Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,722)

Search Parameters:
Keywords = primary productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5246 KB  
Review
Chemical Constituents and Pharmacological Effects of Camellia oleifera Fruits: A Review
by Bing Xu, A-Nan Du, Tian-Zhi Liu, Ping-Hui Wei, Bo-Rong Zhu, Kai Chen and Lin Shi
Molecules 2025, 30(19), 3965; https://doi.org/10.3390/molecules30193965 (registering DOI) - 2 Oct 2025
Abstract
Camellia oleifera, a member of the Theaceae family and belonging to the Camellia Linn species, is a plant utilized for edible oil production and medicinal value. Its fruit is abundant in various bioactive compounds, including triterpene saponins, flavonoids, lignans, fatty acids, sterols, [...] Read more.
Camellia oleifera, a member of the Theaceae family and belonging to the Camellia Linn species, is a plant utilized for edible oil production and medicinal value. Its fruit is abundant in various bioactive compounds, including triterpene saponins, flavonoids, lignans, fatty acids, sterols, polysaccharides, and numerous other chemical constituents. Among these, triterpene saponins and flavonoids serve as the primary active ingredients. The pharmacological effects of C. oleifera fruits are diverse, encompassing anti-tumor properties, cardiovascular and cerebrovascular protection, anti-inflammatory, antioxidant activity, lipid-lowering capability, anti-fungal property, and neuroprotective function. In recent years, this area has garnered significant attention from scholars both domestically and internationally. This article reviews the chemical constituents and pharmacological effects of C. oleifera fruits, aiming to provide a comprehensive reference for further research and development. Additionally, it offers a scientific foundation and innovative insights for clinical applications and the identification of relevant bioactive components. Full article
Show Figures

Figure 1

18 pages, 1628 KB  
Patent Summary
Manual Resin Gear Drive for Fine Adjustment of Schlieren Optical Elements
by Emilia Georgiana Prisăcariu and Iulian Vlăducă
Inventions 2025, 10(5), 89; https://doi.org/10.3390/inventions10050089 (registering DOI) - 2 Oct 2025
Abstract
High-precision angular positioning mechanisms are essential across diverse scientific and industrial applications, from optical instrumentation to automated mechanical systems. Conventional bronze–steel gear reduction units, while reliable, are often heavy, costly, and unsuitable for chemically aggressive or vacuum environments, limiting their use in advanced [...] Read more.
High-precision angular positioning mechanisms are essential across diverse scientific and industrial applications, from optical instrumentation to automated mechanical systems. Conventional bronze–steel gear reduction units, while reliable, are often heavy, costly, and unsuitable for chemically aggressive or vacuum environments, limiting their use in advanced research setups. This work introduces a novel 1:360 gear reduction system manufactured by resin-based additive manufacturing, designed to overcome these limitations. The compact worm–gear assembly translates a single crank rotation into a precise one-degree indicator displacement, enabling fine and repeatable angular control. A primary application is the alignment of parabolic mirrors in schlieren systems, where accurate tilt adjustment is critical to correct optical alignment; however, the design is broadly adaptable to other precision positioning tasks in laboratory and industrial contexts. Compared with conventional assemblies, the resin-based reducer offers reduced weight, chemical and vacuum compatibility, and lower production cost. Its three-stage reduction design further enhances load-bearing capacity, achieving approximately double the theoretical torque transfer of equivalent commercial systems. These features establish the device as a robust, scalable, and automation-ready solution for high-accuracy angular adjustment, contributing both to specialized optical research and general-purpose precision engineering. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
21 pages, 1640 KB  
Review
Advances in Ulva Linnaeus, 1753 Research: From Structural Diversity to Applied Utility
by Thanh Thuy Duong, Hang Thi Thuy Nguyen, Hoai Thi Nguyen, Quoc Trung Nguyen, Bach Duc Nguyen, Nguyen Nguyen Chuong, Ha Duc Chu and Lam-Son Phan Tran
Plants 2025, 14(19), 3052; https://doi.org/10.3390/plants14193052 (registering DOI) - 2 Oct 2025
Abstract
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These [...] Read more.
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These traits support their ecological roles in nutrient cycling, primary productivity, and habitat provision, and they also explain their growing relevance to the blue bioeconomy. This review summarizes current knowledge of Ulva biodiversity, taxonomy, and physiology, and evaluates applications in food, feed, bioremediation, biofuel, pharmaceuticals, and biomaterials. Particular attention is given to molecular approaches that resolve taxonomic difficulties and to biochemical profiles that determine nutritional value and industrial potential. This review also considers risks and limitations. Ulva species can act as hyperaccumulators of heavy metals, microplastics, and organic pollutants, which creates safety concerns for food and feed uses and highlights the necessity of strict monitoring and quality control. Technical and economic barriers restrict large-scale use in energy and material production. By presenting both opportunities and constraints, this review stresses the dual role of Ulva as a promising bioresource and a potential ecological risk. Future research must integrate molecular genetics, physiology, and applied studies to support sustainable utilization and ensure safe contributions of Ulva to biodiversity assessment, environmental management, and bioeconomic development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

18 pages, 697 KB  
Article
Recasting Gender Roles: A Study of Indian Television Commercials (2011–2020)
by Himika Akram and Alicia Mason
Journal. Media 2025, 6(4), 166; https://doi.org/10.3390/journalmedia6040166 (registering DOI) - 2 Oct 2025
Abstract
Television commercials (TVCs) play a critical role in shaping and reflecting societal understandings of gender roles. Guided by cultivation theory and framing theory, this study examines gender representation in Indian TVCs, focusing on the gender distribution of primary characters, voiceovers, settings (home, outdoor, [...] Read more.
Television commercials (TVCs) play a critical role in shaping and reflecting societal understandings of gender roles. Guided by cultivation theory and framing theory, this study examines gender representation in Indian TVCs, focusing on the gender distribution of primary characters, voiceovers, settings (home, outdoor, workplace), and product categories. A quantitative content analysis of 120 Indian TVCs from 2011 to 2020 was conducted, with coding performed by the researcher. Findings show that men were primary characters in 54.6% of ads, while women featured in 45.4%. Male voiceovers dominated at 70.1%, compared to 29.9% for females. Women appeared in home settings in 66.7% of TVCs, while men were predominant in workplace contexts (100%). No significant gender disparity was observed in outdoor settings. Product-wise, women were mostly linked with household and healthcare items, whereas men dominated sectors like banking, technology, and transport. The study highlights how repetitive portrayals of certain gender framings in TVCs contribute to the normalization of traditional gender roles, offering insights into the symbolic structures that reinforce these norms in Indian media culture. Full article
Show Figures

Figure 1

26 pages, 1201 KB  
Review
The Tumor Environment in Peritoneal Carcinomatosis and Malignant Pleural Effusions: Implications for Therapy
by Paige O. Mirsky, Patrick L. Wagner, Maja Mandic-Popov, Vera S. Donnenberg and Albert D. Donnenberg
Cancers 2025, 17(19), 3217; https://doi.org/10.3390/cancers17193217 (registering DOI) - 2 Oct 2025
Abstract
Peritoneal carcinomatosis (PC) and malignant pleural effusions (MPE) are two common complications of cancers metastatic to the respective body cavities. A PC diagnosis indicates metastasis to the tissue lining the abdominal cavity and is most common in patients with gastrointestinal and gynecological cancers. [...] Read more.
Peritoneal carcinomatosis (PC) and malignant pleural effusions (MPE) are two common complications of cancers metastatic to the respective body cavities. A PC diagnosis indicates metastasis to the tissue lining the abdominal cavity and is most common in patients with gastrointestinal and gynecological cancers. It is often accompanied by ascites, an accumulation of serous fluid in the abdomen. MPE presents as the accumulation of fluid in the space between the lungs and chest wall. It is a common terminal event in patients diagnosed with breast cancer, lung cancer, lymphoma, and mesothelial cancers, and less commonly, in a wide variety of other epithelial cancers. Due to the aggressive nature of cavitary tumors, the outcome of current treatments for both PC and MPE remains bleak. Although PC and MPE are characteristically affected by different sets of primary tumors (lung/breast/mesothelioma for MPE and gynecologic/gastrointestinal for PC), their environments share common cytokines and cellular components. Owing to the unique cytokine and chemokine content, this environment promotes aggressive tumor behavior and paradoxically both recruits and suppresses central memory and effector memory T cells. The cellular and secretomic complexity of the cavitary tumor environment renders most currently available therapeutics ineffective but also invites approaches that leverage the robust T-cell infiltrate while addressing the causes of local suppression of anti-tumor immunity. Interactions between the heterogeneous components of the tumor environment are an area of active research. We highlight the roles of the immune cell infiltrate, stromal cells, and tumor cells, and the soluble products that they secrete into their environment. A more comprehensive understanding of the cavitary tumor environment can be expected to lead to better immunotherapeutic approaches to these devastating conditions. Full article
(This article belongs to the Special Issue Recent Advances in Peritoneal Carcinomatosis)
Show Figures

Figure 1

25 pages, 15486 KB  
Article
Generating the 500 m Global Satellite Vegetation Productivity Phenology Product from 2001 to 2020
by Boyu Ren, Yunfeng Cao, Jiaxin Tian, Shunlin Liang and Meng Yu
Remote Sens. 2025, 17(19), 3352; https://doi.org/10.3390/rs17193352 - 2 Oct 2025
Abstract
Accurate monitoring of vegetation phenology is vital for understanding climate change impacts on terrestrial ecosystems. While global vegetation greenness phenology (VGP) products are widely available, vegetation productivity phenology (VPP), which better reflects ecosystems’ carbon dynamics, remains largely inaccessible. This study introduces a novel [...] Read more.
Accurate monitoring of vegetation phenology is vital for understanding climate change impacts on terrestrial ecosystems. While global vegetation greenness phenology (VGP) products are widely available, vegetation productivity phenology (VPP), which better reflects ecosystems’ carbon dynamics, remains largely inaccessible. This study introduces a novel global 500 m VPP dataset (GLASS VPP) from 2001 to 2020, derived from the GLASS gross primary productivity (GPP) product. Validation against three ground-based datasets—Fluxnet 2015, PhenoCam V2.0, and PEP725—demonstrated the dataset’s superior accuracy. Compared to the widely used MCD12Q2 VGP product, GLASS VPP reduced RMSE and bias by 35% and 63%, respectively, when validated against Fluxnet data. It also showed stronger correlations than MCD12Q2 when compared with PhenoCam (195 sites) and PEP725 (99 sites) observations, and it captured spatial and altitudinal phenology patterns more effectively. Overall, GLASS VPP exhibits a higher spatial integrity, stronger ecological interpretability, and improved consistency with ground observations, making it a valuable dataset for phenology modeling, carbon cycle research, and ecological forecasting under climate change. Full article
Show Figures

Figure 1

40 pages, 5332 KB  
Review
Phosphogypsum as the Secondary Source of Rare Earth Elements
by Faizan Khalil, Francesca Pagnanelli and Emanuela Moscardini
Sustainability 2025, 17(19), 8828; https://doi.org/10.3390/su17198828 - 2 Oct 2025
Abstract
Phosphogypsum (PG) is a byproduct of the wet phosphoric acid (WPA) production process. Since PG originates from phosphate rock (PR), it holds various concentrations of heavy metal and radionuclide, posing an environmental threat because of its large production and long-term accumulation. In addition [...] Read more.
Phosphogypsum (PG) is a byproduct of the wet phosphoric acid (WPA) production process. Since PG originates from phosphate rock (PR), it holds various concentrations of heavy metal and radionuclide, posing an environmental threat because of its large production and long-term accumulation. In addition to toxic heavy metals, PG may also be an alternative source of rare earth elements (REEs), since over 60% of REEs in PR transfer to PG during acid digestion. With the increasing demand of phosphoric acid (PA), global PG generation is approaching 300 million tons annually. Since 1994, an estimated 6.73 billion tons of PG has been produced worldwide, with approximately 58% (approx. 3.7 billion tons) ending up in stacks. Assuming a conservative REE content of 0.1%, these stacks may hold over 3.7 million tons of REEs. This review discusses phosphoric acid production processes and the transfer of REEs from PR to PG. In addition, it also discusses the current REEs world reserves, their presence in primary and secondary sources, and their uses. The review critically evaluates the research that has been conducted so far and the recent innovations in REE recovery from PG, and discusses the challenges associated with scalability and raw material variability. Full article
(This article belongs to the Section Waste and Recycling)
17 pages, 1269 KB  
Review
Ethylene-Triggered Rice Root System Architecture Adaptation Response to Soil Compaction
by Yuxiang Li, Bingkun Ge, Chunxia Yan, Zhi Qi, Rongfeng Huang and Hua Qin
Agriculture 2025, 15(19), 2071; https://doi.org/10.3390/agriculture15192071 - 2 Oct 2025
Abstract
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene [...] Read more.
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene serves as a primary signal and functions as a hub in orchestrating root response to soil compaction. Mechanical impedance promotes ethylene biosynthesis and compacted soil impedes ethylene diffusion, resulting in ethylene accumulation in root tissues and triggering a complex hormonal crosstalk network to orchestrate root system architectural modification to facilitate plant adaptation to compacted soil. This review summarizes the recent advances on rice root adaptation response to compacted soil and emphasizes the regulatory network triggered by ethylene, which will improve our understanding of the role of ethylene in root growth and development and provide a pathway for breeders to optimize crop performance under specific agronomic conditions. Full article
17 pages, 2248 KB  
Article
Expression of L-Amino Acid Oxidase (Ml-LAAO) from the Venom of the Micrurus lemniscatus Snake in a Mammalian Cell System
by Ari Junio de Oliveira Costa, Alessandra Matavel, Patricia Cota Campos, Jaqueline Leal dos Santos, Ana Caroline Zampiroli Ataide, Sophie Yvette Leclercq, Valéria Gonçalves de Alvarenga, Sergio Caldas, William Castro-Borges and Márcia Helena Borges
Toxins 2025, 17(10), 491; https://doi.org/10.3390/toxins17100491 - 2 Oct 2025
Abstract
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer [...] Read more.
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer effects, making them potential candidates for biotechnological applications. These activities are linked to their ability to catalyze oxidative reactions that convert L-amino acids into α-keto acids, releasing ammonia and hydrogen peroxide, which contribute to the immune response, pathogen elimination, and oxidative stress. However, in snakes of the Micrurus genus, LAAOs generally represent a small portion of the venom (up to ~7%), which limits their isolation and study. To overcome this, the present study aimed to produce Ml-LAAO, the enzyme from Micrurus lemniscatus, through heterologous expression in mammalian cells. The gene sequence was inferred from its primary structure and synthesized into the pSecTag2B vector for expression in HEK293T cells. After purification using a His Trap-HP column, the presence of recombinant Ml-LAAO (Ml-LAAOrec) was confirmed by Western blot and mass spectrometry, validating its identity. These results support successful recombinant expression of Ml-LAAO and highlight its potential for scalable production and future biotechnological applications. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

13 pages, 1866 KB  
Article
Development of Freshness Indicator (FI) for Skate Sashimi (Zearaja chilensis) to Detect Trimethylamine Content During Storage
by Kyung-Jik Lim, Yoon-Gil Kim, Yu-Jin Heo and Han-Seung Shin
Biosensors 2025, 15(10), 659; https://doi.org/10.3390/bios15100659 - 2 Oct 2025
Abstract
The seafood industry is increasingly adopting intelligent packaging to preserve product quality and improve freshness transparency. This study developed and evaluated a pH-sensitive freshness indicator (FI) for skate sashimi (Zearaja chilensis). This product is consumed at varying stages of fermentation. The [...] Read more.
The seafood industry is increasingly adopting intelligent packaging to preserve product quality and improve freshness transparency. This study developed and evaluated a pH-sensitive freshness indicator (FI) for skate sashimi (Zearaja chilensis). This product is consumed at varying stages of fermentation. The FI incorporated bromothymol blue (BTB) and bromocresol purple (BCP) in a polymer matrix. It targeted volatile basic nitrogen (VBN) compounds, with trimethylamine (TMA) as the primary marker. As freshness declined, VBN compounds accumulated in the package headspace and caused a gradual FI color change from yellow to blue through pH variation. ΔE increased from 7.72 on day 2 to 23.52 on day 3. This marked the onset of visible color change and the FI reached full blue by day 7. Headspace solid-phase microextraction (HS-SPME) and gas chromatography–flame ionization detection (GC-FID) quantified monomethylamine (MMA), dimethylamine (DMA) and TMA throughout storage. ΔE correlated strongly with total bacterial count (TBC, r = 0.978), pH (r = 0.901) and TMA (r = 0.888). These results indicate that microbial growth, alkalinity increase and amine production were closely associated with color transitions. The FI reliably tracked freshness loss in skate sashimi. It has potential to enhance consumer transparency and strengthen quality control in the seafood supply chain. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

18 pages, 2429 KB  
Article
Research on Fatigue Performance of Fast Melting Styrene-Butadiene-Styrene-Modified Asphalt with High Viscosity and Elasticity
by Hao Zhang, Fei Guo, Xiaoyu Li, Shige Wang and Jinchao Yue
Coatings 2025, 15(10), 1143; https://doi.org/10.3390/coatings15101143 - 2 Oct 2025
Abstract
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate [...] Read more.
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate phase separation and thermal degradation while simplifying the production process, thereby offering a more robust and cost-effective alternative. The viscoelastic properties of SBS-T-modified asphalt were characterized through frequency sweep tests under varying loading conditions, while its fatigue behavior was quantitatively assessed using the Simplified Viscoelastic Continuum Damage (S-VECD) model. The results indicate that the SBS-T-modified asphalt exhibits outstanding viscoelastic performance across a broad range of temperatures and loading frequencies, and can better adapt to the temperature and load changes in complex pavement environments. Among them, the influence of long-term aging on the linear viscoelastic characteristics of SBS-T-modified asphalt is greater than that of ultraviolet aging. The SBS-T-modified asphalt also shows better stiffness and resistance to shear deformation. The fatigue life of asphalt gradually decreases with the deepening of the aging degree, among which the impact of long-term aging on fatigue life is greater than that of ultraviolet aging. Under different aging conditions, SBS-T-modified asphalt has shown good fatigue performance and is suitable for practical engineering applications. Full article
Show Figures

Figure 1

18 pages, 3293 KB  
Review
Relationship Between Animal Welfare Metrics, Production, Slaughter, and Economic Gain in Poultry Farming
by Deivid Kelly Barbosa, Vivian A. R. C. Heiss, Maria F. C. Burbarelli, Leonardo O. Seno, Rodrigo G. Garcia, Rita T. R. Pietramale and Fabiana R. Caldara
Poultry 2025, 4(4), 48; https://doi.org/10.3390/poultry4040048 - 2 Oct 2025
Abstract
Animal welfare (AW) is increasingly being discussed and mandated in chicken production, both by current Brazilian legislation and by importing markets. Industries continually seek greater financial returns, and within this context, it has been observed that the proper implementation of animal welfare principles [...] Read more.
Animal welfare (AW) is increasingly being discussed and mandated in chicken production, both by current Brazilian legislation and by importing markets. Industries continually seek greater financial returns, and within this context, it has been observed that the proper implementation of animal welfare principles effectively reduces losses by minimizing carcass condemnations due to injuries, thereby significantly contributing to in-creased profitability. The economic impact of non-compliance with these welfare standards in broiler production is well documented in the scientific literature. However, the same level of concern is not observed regarding the financial impact on integrated producers, who supply the raw materials. The present study aims to systematically map, contextualize, quantify, and qualitatively analyze articles evaluating the implementation of animal welfare in industrial broiler production and its impact on the financial returns of producers and integrated companies. The primary descriptor used was “animal welfare.” To quantify the relevant articles, the Proknow-C method was applied, followed by a similarity analysis using VoSViewer® software version 1.6.19 for systematic content evaluation. Descriptor combinations were led by animal welfare, followed by broiler pro-duction, poultry production, slaughter, economy, and rural producers. Although a significant number of articles address AW, those focused exclusively on chicken production are far fewer, declining even more when carcass condemnations are considered. Only six studies included the descriptor “economic,” and just three included “producer.” The con-tent of these nine studies was systematically reviewed, with two excluded and seven selected for discussion. Among the seven analyzed studies, none specifically examined the economic impact of AW implementation for the producer, clearly highlighting a significant research gap. Full article
Show Figures

Figure 1

46 pages, 2380 KB  
Review
Microalgae in Mitigating Industrial Pollution: Bioremediation Strategies and Biomagnification Potential
by Renu Geetha Bai, Salini Chandrasekharan Nair, Liina Joller-Vahter and Timo Kikas
Biomass 2025, 5(4), 61; https://doi.org/10.3390/biomass5040061 - 2 Oct 2025
Abstract
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental [...] Read more.
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental matrices, such as water, air, and soil, is bioremediation, an approach utilizing biological agents. Microalgae, as the primary producers of the aquatic environment, offer a versatile bioremediation platform, where their metabolic processes break down and convert pollutants into less harmful substances, thereby mitigating the negative ecological impact. Besides the CO2 sequestration potential, microalgae are a source of renewable energy and numerous high-value biomolecules. Additionally, microalgae can mitigate various toxic chemicals through biosorption, bioaccumulation, and biodegradation. These remediation strategies propose a sustainable and eco-friendly approach to address environmental pollution. This review evaluates the microalgal mitigation of major environmental contaminants—heavy metals, pharmaceuticals and personal care products (PPCPs), persistent organic pollutants (POPs), flue gases, microplastics, and nanoplastics—linking specific microalgae removal mechanisms to pollutant-induced cellular responses. Each section explicitly addresses the effects of these pollutants on microalgae, microalgal bioremediation potential, bioaccumulation process, the risks of trophic transfer, and biomagnification in the food web. Herein, we highlight the current status of the microalgae-based bioremediation prospects, pollutant-induced microalgal toxicity, bioaccumulation, and consequential biomagnification. The novelty of this review lies in integrating biomagnification risks with the bioremediation potential of microalgae, providing a comprehensive perspective not yet addressed in the existing literature. Finally, we identify major research gaps and outline prospective strategies to optimize microalgal bioremediation while minimizing the unintended trophic transfer risks. Full article
Show Figures

Figure 1

20 pages, 4603 KB  
Article
Recyclable MnCl2-Fe2O3@CNT as Sulfur and Water-Resistant Sorbent for Gaseous Elemental Mercury Removal from Coal Combustion Flue Gas
by Zhuo Liu, Yuchi Chen, Hao Rong, Cui Jie, Xiyan Peng and Honghu Li
Materials 2025, 18(19), 4573; https://doi.org/10.3390/ma18194573 - 1 Oct 2025
Abstract
Mercury poses serious hazards to human health. Carbon nanotube (CNT) is a potential material for elemental mercury (Hg0) adsorption removal, however, it shows susceptibility to SO2 and H2O. Herein, CNT is first decorated with Fe2O3 [...] Read more.
Mercury poses serious hazards to human health. Carbon nanotube (CNT) is a potential material for elemental mercury (Hg0) adsorption removal, however, it shows susceptibility to SO2 and H2O. Herein, CNT is first decorated with Fe2O3 then modified with MnCl2 (MnCl2-Fe2O3@CNT) to enhance SO2 and H2O resistance. The Hg0 removal performance and physical–chemical properties of samples are comprehensively studied. MnCl2(10)FeCNT (10 wt% MnCl2 content) has a high specific surface area (775.76 m2·g−1) and abundant active chlorine (35.01% Cl* content) as well as oxygen species (84.23% Oα content), which endows it with excellent Hg0 adsorption capacity (25.06 mg·g−1) and good SO2 and H2O resistance. Additionally, the superparamagnetic property can enable MnCl2(10)FeCNT to be conveniently recycled. After fifth regeneration, MnCl2(10)FeCNT can still achieve >90% Hg0 removal. The abundant active chlorine and oxygen species over MnCl2(10)FeCNT are responsible for Hg0 removal with HgCl2 as the primary product. This work demonstrates the enhancement of CNT’s resistance to SO2 and H2O by Fe2O3 and MnCl2 modification, which has potential application in flue gas mercury removal. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

15 pages, 568 KB  
Article
Modeling the Effect of the Biological Control of Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae) on Grapevine Leafroll Virus Spread
by Katia Vogt-Geisse, Margarita C. G. Correa, Juan Pablo Gutiérrez-Jara and Kent M. Daane
Plants 2025, 14(19), 3043; https://doi.org/10.3390/plants14193043 - 1 Oct 2025
Abstract
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors [...] Read more.
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors of GLRaVs and, among them, Pseudococcus viburni is the primary key vector in many regions. To reduce GLRaV spread, acquiring vines from virus-free certified nurseries, removing infected vines, and controlling insect vectors are crucial control tools. Sustainable mealybug control relies on eco-friendly products, cultural practices that limit mealybug population growth, and biological control by natural enemies. For P. viburni, biological control is primarily based on the action of predators and parasitoids, such as Cryptolaemus montrouzieri Mulsant and Acerophagus flavidulus Brethes, respectively, which will obviously have a different mode of action than chemical insecticides. However, the long-term effect of biological control on GLRaV spread within vineyards has rarely been studied. With the aim of better predicting the impact of biological control on insect vectors, such as mealybugs, we developed a mathematical model to predict the GLRaV spread. The results highlight the importance of establishing vineyards with virus-free material and having a pest management program that reduces the vector population to reduce the economic loss from GLRaVs. Full article
Show Figures

Figure 1

Back to TopTop