Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = proglucagon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3175 KB  
Article
GLP-1-Mediated Pregnancy and Neonatal Complications in Mice
by Rajalakshmi Ramamoorthy, Arianna K. Carden, Hussain Hussain, Brian Z. Druyan, Ping Ping Chen, Rima Hajjar, Carmen Fernandez, Nila Elumalai, Amirah B. Rashed, Karen Young, Anna Rosa Speciale, Emily M. West, Staci Marbin, Bradley Safro, Ian J. Bishop, Arumugam R. Jayakumar, Luis Sanchez-Ramos and Michael J. Paidas
J. Dev. Biol. 2025, 13(3), 29; https://doi.org/10.3390/jdb13030029 - 15 Aug 2025
Viewed by 844
Abstract
Glucagon-like peptide 1 (GLP-1), a hormone derived from the proglucagon gene, regulates various physiological processes; however, its impact on pregnancy outcomes remains poorly understood. Assessing the effects of GLP-1 on neonates is vital as GLP-1 is increasingly administered during pregnancy. This study evaluates [...] Read more.
Glucagon-like peptide 1 (GLP-1), a hormone derived from the proglucagon gene, regulates various physiological processes; however, its impact on pregnancy outcomes remains poorly understood. Assessing the effects of GLP-1 on neonates is vital as GLP-1 is increasingly administered during pregnancy. This study evaluates the effect of GLP-1 exposure on maternal complications and neonatal defects in mice. Pregnant female A/J mice received subcutaneous injections of recombinant GLP-1 (rGLP-1; 1000 nmol/kg) on embryonic day 1 (EP, early pregnancy) or day 15 (E15, late pregnancy). Maternal and neonatal body weights, morphology, and mortality were recorded, and mRNA sequencing was conducted to analyze gene expression in neonatal tissues. Maternal body weight decreased following rGLP-1 exposure, and pups born to both the early and late exposure groups experienced significant weight loss. Pups in the late exposure group exhibited uniform skin detachment and a dramatically higher mortality rate than those born to the early exposure group. Further, RT-PCR analysis confirms the significantly increased expression of selected genes in the skin and associated pathogenesis. RNA sequencing of pups’ skin, brain, lung, and liver tissues from the late exposure group showed altered gene expression. Since maternal weight loss, increased neonatal mortality, and altered gene expression have been observed, GLP-1 receptor agonists (GLP-1RAs) should be avoided during pregnancy. Full article
(This article belongs to the Special Issue Embryonic Development and Regenerative Medicine)
Show Figures

Figure 1

15 pages, 2758 KB  
Article
Alleviation of Adipose Tissue Inflammation and Obesity Suppression by a Probiotic Strain That Induces GLP-1 Secretion
by A-Ram Kim, Seong-Gak Jeon, So-Jung Park, Heeji Hong, Byung Kwon Kim, Hyung-Ran Kim, Chun-Pyo Hong and Bo-Gie Yang
Microorganisms 2025, 13(6), 1211; https://doi.org/10.3390/microorganisms13061211 - 26 May 2025
Cited by 1 | Viewed by 1009
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone secreted from enteroendocrine cells that can promote weight loss and blood glucose improvement. We screened probiotic strains that effectively stimulate GLP-1 secretion from human enteroendocrine cells and then investigated the efficacy of this strain in a high-fat [...] Read more.
Glucagon-like peptide-1 (GLP-1) is a hormone secreted from enteroendocrine cells that can promote weight loss and blood glucose improvement. We screened probiotic strains that effectively stimulate GLP-1 secretion from human enteroendocrine cells and then investigated the efficacy of this strain in a high-fat diet (HFD)-induced mouse model of obesity. Lactiplantibacillus plantarum GB104 greatly induced GLP-1 secretion by increasing expression of the proglucagon gene (GCG), but not the proprotein convertase subtilisin/kexin type 1 gene (PCSK1) in the human enteroendocrine cell line NCI-H716. In an HFD-induced mouse model of obesity, GB104 inhibited weight gain and improved blood glucose levels by increasing blood GLP-1 levels. It also tended to attenuate the HFD-induced changes in blood levels of other hormones and suppressed fat accumulation in the liver and adipose tissues. In white adipose tissue, GB104 suppressed inflammation by reducing pro-inflammatory M1 macrophages and increasing anti-inflammatory M2 macrophages and regulatory T cells. Probiotic strains that promote GLP-1 secretion, such as GB104, may serve as a promising candidate for dietary intervention against obesity and metabolic diseases. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

11 pages, 3107 KB  
Article
Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation
by Asif Ali, Dawood Khan, Vaibhav Dubey, Andrei I. Tarasov, Peter R. Flatt and Nigel Irwin
Biomolecules 2024, 14(12), 1520; https://doi.org/10.3390/biom14121520 - 27 Nov 2024
Cited by 3 | Viewed by 3487
Abstract
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects [...] Read more.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects of these proglucagon-derived peptides on pancreatic beta-cell function, as well as on glucose tolerance and appetite. The insulin secretory effects of GLP-1 and GLP-2 (10−12–10−6 M) were investigated in BRIN-BD11 beta-cells as well as isolated mouse islets, with the impact of test peptides (10 nM) on real-time cytosolic cAMP levels further evaluated in mouse islets. The impact of both peptides (10−8–10−6 M) on beta-cell growth and survival was also studied in BRIN BD11 cells. Acute in vivo (peptides administered at 25 nmol/kg) glucose homeostatic and appetite suppressive actions were then examined in healthy mice. GLP-1, but not GLP-2, concentration dependently augmented insulin secretion from BRIN-BD11 cells, with similar observations made in isolated murine islets. In addition, GLP-1 substantially increased [cAMP]cyt in islet cells and was significantly more prominent than GLP-2 in this regard. Both GLP-1 and GLP-2 promoted beta-cell proliferation and protected against cytokine-induced apoptosis. In overnight fasted healthy mice, as well as mice trained to eat for 3 h per day, the administration of GLP-1 or GLP-2 suppressed appetite. When injected conjointly with glucose, both peptides improved glucose disposal, which was associated with enhanced glucose-stimulated insulin secretion by GLP-1, but not GLP-2. To conclude, the impact of GLP-1 and GLP-2 on insulin secretion is divergent, but the effects of beta-cell signaling and overall health are similar. Moreover, the peripheral administration of either hormone in rodents results in comparable positive effects on blood glucose levels and appetite. Full article
Show Figures

Figure 1

21 pages, 3273 KB  
Article
Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides
by Koki Nishida, Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Naoya Murao, Yuki Asano, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Kento Ohbayashi, Yusaku Iwasaki, Katsumi Iizuka, Shoei Okuda, Mamoru Tanaka, Tadashi Fujii, Takumi Tochio, Daisuke Yabe, Yuuichiro Yamada, Yoshihisa Sugimura, Yoshiki Hirooka, Yoshitaka Hayashi and Atsushi Suzukiadd Show full author list remove Hide full author list
Nutrients 2024, 16(14), 2270; https://doi.org/10.3390/nu16142270 - 14 Jul 2024
Cited by 4 | Viewed by 5157
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) [...] Read more.
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

12 pages, 2087 KB  
Article
Isosinensetin Stimulates Glucagon-like Peptide-1 Secretion via Activation of hTAS2R50 and the Gβγ-Mediated Signaling Pathway
by Seung-Hyeon Lee, Hyun Min Ko, Wona Jee, Hyungsuk Kim, Won-Seok Chung and Hyeung-Jin Jang
Int. J. Mol. Sci. 2023, 24(4), 3682; https://doi.org/10.3390/ijms24043682 - 12 Feb 2023
Cited by 11 | Viewed by 4604
Abstract
Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs [...] Read more.
Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs as potential therapeutic targets. The human bitter taste receptor subtype hTAS2R50 responds to its agonist isosinensetin (ISS). Here, we demonstrated that, unlike other TAS2R agonists, isosinensetin activated hTAS2R50 as well as increased Glucagon-like peptide 1 (GLP-1) secretion through the Gβγ-mediated pathway in NCI-H716 cells. To confirm this mechanism, we showed that ISS increased intracellular Ca2+ and was suppressed by the IP3R inhibitor 2-APB as well as the PLC inhibitor U73122, suggesting that TAS2Rs alters the physiological state of enteroendocrine L cells in a PLC-dependent manner. Furthermore, we demonstrated that ISS upregulated proglucagon mRNA and stimulated GLP-1 secretion. ISS-mediated GLP-1 secretion was suppressed in response to small interfering RNA-mediated silencing of Gα-gust and hTAS2R50 as well as 2-APB and U73122. Our findings improved the understanding of how ISS modulates GLP-1 secretion and indicates the possibility of using ISS as a therapeutic agent in the treatment of diabetes mellitus. Full article
(This article belongs to the Special Issue Anti-inflammatory Effects of Glucagon-Like Peptide-1)
Show Figures

Graphical abstract

17 pages, 2261 KB  
Article
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats
by Javier Estévez and Vicente Martínez
Int. J. Mol. Sci. 2023, 24(2), 1254; https://doi.org/10.3390/ijms24021254 - 9 Jan 2023
Cited by 5 | Viewed by 2788
Abstract
Toll-like receptors (TLRs)-mediated host–bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), [...] Read more.
Toll-like receptors (TLRs)-mediated host–bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2. Full article
Show Figures

Figure 1

15 pages, 2295 KB  
Article
Roseburia intestinalis Modulates PYY Expression in a New a Multicellular Model including Enteroendocrine Cells
by Thomas Gautier, Nelly Fahet, Zohreh Tamanai-Shacoori, Nolwenn Oliviero, Marielle Blot, Aurélie Sauvager, Agnes Burel, Sandrine David-Le Gall, Sophie Tomasi, Sophie Blat and Latifa Bousarghin
Microorganisms 2022, 10(11), 2263; https://doi.org/10.3390/microorganisms10112263 - 15 Nov 2022
Cited by 8 | Viewed by 3997
Abstract
The gut microbiota contributes to human health and disease; however, the mechanisms by which commensal bacteria interact with the host are still unclear. To date, a number of in vitro systems have been designed to investigate the host–microbe interactions. In most of the [...] Read more.
The gut microbiota contributes to human health and disease; however, the mechanisms by which commensal bacteria interact with the host are still unclear. To date, a number of in vitro systems have been designed to investigate the host–microbe interactions. In most of the intestinal models, the enteroendocrine cells, considered as a potential link between gut bacteria and several human diseases, were missing. In the present study, we have generated a new model by adding enteroendocrine cells (ECC) of L-type (NCI-H716) to the one that we have previously described including enterocytes, mucus, and M cells. After 21 days of culture with the other cells, enteroendocrine-differentiated NCI-H716 cells showed neuropods at their basolateral side and expressed their specific genes encoding proglucagon (GCG) and chromogranin A (CHGA). We showed that this model could be stimulated by commensal bacteria playing a key role in health, Roseburia intestinalis and Bacteroides fragilis, but also by a pathogenic strain such as Salmonella Heidelberg. Moreover, using cell-free supernatants of B. fragilis and R. intestinalis, we have shown that R. intestinalis supernatant induced a significant increase in IL-8 and PYY but not in GCG gene expression, while B. fragilis had no impact. Our data indicated that R. intestinalis produced short chain fatty acids (SCFAs) such as butyrate whereas B. fragilis produced more propionate. However, these SCFAs were probably not the only metabolites implicated in PYY expression since butyrate alone had no effect. In conclusion, our new quadricellular model of gut epithelium could be an effective tool to highlight potential beneficial effects of bacteria or their metabolites, in order to develop new classes of probiotics. Full article
(This article belongs to the Special Issue Effects of Probiotics on Health)
Show Figures

Figure 1

16 pages, 18303 KB  
Article
High Protein Diet Feeding Aggravates Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides
by Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Ryuya Maekawa, Yuko Takano, Michiyo Yamamoto, Mika Hori, Kana Yokota, Atsushi Masuda, Tatsuhito Himeno, Shin Tsunekawa, Hideki Kamiya, Jiro Nakamura, Hitoshi Kuwata, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Yoshihisa Sugimura, Daisuke Yabe, Yoshitaka Hayashi and Atsushi Suzukiadd Show full author list remove Hide full author list
Nutrients 2022, 14(5), 975; https://doi.org/10.3390/nu14050975 - 25 Feb 2022
Cited by 9 | Viewed by 4794
Abstract
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response [...] Read more.
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

16 pages, 2826 KB  
Article
Blue Whiting (Micromesistius poutassou) Protein Hydrolysates Increase GLP-1 Secretion and Proglucagon Production in STC-1 Cells Whilst Maintaining Caco-2/HT29-MTX Co-Culture Integrity
by Shauna Heffernan, Leo Nunn, Pádraigín A. Harnedy-Rothwell, Snehal Gite, Jason Whooley, Linda Giblin, Richard J. FitzGerald and Nora M. O’Brien
Mar. Drugs 2022, 20(2), 112; https://doi.org/10.3390/md20020112 - 31 Jan 2022
Cited by 12 | Viewed by 4908
Abstract
Inducing the feeling of fullness via the regulation of satiety hormones presents an effective method for reducing excess energy intake and, in turn, preventing the development of obesity. In this study, the ability of blue whiting soluble protein hydrolysates (BWSPHs) and simulated gastrointestinal [...] Read more.
Inducing the feeling of fullness via the regulation of satiety hormones presents an effective method for reducing excess energy intake and, in turn, preventing the development of obesity. In this study, the ability of blue whiting soluble protein hydrolysates (BWSPHs) and simulated gastrointestinal digested (SGID) BWSPHs, to modulate the secretion and/or production of satiety hormones, such as glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY), was assessed in murine enteroendocrine STC-1 cells. All BWSPHs (BW-SPH-A to BW-SPH-F) (1.0% w/v dw) increased active GLP-1 secretion and proglucagon production in STC-1 cells compared to the basal control (Krebs–Ringer buffer) (p < 0.05). The signaling pathway activated for GLP-1 secretion was also assessed. A significant increase in intracellular calcium levels was observed after incubation with all BWSPHs (p < 0.05) compared with the control, although none of the BWSPHs altered intracellular cyclic adenosine monophosphate (cAMP) concentrations. The secretagogue effect of the leading hydrolysate was diminished after SGID. Neither pre- nor post-SGID hydrolysates affected epithelial barrier integrity or stimulated interleukin (IL)-6 secretion in differentiated Caco-2/HT-29MTX co-cultured cells. These results suggest a role for BWSPH-derived peptides in satiety activity; however, these peptides may need to be protected by some means to avoid loss of activity during gastrointestinal transit. Full article
Show Figures

Graphical abstract

31 pages, 4970 KB  
Review
GLP-1a: Going beyond Traditional Use
by Lucas Fornari Laurindo, Sandra Maria Barbalho, Elen Landgraf Guiguer, Maricelma da Silva Soares de Souza, Gabriela Achete de Souza, Thiago Marques Fidalgo, Adriano Cressoni Araújo, Heron F. de Souza Gonzaga, Daniel de Bortoli Teixeira, Thais de Oliveira Silva Ullmann, Katia Portero Sloan and Lance Alan Sloan
Int. J. Mol. Sci. 2022, 23(2), 739; https://doi.org/10.3390/ijms23020739 - 10 Jan 2022
Cited by 73 | Viewed by 23416
Abstract
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective [...] Read more.
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson’s Disease and improve emotional well-being. In Alzheimer’s disease, GLP-1 analogs can improve the brain’s glucose metabolism by improving glucose transport across the blood–brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain’s reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses. Full article
(This article belongs to the Special Issue Gut Hormone: From Molecular Mechanism to Clinical Aspects 2021)
Show Figures

Graphical abstract

10 pages, 6314 KB  
Article
Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea
by Laetitia Aerts, Nathalie A. Terry, Nina N. Sainath, Clarivet Torres, Martín G. Martín, Bruno Ramos-Molina and John W. Creemers
Genes 2021, 12(5), 710; https://doi.org/10.3390/genes12050710 - 10 May 2021
Cited by 13 | Viewed by 3584
Abstract
Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive [...] Read more.
Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive complex endocrinopathy characterized by malabsorptive diarrhea and early-onset obesity. Despite the fact that neonatal malabsorptive diarrhea is observed in all patients, it has remained understudied. The aim of this study was to investigate the enteroendocrine pathologies in a male patient with congenital PCSK1 deficiency carrying the novel homozygous c.1034A>C (p.E345A) mutation. This patient developed malabsorptive diarrhea and metabolic acidosis within the first week of life, but rapid weight gain was observed after total parenteral nutrition, and he displayed high proinsulin levels and low adrenocorticotropin. In vitro analysis showed that the p.E345A mutation in PC1/3 resulted in a (near) normal autocatalytic proPC1/3 processing and only partially impaired PC1/3 secretion, but the processing of a substrate in trans was completely blocked. Immunohistochemical staining did not reveal changes in the proGIP/GIP and proglucagon/GLP-1 ratio in colonic tissue. Hence, we report a novel PCSK1 deficient patient who, despite neonatal malabsorptive diarrhea, showed a normal morphology in the small intestine. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 2861 KB  
Article
Offspring of Mice Exposed to a Low-Protein Diet in Utero Demonstrate Changes in mTOR Signaling in Pancreatic Islets of Langerhans, Associated with Altered Glucagon and Insulin Expression and a Lower β-Cell Mass
by Renee King, Jessica L. Hill, Bibek Saha, Yuzhen Tong, Brenda J. Strutt, Mark A. Russell, Noel G. Morgan, Sarah J. Richardson and David J. Hill
Nutrients 2019, 11(3), 605; https://doi.org/10.3390/nu11030605 - 12 Mar 2019
Cited by 25 | Viewed by 5560
Abstract
Low birth weight is a risk factor for gestational and type 2 diabetes (T2D). Since mammalian target of rapamycin (mTOR) controls pancreatic β-cell mass and hormone release, we hypothesized that nutritional insult in utero might permanently alter mTOR signaling. Mice were fed a [...] Read more.
Low birth weight is a risk factor for gestational and type 2 diabetes (T2D). Since mammalian target of rapamycin (mTOR) controls pancreatic β-cell mass and hormone release, we hypothesized that nutritional insult in utero might permanently alter mTOR signaling. Mice were fed a low-protein (LP, 8%) or control (C, 20%) diet throughout pregnancy, and offspring examined until 130 days age. Mice receiving LP were born 12% smaller and β-cell mass was significantly reduced throughout life. Islet mTOR levels were lower in LP-exposed mice and localized predominantly to α-rather than β-cells. Incubation of isolated mouse islets with rapamycin significantly reduced cell proliferation while increasing apoptosis. mRNA levels for mTORC complex genes mTOR, Rictor and Raptor were elevated at 7 days in LP mice, as were the mTOR and Raptor proteins. Proglucagon gene expression was similarly increased, but not insulin or the immune/metabolic defense protein STING. In human and mouse pancreas STING was strongly associated with islet β-cells. Results support long-term changes in islet mTOR signaling in response to nutritional insult in utero, with altered expression of glucagon and insulin and a reduced β-cell mass. This may contribute to an increased risk of gestational or type 2 diabetes. Full article
(This article belongs to the Special Issue Nutrition and Gestational Diabetes)
Show Figures

Figure 1

20 pages, 4341 KB  
Article
Chronic Exposure to Palmitate Impairs Insulin Signaling in an Intestinal L-cell Line: A Possible Shift from GLP-1 to Glucagon Production
by Agnese Filippello, Francesca Urbano, Stefania Di Mauro, Alessandra Scamporrino, Antonino Di Pino, Roberto Scicali, Agata Maria Rabuazzo, Francesco Purrello and Salvatore Piro
Int. J. Mol. Sci. 2018, 19(12), 3791; https://doi.org/10.3390/ijms19123791 - 28 Nov 2018
Cited by 24 | Viewed by 4828
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and impaired glucagon-like peptide-1 (GLP-1) secretion/function. Lipotoxicity, a chronic elevation of free fatty acids in the blood, could affect insulin-signaling in many peripheral tissues. To date, the effects of lipotoxicity on [...] Read more.
Obesity and type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and impaired glucagon-like peptide-1 (GLP-1) secretion/function. Lipotoxicity, a chronic elevation of free fatty acids in the blood, could affect insulin-signaling in many peripheral tissues. To date, the effects of lipotoxicity on the insulin receptor and insulin resistance in the intestinal L-cells need to be elucidated. Moreover, recent observations indicate that L-cells may be able to process not only GLP-1 but also glucagon from proglucagon. The aim of this study was to investigate the effects of chronic palmitate exposure on insulin pathways, GLP-1 secretion and glucagon synthesis in the GLUTag L-cell line. Cells were cultured in the presence/absence of palmitate (0.5 mM) for 24 h to mimic lipotoxicity. Palmitate treatment affected insulin-stimulated GLP-1 secretion, insulin receptor phosphorylation and IRS-1-AKT pathway signaling. In our model lipotoxicity induced extracellular signal-regulated kinase (ERK 44/42) activation both in insulin stimulated and basal conditions and also up-regulated paired box 6 (PAX6) and proglucagon expression (Gcg). Interestingly, palmitate treatment caused an increased glucagon secretion through the up-regulation of prohormone convertase 2. These results indicate that a state of insulin resistance could be responsible for secretory alterations in L-cells through the impairment of insulin-signaling pathways. Our data support the hypothesis that lipotoxicity might contribute to L-cell deregulation. Full article
(This article belongs to the Special Issue Insulin and Insulin Receptor in Diseases)
Show Figures

Figure 1

12 pages, 3214 KB  
Article
Orosensory Detection of Dietary Fatty Acids Is Altered in CB1R−/− Mice
by Léa Brissard, Julia Leemput, Aziz Hichami, Patricia Passilly-Degrace, Guillaume Maquart, Laurent Demizieux, Pascal Degrace and Naim Akhtar Khan
Nutrients 2018, 10(10), 1347; https://doi.org/10.3390/nu10101347 - 21 Sep 2018
Cited by 18 | Viewed by 4376
Abstract
Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1 [...] Read more.
Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R−/− and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R−/− mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R−/− mice. TBC from CB1R−/− mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion. Full article
(This article belongs to the Special Issue Appetite, Metabolism and Obesity)
Show Figures

Figure 1

Back to TopTop