Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = progressive type-II censored data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 19296 KB  
Article
Inference for the Chris–Jerry Lifetime Distribution Under Improved Adaptive Progressive Type-II Censoring for Physics and Engineering Data Modelling
by Heba S. Mohammed, Osama E. Abo-Kasem and Ahmed Elshahhat
Axioms 2025, 14(9), 702; https://doi.org/10.3390/axioms14090702 - 17 Sep 2025
Viewed by 243
Abstract
This paper presents a comprehensive reliability analysis framework for the Chris–Jerry (CJ) lifetime distribution under an improved adaptive progressive Type-II censoring plan. The CJ model, recently introduced to capture skewed lifetime behaviors, is studied under a modified censoring structure designed to provide greater [...] Read more.
This paper presents a comprehensive reliability analysis framework for the Chris–Jerry (CJ) lifetime distribution under an improved adaptive progressive Type-II censoring plan. The CJ model, recently introduced to capture skewed lifetime behaviors, is studied under a modified censoring structure designed to provide greater flexibility in terminating life-testing experiments. We derive maximum likelihood estimators for the CJ parameters and key reliability measures, including the reliability and hazard rate functions, and construct approximate confidence intervals using the observed Fisher information matrix and the delta method. To address the intractability of the likelihood function, Bayesian estimators are obtained under independent gamma priors and a squared-error loss function. Because the posterior distributions are not available in closed form, we apply the Metropolis–Hastings algorithm to generate Bayesian estimates and two types of credible intervals. A comprehensive simulation study evaluates the performance of the proposed estimation techniques under various censoring scenarios. The framework is further validated through two real-world datasets: one involving rainfall measurements and another concerning mechanical failure times. In both cases, the CJ model combined with the proposed censoring strategy demonstrates superior fit and reliability inference compared to competing models. These findings highlight the value of the CJ distribution, together with advanced censoring methods, for modeling lifetime data in physics and engineering applications. Full article
Show Figures

Figure 1

28 pages, 875 KB  
Article
Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring
by Ahmed T. Farhat, Dina A. Ramadan, Hanan Haj Ahmad and Beih S. El-Desouky
Mathematics 2025, 13(16), 2585; https://doi.org/10.3390/math13162585 - 12 Aug 2025
Viewed by 327
Abstract
Life testing of products often requires extended observation periods. To shorten the duration of these tests, products can be subjected to more extreme conditions than those encountered in normal use; an approach known as accelerated life testing (ALT) is considered. This study investigates [...] Read more.
Life testing of products often requires extended observation periods. To shorten the duration of these tests, products can be subjected to more extreme conditions than those encountered in normal use; an approach known as accelerated life testing (ALT) is considered. This study investigates the estimation of unknown parameters and the acceleration factor for the modified Fréchet-Lomax exponential distribution (MFLED), utilizing Type II progressively first-failure censored (PFFC) samples obtained under the framework of constant-stress partially accelerated life testing (CSPALT). Maximum likelihood (ML) estimation is employed to obtain point estimates for the model parameters and the acceleration factor, while the Fisher information matrix is used to construct asymptotic confidence intervals (ACIs) for these estimates. To improve the precision of inference, two parametric bootstrap methods are also implemented. In the Bayesian context, a method for eliciting prior hyperparameters is proposed, and Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) method. These estimates are evaluated under both symmetric and asymmetric loss functions, and the corresponding credible intervals (CRIs) are computed. A comprehensive simulation study is conducted to compare the performance of ML, bootstrap, and Bayesian estimators in terms of mean squared error and coverage probabilities of confidence intervals. Finally, real-world failure time data of light-emitting diodes (LEDs) are analyzed to demonstrate the applicability and efficiency of the proposed methods in practical reliability studies, highlighting their value in modeling the lifetime behavior of electronic components. Full article
(This article belongs to the Special Issue Statistical Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

16 pages, 666 KB  
Article
Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring
by Rajni Goel, Mahmoud M. Abdelwahab and Mustafa M. Hasaballah
Axioms 2025, 14(8), 573; https://doi.org/10.3390/axioms14080573 - 25 Jul 2025
Viewed by 348
Abstract
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows [...] Read more.
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows for the planned removal of surviving units at specific stages of an experiment, accounting for both deliberate and random censoring events. It is assumed that survival and censoring times each follow a Maxwell distribution, though with distinct parameters. Both frequentist and Bayesian approaches are employed to estimate the model parameters. In the frequentist approach, maximum likelihood estimators and their corresponding confidence intervals are derived. In the Bayesian approach, Bayes estimators are obtained using an inverse gamma prior and evaluated through a Markov Chain Monte Carlo (MCMC) method under the squared error loss function (SELF). A Monte Carlo simulation study evaluates the performance of the proposed estimators. The practical relevance of the methodology is demonstrated using a real data set. Full article
Show Figures

Figure 1

23 pages, 752 KB  
Article
On Joint Progressively Censored Gumbel Type-II Distributions: (Non-) Bayesian Estimation with an Application to Physical Data
by Mustafa M. Hasaballah, Mahmoud E. Bakr, Oluwafemi Samson Balogun and Arwa M. Alshangiti
Axioms 2025, 14(7), 544; https://doi.org/10.3390/axioms14070544 - 20 Jul 2025
Viewed by 368
Abstract
This paper presents a comprehensive statistical analysis of the Gumbel Type-II distribution based on joint progressive Type-II censoring. It derives the maximum likelihood estimators for the distribution parameters and constructs their asymptotic confidence intervals. It investigates Bayesian estimation using non-informative and informative priors [...] Read more.
This paper presents a comprehensive statistical analysis of the Gumbel Type-II distribution based on joint progressive Type-II censoring. It derives the maximum likelihood estimators for the distribution parameters and constructs their asymptotic confidence intervals. It investigates Bayesian estimation using non-informative and informative priors under the squared error loss function and the LINEX loss function, applying Markov Chain Monte Carlo methods. A detailed simulation study evaluates the estimators’ performance in terms of average estimates, mean squared errors, and average confidence interval lengths. Results show that Bayesian estimators can outperform maximum likelihood estimators, especially with informative priors. A real data example demonstrates the practical use of the proposed methods. The analysis confirms that the Gumbel Type-II distribution with joint progressive censoring provides a flexible and effective model for lifetime data, enabling more accurate reliability assessment and risk analysis in engineering and survival studies. Full article
Show Figures

Figure 1

30 pages, 16041 KB  
Article
Estimation of Inverted Weibull Competing Risks Model Using Improved Adaptive Progressive Type-II Censoring Plan with Application to Radiobiology Data
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Symmetry 2025, 17(7), 1044; https://doi.org/10.3390/sym17071044 - 2 Jul 2025
Cited by 1 | Viewed by 460
Abstract
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under [...] Read more.
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under the classical approach, maximum likelihood estimators are obtained for the unknown parameters and the reliability function. Approximate confidence intervals are also constructed to assess the uncertainty in the estimates. From a Bayesian standpoint, symmetric Bayes estimates and highest posterior density credible intervals are computed using Markov Chain Monte Carlo sampling, assuming a symmetric squared error loss function. An extensive simulation study is carried out to assess how well the proposed methods perform under different experimental conditions, showing promising accuracy. To demonstrate the practical use of these methods, a real dataset is analyzed, consisting of the survival times of male mice aged 35 to 42 days after being exposed to 300 roentgens of X-ray radiation. The analysis demonstrated that the inverted Weibull distribution is well-suited for modeling the given dataset. Furthermore, the Bayesian estimation method, considering both point estimates and interval estimates, was found to be more effective than the classical approach in estimating the model parameters as well as the reliability function. Full article
Show Figures

Figure 1

18 pages, 361 KB  
Article
Analyzing Competing Risks with Progressively Type-II Censored Data in Dagum Distributions
by Raghd Badwan and Reza Pakyari
Axioms 2025, 14(7), 508; https://doi.org/10.3390/axioms14070508 - 30 Jun 2025
Cited by 1 | Viewed by 453
Abstract
Competing risk models are essential in survival analysis for studying systems with multiple mutually exclusive failure events. This study investigates the application of competing risk models in the presence of progressively Type-II censored data for the Dagum distribution, a flexible distribution suited for [...] Read more.
Competing risk models are essential in survival analysis for studying systems with multiple mutually exclusive failure events. This study investigates the application of competing risk models in the presence of progressively Type-II censored data for the Dagum distribution, a flexible distribution suited for modeling data with heavy tails and varying skewness and kurtosis. The methodology includes maximum likelihood estimation of the unknown parameters, with a focus on the special case of a common shape parameter, which allows for a closed-form expression of the relative risks. A hypothesis test is developed to assess the validity of this assumption, and both asymptotic and bootstrap confidence intervals are constructed. The performance of the proposed methods is evaluated through Monte Carlo simulations, and their applicability is demonstrated with a real-world example. Full article
Show Figures

Figure 1

34 pages, 18712 KB  
Article
Statistical Computation of Hjorth Competing Risks Using Binomial Removals in Adaptive Progressive Type II Censoring
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Mathematics 2025, 13(12), 2010; https://doi.org/10.3390/math13122010 - 18 Jun 2025
Viewed by 385
Abstract
In complex reliability applications, it is common for the failure of an individual or an item to be attributed to multiple causes known as competing risks. This paper explores the estimation of the Hjorth competing risks model based on an adaptive progressive Type [...] Read more.
In complex reliability applications, it is common for the failure of an individual or an item to be attributed to multiple causes known as competing risks. This paper explores the estimation of the Hjorth competing risks model based on an adaptive progressive Type II censoring scheme via a binomial removal mechanism. For parameter and reliability metric estimation, both frequentist and Bayesian methodologies are developed. Maximum likelihood estimates for the Hjorth parameters are computed numerically due to their intricate form, while the binomial removal parameter is derived explicitly. Confidence intervals are constructed using asymptotic approximations. Within the Bayesian paradigm, gamma priors are assigned to the Hjorth parameters and a beta prior for the binomial parameter, facilitating posterior analysis. Markov Chain Monte Carlo techniques yield Bayesian estimates and credible intervals for parameters and reliability measures. The performance of the proposed methods is compared using Monte Carlo simulations. Finally, to illustrate the practical applicability of the proposed methodology, two real-world competing risk data sets are analyzed: one representing the breaking strength of jute fibers and the other representing the failure modes of electrical appliances. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation: 3rd Edition)
Show Figures

Figure 1

28 pages, 11942 KB  
Article
Reliability Analysis of Improved Type-II Adaptive Progressively Inverse XLindley Censored Data
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Axioms 2025, 14(6), 437; https://doi.org/10.3390/axioms14060437 - 2 Jun 2025
Cited by 1 | Viewed by 541
Abstract
This study offers a newly improved Type-II adaptive progressive censoring with data sampled from an inverse XLindley (IXL) distribution for more efficient and adaptive reliability assessments. Through this sampling mechanism, we evaluate the parameters of the IXL distribution, as well as its reliability [...] Read more.
This study offers a newly improved Type-II adaptive progressive censoring with data sampled from an inverse XLindley (IXL) distribution for more efficient and adaptive reliability assessments. Through this sampling mechanism, we evaluate the parameters of the IXL distribution, as well as its reliability and hazard rate features. In the context of reliability, to handle flexible and time-constrained testing frameworks in high-reliability environments, we formulate maximum likelihood estimators versus Bayesian estimates derived via Markov chain Monte Carlo techniques under gamma priors, which effectively capture prior knowledge. Two patterns of asymptotic interval estimates are constructed through the normal approximation of the classical estimates and of the log-transformed classical estimates. On the other hand, from the Markovian chains, two patterns of credible interval estimates are also constructed. A robust simulation study is carried out to compare the classical and Bayesian point estimation methods, along with the four interval estimation methods. This study’s practical usefulness is demonstrated by its analysis of a real-world dataset. The results reveal that both conventional and Bayesian inferential methods function accurately, with the Bayesian outcomes surpassing those of the conventional method. Full article
(This article belongs to the Special Issue Computational Statistics and Its Applications, 2nd Edition)
Show Figures

Figure 1

27 pages, 993 KB  
Article
Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme
by Jinchen Xiang, Yuanqi Wang and Wenhao Gui
Symmetry 2025, 17(6), 829; https://doi.org/10.3390/sym17060829 - 26 May 2025
Viewed by 553
Abstract
In recent years, there has been an increasing interest in the application of progressive censoring as a means to reduce both cost and experiment duration. In the absence of explanatory variables, the present study employs a statistical inference approach for the inverse Weibull [...] Read more.
In recent years, there has been an increasing interest in the application of progressive censoring as a means to reduce both cost and experiment duration. In the absence of explanatory variables, the present study employs a statistical inference approach for the inverse Weibull distribution, using a progressive type II censoring strategy with two independent samples. The article expounds on the maximum likelihood estimation method, utilizing the Fisher information matrix to derive approximate confidence intervals. Moreover, interval estimations are computed by the bootstrap method. We explore the application of Bayesian methods for estimating model parameters under both the squared error and LINEX loss functions. The Bayesian estimates and corresponding credible intervals are calculated via Markov chain Monte Carlo (MCMC). Finally, comprehensive simulation studies and real data analysis are carried out to validate the precision of the proposed estimation methods. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

26 pages, 12878 KB  
Article
Reliability Estimation for the Inverse Chen Distribution Under Adaptive Progressive Censoring with Binomial Removals: A Framework for Asymmetric Data
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Symmetry 2025, 17(6), 812; https://doi.org/10.3390/sym17060812 - 23 May 2025
Viewed by 529
Abstract
Traditional reliability methods using fixed removal plans often overlook withdrawal randomness, leading to biased estimates for asymmetric data. This study advances classical and Bayesian frameworks for the inverse Chen distribution, which is suited for modeling asymmetric data under adaptive progressively Type-II censoring with [...] Read more.
Traditional reliability methods using fixed removal plans often overlook withdrawal randomness, leading to biased estimates for asymmetric data. This study advances classical and Bayesian frameworks for the inverse Chen distribution, which is suited for modeling asymmetric data under adaptive progressively Type-II censoring with binomial removals. Here, removals post-failure follow a dynamic binomial process, enhancing a more realistic approach for reliability studies. Maximum likelihood estimates are computed numerically, with confidence intervals derived asymptotically. Bayesian approaches employ gamma priors, symmetric squared error loss, and posterior sampling for estimates and credible intervals. A simulation study validates the methods, while two asymmetric real-world applications demonstrate practicality: (1) analyzing diamond sizes from South-West Africa, capturing skewed geological distributions, and (2) modeling failure times of airborne communication transceivers, vital for aviation safety. The flexibility of the inverse Chen in handling asymmetric data addresses the limitations of symmetric assumptions, offering precise reliability tools for complex scenarios. This integration of adaptive censoring and asymmetric distributions advances reliability analysis, providing robust solutions where traditional approaches falter. Full article
Show Figures

Figure 1

23 pages, 1136 KB  
Article
Objective Framework for Bayesian Inference in Multicomponent Pareto Stress–Strength Model Under an Adaptive Progressive Type-II Censoring Scheme
by Young Eun Jeon, Yongku Kim and Jung-In Seo
Mathematics 2025, 13(9), 1379; https://doi.org/10.3390/math13091379 - 23 Apr 2025
Viewed by 383
Abstract
This study introduces an objective Bayesian approach for estimating the reliability of a multicomponent stress–strength model based on the Pareto distribution under an adaptive progressive Type-II censoring scheme. The proposed method is developed within a Bayesian framework, utilizing a reference prior with partial [...] Read more.
This study introduces an objective Bayesian approach for estimating the reliability of a multicomponent stress–strength model based on the Pareto distribution under an adaptive progressive Type-II censoring scheme. The proposed method is developed within a Bayesian framework, utilizing a reference prior with partial information to improve the accuracy of point estimation and to ensure the construction of a credible interval for uncertainty assessment. This approach is particularly useful for addressing several limitations of a widely used likelihood-based approach in estimating the multicomponent stress–strength reliability under the Pareto distribution. For instance, in the likelihood-based method, the asymptotic variance–covariance matrix may not exist due to certain constraints. This limitation hinders the construction of an approximate confidence interval for assessing the uncertainty. Moreover, even when an approximate confidence interval is obtained, it may fail to achieve nominal coverage levels in small sample scenarios. Unlike the likelihood-based method, the proposed method provides an efficient estimator across various criteria and constructs a valid credible interval, even with small sample sizes. Extensive simulation studies confirm that the proposed method yields reliable and accurate inference across various censoring scenarios, and a real data application validates its practical utility. These results demonstrate that the proposed method is an effective alternative to the likelihood-based method for reliability inference in the multicomponent stress–strength model based on the Pareto distribution under an adaptive progressive Type-II censoring scheme. Full article
Show Figures

Figure 1

32 pages, 1098 KB  
Article
Estimation and Bayesian Prediction for New Version of Xgamma Distribution Under Progressive Type-II Censoring
by Ahmed R. El-Saeed, Molay Kumar Ruidas and Ahlam H. Tolba
Symmetry 2025, 17(3), 457; https://doi.org/10.3390/sym17030457 - 18 Mar 2025
Cited by 1 | Viewed by 400
Abstract
This article introduces a new continuous lifetime distribution within the Gamma family, called the induced Xgamma distribution, and explores its various statistical properties. The proposed distribution’s estimation and prediction are investigated using Bayesian and non-Bayesian approaches under progressively Type-II censored data. The maximum [...] Read more.
This article introduces a new continuous lifetime distribution within the Gamma family, called the induced Xgamma distribution, and explores its various statistical properties. The proposed distribution’s estimation and prediction are investigated using Bayesian and non-Bayesian approaches under progressively Type-II censored data. The maximum likelihood and maximum product spacing methods are applied for the non-Bayesian approach, and some of their performances are evaluated. In the Bayesian framework, the numerical approximation technique utilizing the Metropolis–Hastings algorithm within the Markov chain Monte Carlo is employed under different loss functions, including the squared error loss, general entropy, and LINEX loss. Interval estimation methods, such as asymptotic confidence intervals, log-normal asymptotic confidence intervals, and highest posterior density intervals, are also developed. A comprehensive numerical study using Monte Carlo simulations is conducted to evaluate the performance of the proposed point and interval estimation methods through progressive Type-II censored data. Furthermore, the applicability and effectiveness of the proposed distribution are demonstrated through three real-world datasets from the fields of medicine and engineering. Full article
(This article belongs to the Special Issue Bayesian Statistical Methods for Forecasting)
Show Figures

Figure 1

24 pages, 534 KB  
Article
Inference for Two-Parameter Birnbaum–Saunders Distribution Based on Type-II Censored Data with Application to the Fatigue Life of Aluminum Coupon Cuts
by Omar M. Bdair
Mathematics 2025, 13(4), 590; https://doi.org/10.3390/math13040590 - 11 Feb 2025
Cited by 1 | Viewed by 909
Abstract
This study addresses the problem of parameter estimation and prediction for type-II censored data from the two-parameter Birnbaum–Saunders (BS) distribution. The BS distribution is commonly used in reliability analysis, particularly in modeling fatigue life. Accurate estimation and prediction are crucial in many fields [...] Read more.
This study addresses the problem of parameter estimation and prediction for type-II censored data from the two-parameter Birnbaum–Saunders (BS) distribution. The BS distribution is commonly used in reliability analysis, particularly in modeling fatigue life. Accurate estimation and prediction are crucial in many fields where censored data frequently appear, such as material science, medical studies and industrial applications. This paper presents both frequentist and Bayesian approaches to estimate the shape and scale parameters of the BS distribution, along with the prediction of unobserved failure times. Random data are generated from the BS distribution under type-II censoring, where a pre-specified number of failures (m) is observed. The generated data are used to calculate the Maximum Likelihood Estimation (MLE) and Bayesian inference and evaluate their performances. The Bayesian method employs Markov Chain Monte Carlo (MCMC) sampling for point predictions and credible intervals. We apply the methods to both datasets generated under type-II censoring and real-world data on the fatigue life of 6061-T6 aluminum coupons. Although the results show that the two methods yield similar parameter estimates, the Bayesian approach offers more flexible and reliable prediction intervals. Extensive R codes are used to explain the practical application of these methods. Our findings confirm the advantages of Bayesian inference in handling censored data, especially when prior information is available for estimation. This work not only supports the theoretical understanding of the BS distribution under type-II censoring but also provides practical tools for analyzing real data in reliability and survival studies. Future research will discuss extensions of these methods to the multi-sample progressive censoring model with larger datasets and the integration of degradation models commonly encountered in industrial applications. Full article
Show Figures

Figure 1

18 pages, 1395 KB  
Article
Bayesian and Non-Bayesian Parameter Estimation for the Bivariate Odd Lindley Half-Logistic Distribution Using Progressive Type-II Censoring with Applications in Sports Data
by Shruthi Polipu and Jiju Gillariose
Modelling 2025, 6(1), 13; https://doi.org/10.3390/modelling6010013 - 5 Feb 2025
Cited by 1 | Viewed by 1083
Abstract
The Bivariate Odd Lindley Half-Logistic (BOLiHL) distribution with progressive Type-II censoring provides a powerful statistical tool for analyzing dependent data effectively. This approach benefits society by enhancing engineering systems, improving healthcare decisions, and supporting effective risk management, all while optimizing resources and minimizing [...] Read more.
The Bivariate Odd Lindley Half-Logistic (BOLiHL) distribution with progressive Type-II censoring provides a powerful statistical tool for analyzing dependent data effectively. This approach benefits society by enhancing engineering systems, improving healthcare decisions, and supporting effective risk management, all while optimizing resources and minimizing experimental burdens. In this paper, the likelihood function derived under progressive Type-II censoring is generalized for the BOLiHL distribution. The well-known maximum likelihood estimation method and Bayesian estimation are applied to evaluate the parameters of the distribution. A study utilizing simulation techniques is performed to evaluate the performance of the estimators, using statistical analysis metrics for censored observations under a progressive Type-II censoring scheme with varying sample sizes, failure times, and censoring schemes. Additionally, a real dataset is studied to validate the proposed model, delivering impactful analyses for practical applications. Full article
Show Figures

Figure 1

30 pages, 1449 KB  
Article
Inference and Optimal Design on Partially Accelerated Life Tests for the Power Half-Logistic Distribution Under Adaptive Type II Progressive Censoring
by Hanan Haj Ahmad and Mahmoud M. El-Awady
Mathematics 2025, 13(3), 394; https://doi.org/10.3390/math13030394 - 25 Jan 2025
Viewed by 971
Abstract
This study explores accelerated life tests to examine the durability of highly reliable products. These tests involve applying higher stress levels, such as increased temperature, voltage, or pressure, that cause early failures. The power half-logistic (PHL) distribution is utilized due to its flexibility [...] Read more.
This study explores accelerated life tests to examine the durability of highly reliable products. These tests involve applying higher stress levels, such as increased temperature, voltage, or pressure, that cause early failures. The power half-logistic (PHL) distribution is utilized due to its flexibility in modeling the probability density and hazard rate functions, effectively representing various data patterns commonly encountered in practical applications. The step stress partially accelerated life testing model is analyzed under an adaptive type II progressive censoring scheme, with samples drawn from the PHL distribution. The maximum likelihood method estimates model parameters and calculates asymptotic confidence intervals. Bayesian estimates are also obtained using Lindley’s approximation and the Markov Chain Monte Carlo (MCMC) method under different loss functions. Additionally, D- and A-optimality criteria are applied to determine the optimal stress-changing time. Simulation studies are conducted to evaluate the performance of the estimation methods and the optimality criteria. Finally, real-world datasets are analyzed to demonstrate the practical usefulness of the proposed model. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation: 3rd Edition)
Show Figures

Figure 1

Back to TopTop