) Methods: The original treatment plan was retrospectively analyzed using Monte Carlo dose algorithms and LET-dependent RBE models from McMahon and McNamara. An LET-optimized plan was created to limit LETd to 2.0 keV/µm in the brachial plexus. (3) Results: The relative biological equivalent (RBE) dose to 0.1cc of the brachial plexus was 77.8 Gy (CGE RBE), exceeding tolerance. The LET-optimized plan reduced the brachial plexus D0.1cc to 59.4 Gy (RBE = 1.1) and 63.2 Gy (CGE RBE), an 18.8% decrease, while maintaining target coverage. LETd, within the brachial plexus enhancement, decreased from 5.3 to 2.6 keV/μm. (4) Conclusion: This case highlights the potential clinical importance of LET optimization in proton therapy planning, particularly when organs-at-risk overlap with target volumes. By reducing LETd from 5.3 to 2.6 keV/μm and biological equivalent dose by 18.8%, LET optimization could potentially prevent late toxicities, like RIBP, while maintaining target coverage. Full article
Show Figures

Figure 1

23 pages, 6077 KB  
Article
UAV Path Planning Using a State Transition Simulated Annealing Algorithm Based on Integrated Destruction Operators and Backward Learning Strategies
by Jianping Liu, Xiaoxia Han, Fengyi Liu, Jinde Wu and Wenjie Zhang
Appl. Sci. 2025, 15(11), 6064; https://doi.org/10.3390/app15116064 - 28 May 2025
Cited by 1 | Viewed by 502
Abstract
This study introduces a state transition simulated annealing algorithm that incorporates integrated destruction operators and backward learning strategies (DRSTASA) to address complex challenges in UAV path planning within multidimensional environments. UAV path planning is a critical optimization problem that requires smooth flight paths, [...] Read more.
This study introduces a state transition simulated annealing algorithm that incorporates integrated destruction operators and backward learning strategies (DRSTASA) to address complex challenges in UAV path planning within multidimensional environments. UAV path planning is a critical optimization problem that requires smooth flight paths, obstacle avoidance, moderate angle changes, and minimized flight distance to conserve fuel and reduce travel time. Traditional algorithms often become trapped in local optima, preventing them from finding globally optimal solutions. DRSTASA improves global search capabilities by initializing the population with Latin hypercube sampling, combined with destruction operators and backward learning strategies. Testing on 23 benchmark functions demonstrates that the algorithm outperforms both traditional and advanced metaheuristic algorithms in solving single and multimodal problems. Furthermore, in eight engineering design optimization scenarios, DRSTASA exhibits superior performance compared to the STASA and SNS algorithms, highlighting the significant advantages of this method. DRSTASA is also successfully applied to UAV path planning, identifying optimal paths and proving the practical value of the algorithm. Full article
Show Figures

Figure 1

Back to TopTop