Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,948)

Search Parameters:
Keywords = promoting growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1655 KB  
Review
Opportunities and Risks of Promoting Skin and Bone Healing via Implant Biofunctionalization of Extracellular Matrix Protein ECM1
by Niklas R. Braun, Andreas K. Nüssler and Sabrina Ehnert
J. Funct. Biomater. 2025, 16(10), 385; https://doi.org/10.3390/jfb16100385 (registering DOI) - 14 Oct 2025
Abstract
Impaired bone regeneration and wound healing represent a major clinical and socioeconomic challenge for our aging and multimorbid population. Fracture and wound healing share many common features, with transforming growth factor beta (TGF-β) being a key regulator of inflammation, angiogenesis, fibroblast activation, and [...] Read more.
Impaired bone regeneration and wound healing represent a major clinical and socioeconomic challenge for our aging and multimorbid population. Fracture and wound healing share many common features, with transforming growth factor beta (TGF-β) being a key regulator of inflammation, angiogenesis, fibroblast activation, and matrix remodeling. The dysregulation of TGF-β signaling is a hallmark of chronic wounds, excessive scar formation, and fracture non-union. Extracellular matrix protein 1 (ECM1) plays a crucial role in the activation of latent TGF-β. As a protein of the extracellular matrix, ECM1 offers ideal conditions for the biofunctionalization of bone implants or wound patches. Its mode of action has been studied mainly in fibrosis models of the liver or heart, where TGF-β acts as a driver of the disease. The controlled knock-out or overexpression of ECM1 either promoted or improved fibrosis development. In this review, we discuss how these findings can be applied to the biofunctionalization of implants to support bone and wound healing, considering the impact of TGF-β on the different healing phases. Full article
Show Figures

Graphical abstract

19 pages, 2134 KB  
Article
Multi-Species Probiotics as Sustainable Strategy to Alleviate Polyamide Microplastic-Induced Stress in Nile Tilapia
by Mahadi Amin, Md Sameul Islam, Mst Mahfuja Akhter Sweety, Muallimul Islam, Azmaien Naziat, Md. Mahiuddin Zahangir, Nesar Ahmed and Md Shahjahan
Sustainability 2025, 17(20), 9085; https://doi.org/10.3390/su17209085 (registering DOI) - 14 Oct 2025
Abstract
Microplastic particles exhibit multiple toxic effects, disrupting physiological processes in fish, such as Nile tilapia (Oreochromis niloticus), a widely cultured species. Probiotics could help counter polyamide microplastic toxicity while promoting fish health and sustainable aquaculture. A 6-week experiment was conducted on [...] Read more.
Microplastic particles exhibit multiple toxic effects, disrupting physiological processes in fish, such as Nile tilapia (Oreochromis niloticus), a widely cultured species. Probiotics could help counter polyamide microplastic toxicity while promoting fish health and sustainable aquaculture. A 6-week experiment was conducted on Nile tilapia included four treatments: (1) without polyamide microplastics and/or probiotics (control) and (2) with polyamide microplastics (PA-MP), (3) probiotics (Pr.), or (4) polyamide microplastics and probiotics (PA-MP + Pr.). The outcomes demonstrate that exposure to polyamide microplastics caused poorer growth performance and survivability along with reduced hemoglobin, and upregulated glucose levels, which were restored by probiotics application. The prevalence of erythrocytic abnormalities increased in the polyamide microplastic group but probiotics supplementation reduced the anomalies. Fish exposed to polyamide microplastics exhibited a lower frequency of goblet cells than other groups. Moreover, expression of antioxidant genes (SOD and CAT) and immune genes (IL-1β, IFN-γ, and TNF-α) was higher during polyamide microplastic exposure, which was downregulated in the polyamide microplastics along with probiotics group. These findings suggest that multi-species probiotics relieve microplastic-induced stress and hindrance of growth in Nile tilapia, which will help sustainable aquaculture practices safeguard fish health and maintain aquaculture productivity by alleviating adverse impacts of microplastic pollution in waterbodies. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

22 pages, 3372 KB  
Article
Does Regional Integration Enhance Green Development Efficiency? Evidence from the Yangtze River Delta Region in China
by Guancen Wu, Zhicheng Zeng, Dongqin Yang, Hongqiang Wang and Xing Niu
Systems 2025, 13(10), 904; https://doi.org/10.3390/systems13100904 (registering DOI) - 14 Oct 2025
Abstract
As regional integration accelerates globally, green development has emerged as a pivotal imperative for reconciling economic growth with environmental sustainability. This study employs a Difference-in-Differences framework incorporating city and year fixed effects to examine the impact of regional integration on green development efficiency [...] Read more.
As regional integration accelerates globally, green development has emerged as a pivotal imperative for reconciling economic growth with environmental sustainability. This study employs a Difference-in-Differences framework incorporating city and year fixed effects to examine the impact of regional integration on green development efficiency in China’s Yangtze River Delta. The empirical findings reveal that regional integration significantly undermines green development efficiency, a conclusion corroborated by rigorous robustness checks including parallel trends and placebo tests. Mechanism analysis demonstrates that trade openness and digital economy development function as partial mediating channels that modestly attenuate the direct adverse effect of regional integration, whereas the decline in secondary industry agglomeration amplifies the negative impact. Notably, innovation capability has yet to fully unlock its potential for green transformation, it intensifies the negative effects of regional integration across all three mediating mechanisms. Building on these findings, this study proposes policy recommendations including strengthening multi-level green governance frameworks, integrating ecological compensation and carbon trading systems, advancing low-carbon trade structures, promoting the synergistic development of digitalization and green transformation, facilitating the green transition of secondary industries, and reinforcing green technology innovation. These insights provide empirical evidence and policy references for achieving coherence between regional integration and sustainable development objectives. Full article
Show Figures

Figure 1

20 pages, 1642 KB  
Article
Effect of Corn Straw Returning Under Different Irrigation Modes on Soil Organic Carbon and Active Organic Carbon in Semi-Arid Areas
by Wei Cheng, Jinggui Wu, Xiaochi Ma, Xinqu Duo and Yue Gu
Appl. Sci. 2025, 15(20), 11006; https://doi.org/10.3390/app152011006 (registering DOI) - 14 Oct 2025
Abstract
In the global agricultural production system, maintaining and improving soil quality are core elements for ensuring food security and sustainable agricultural development. As a key indicator of soil quality, the content and dynamic change in soil organic carbon have a profound impact on [...] Read more.
In the global agricultural production system, maintaining and improving soil quality are core elements for ensuring food security and sustainable agricultural development. As a key indicator of soil quality, the content and dynamic change in soil organic carbon have a profound impact on the physical, chemical and biological properties of soil, and play a decisive role in soil fertility, structural stability, water and fertilizer conservation capacity and microbial activity. However, its decomposition is slow, and a large number of straws returning to the field will impact crop growth; its combination with irrigation is a more reasonable solution, as it can significantly improve the soil environment, increase soil moisture and promote straw decomposition. Therefore, in order to further study the effects of different irrigation methods and straw-returning combinations on soil active-carbon content, an experiment was carried out in long-term arid and semi-arid areas under in-field corn cultivation during 2019–2020. Three irrigation modes were designed—flood irrigation (BI), shallow drip irrigation (SD) and drip irrigation under film (DP)—and straw returning (CS) and no straw returning (CK) were set up, with irrigation applied at critical corn growth stages (internode elongation, heading, bell mouth stage) to support plant growth. The results are as follows: (1) The content of soil organic carbon in different treatments had a gradual upward trend with the advance of growth period; the content of soil organic carbon in DP treatment was significantly higher than that in SD and BI treatment under the same straw returning mode, indicating that drip irrigation under film and straw-returning mode can synergistically improve soil fertility and organic carbon content. (2) Different irrigation methods and straw-returning methods have significant effects on the content of soil active organic carbon components. Different drip irrigation modes can significantly improve the content of soil POC and MBC compared with flood irrigation. The Kos of SD treatment is significantly higher than that of other irrigation treatments, and the CPMI is lower than that of the other two irrigation methods, indicating that the soil organic carbon of SD treatment is more stable. Therefore, under straw-returning conditions, drip irrigation can significantly improve the carbon content of soil components and the management index of soil carbon pool, thus significantly increasing the accumulation of soil organic matter. This study discussed the effects of straw returning on soil organic carbon composition and soil carbon pool index under different irrigation methods to provide theoretical and practical bases for the selection and promotion of straw-returning methods and rational irrigation methods in semi-arid areas. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

13 pages, 2698 KB  
Article
Adopting Biochar as Immobilization Support for Hyper Ammonia-Producing Bacteria Proliferation
by Christiana Bitrus, Ademola Hammed, Tawakalt Ayodele, Kudirat Alarape, Niloy Chandra Sarker, Clairmont Clementson and Ewumbua Monono
Appl. Microbiol. 2025, 5(4), 111; https://doi.org/10.3390/applmicrobiol5040111 - 14 Oct 2025
Abstract
The many uses of biochar extend to microbial enhancement in fermentation processes because it acts as a catalyst and a support medium in agricultural industries, particularly for biofertilizer production. This study explores how three key biochar parameters, concentration (0.05–0.25% w/v), [...] Read more.
The many uses of biochar extend to microbial enhancement in fermentation processes because it acts as a catalyst and a support medium in agricultural industries, particularly for biofertilizer production. This study explores how three key biochar parameters, concentration (0.05–0.25% w/v), temperature (30–50 °C), and particle size (250 μm–1.40 mm) affect hyper-ammonia-producing bacteria (HAB) growth during fermentation using commercially sourced pine wood-derived biochar. Fermentation experiments utilized enriched cow rumen fluid under controlled conditions, monitoring bacterial growth via optical density (OD600) over 48 h. Microbial proliferation was strongly influenced by all tested parameters (concentration, temperature, particle size). Highest growth occurred at 0.15% biochar concentration, 45 °C, and 250 μm particle size within the tested parameter ranges. Lower concentrations and smaller particles promoted microbial adhesion and colonization. Higher biochar levels hindered growth due to surface saturation and reduced pore accessibility. SEM imaging supported these findings by revealing structural changes on the biochar surface at different concentrations. Regression analysis demonstrated strong correlation between biochar parameters and microbial activity (R2 = 0.9931), though multicollinearity limited individual variable significance. These findings support biochar optimization for enhanced microbial processing in biotechnological applications. Full article
Show Figures

Figure 1

18 pages, 880 KB  
Review
Reimagining Science Learning in Early Childhood Through Storybook Reading
by Amanda S. Haber and Sona C. Kumar
Educ. Sci. 2025, 15(10), 1361; https://doi.org/10.3390/educsci15101361 - 14 Oct 2025
Abstract
This paper presents a model for reimagining science learning during the early childhood years through storybook reading. Much of the research on storybooks in early childhood has emphasized how storybooks promote knowledge acquisition in literacy, social–emotional learning, and science. This model proposes that [...] Read more.
This paper presents a model for reimagining science learning during the early childhood years through storybook reading. Much of the research on storybooks in early childhood has emphasized how storybooks promote knowledge acquisition in literacy, social–emotional learning, and science. This model proposes that shared science storybook reading, through interactions with adults and society, integrates these domains and encourages the development of skills critical to success in science fields such as persistence in the face of failure and growth mindset. The model is situated within two theoretical frameworks: a social interactionist framework that adult–child interactions during a shared storybook reading can advance children’s learning and an ecological systems framework, which highlights how early development occurs in informal and formal learning environments in preschool through second grade, and within the context of larger societal values surrounding science. Full article
Show Figures

Figure 1

19 pages, 7868 KB  
Article
Numerical Investigation of Ice Crystal Effects on Aircraft Icing Under Mixed-Phase Conditions
by Huijie Li, Afang Jin, Bo Yang, Mingzhao Li and Shuhao Zhou
Coatings 2025, 15(10), 1207; https://doi.org/10.3390/coatings15101207 - 14 Oct 2025
Abstract
This study presents numerical simulations of ice crystal accretion on aircraft surfaces under mixed-phase icing conditions, where ice crystals coexist with supercooled water droplets. The Finite Element Navier–Stokes Analysis Program (FENSAP-ICE) suite, incorporating the Discrete Roughness Optimization Program in 3D (DROP3D) and Ice [...] Read more.
This study presents numerical simulations of ice crystal accretion on aircraft surfaces under mixed-phase icing conditions, where ice crystals coexist with supercooled water droplets. The Finite Element Navier–Stokes Analysis Program (FENSAP-ICE) suite, incorporating the Discrete Roughness Optimization Program in 3D (DROP3D) and Ice Accretion Simulation in 3D (ICE3D) solvers, was applied to the Common Research Model with Natural Laminar Flow (CRM-NLF) to examine the effects of crystal size, aspect ratio, and concentration on ice growth. The results show that the presence of ice crystals produces smoother, more uniform, and substantially thicker ice compared with droplet-only cases, where distinct horns and roughness dominate. At peak growth locations, the predicted ice thickness increases by up to 75% under mixed-phase conditions. Quantitative analyses reveal that increasing crystal diameter from 50 μm to 200 μm raises ice growth by 25%–75%, increasing aspect ratios from 0.05 to 1 increases growth by 20%–75%, and raising concentrations from 0.25 to 2 kg/m3 enhances growth by nearly 450%. These findings demonstrate the critical role of ice crystals in promoting layered ice accumulation, clarify the mechanisms driving mixed-phase icing, and provide theoretical guidance for advancing anti-icing and de-icing technologies in aviation. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 3399 KB  
Article
Comparative Symbiotic Effects of Mycorrhizal Fungal Strains from Different Hosts on Seed Germination and Seedling Growth in Dendrobium officinale
by Jian-Yu He, Xiao-Yan Xie, Zhuo-Qi Liang, Jian-Xia Zhang, Shu Liu and Xiao-Lan Zhao
J. Fungi 2025, 11(10), 737; https://doi.org/10.3390/jof11100737 (registering DOI) - 14 Oct 2025
Abstract
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, [...] Read more.
Compatible fungal partners of orchids can significantly enhance seed germination and increase seedling establishment under both in vitro and in situ conditions. This study isolated 14 Tulasnella isolates from five-year-old potted plants of three D. officinale cultivars. Three phylogenetically representative strains (Dca122, Dca222, and Dca113) and two additional orchid mycorrhizal fungus (OMFs, ML01 and Pi) were selected to evaluate their effects on D. officinale seed germination and seedling development in vitro, and subsequent seedling growth under greenhouse conditions. All five OMFs supported seed germination and seedling development in vitro. Notably, Dca113, Pi, and ML01 exhibited the most pronounced effects, producing protocorms 3–4 times larger in volume than controls. By day 25, 37.54%, 37.34%, and 42.6% of protocorms developed cotyledons with these isolates, respectively. Furthermore, after 120 days, ML01 and Dca113 treatments yielded 35.6% and 30.68% autotrophic seedlings with fully differentiated roots. Under greenhouse, ML01, Pi, and Dca122 significantly enhanced fresh weight accumulation, plant height, and stem node number in potted seedlings. In contrast, Dca222 primarily stimulated sprouting tillers and adventitious root formation. Our results demonstrate that the mycorrhizal effectiveness of OMFs from different hosts varies significantly in D. officinale. ML01 and Dca113 are ideal candidates for reintroduction programs due to their strong promotion of seed germination and rapid formation of rooted seedlings. ML01 proved the most effective OMF for enhancing growth in potted seedlings, while Dca222 demonstrated potential for co-inoculation strategies. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

16 pages, 3163 KB  
Article
Chloroplast Hibernation-Promoting Factor PSRP1 Prevents Ribosome Degradation Under Darkness Independently of 100S Dimer Formation
by Kenta Tanaka, Yusuke Yoshizawa, Takashi Oda and Yasuhiko Sekine
Plants 2025, 14(20), 3155; https://doi.org/10.3390/plants14203155 - 13 Oct 2025
Abstract
Ribosome hibernation is a conserved translational stress response in bacteria, regulated by the hibernation-promoting factor (HPF). Plastid-specific ribosomal protein 1 (PSRP1) is the chloroplast ortholog of bacterial HPF. Although bacterial HPFs have been extensively characterized, both structurally and mechanistically, the physiological roles and [...] Read more.
Ribosome hibernation is a conserved translational stress response in bacteria, regulated by the hibernation-promoting factor (HPF). Plastid-specific ribosomal protein 1 (PSRP1) is the chloroplast ortholog of bacterial HPF. Although bacterial HPFs have been extensively characterized, both structurally and mechanistically, the physiological roles and mechanisms of PSRP1 in plant chloroplasts remain unclear. Here, we aimed to clarify the role of PSRP1 in chloroplast ribosome hibernation by examining its function under dark-stress conditions in the moss Physcomitrium patens. The PSRP1 knockout mutant exhibited moderate but statistically significant growth defects under both long- and short-day conditions compared to those of the wild-type plants. Moreover, the mutant displayed pronounced growth delay when co-cultured with wild-type plants, indicating a competitive disadvantage. Under dark conditions, wild-type plants exhibit increased PSRP1 protein accumulation, whereas the knockout mutant displayed reduction in chloroplast rRNA content. Notably, although PSRP1 is capable of inducing 100S dimers, we detected no chloroplast 100S dimers either in vivo or in vitro, suggesting a chloroplast-specific ribosome protection mechanism distinct from that of bacteria. These findings reveal PSRP1-mediated chloroplast ribosome protection and could provide new insights into plant stress tolerance. Full article
Show Figures

Figure 1

42 pages, 6873 KB  
Article
Sustainable Water and Energy Management Through a Solar-Hydrodynamic System in a Lake Velence Settlement, Hungary
by Attila Kálmán, Antal Bakonyi, Katalin Bene and Richard Ray
Infrastructures 2025, 10(10), 275; https://doi.org/10.3390/infrastructures10100275 - 13 Oct 2025
Abstract
The Lake Velence watershed faces increasing challenges driven by local and global factors, including the impacts of climate change, energy resource limitations, and greenhouse gas emissions. These issues, particularly acute in water management, are exacerbated by prolonged droughts, growing population pressures, and shifting [...] Read more.
The Lake Velence watershed faces increasing challenges driven by local and global factors, including the impacts of climate change, energy resource limitations, and greenhouse gas emissions. These issues, particularly acute in water management, are exacerbated by prolonged droughts, growing population pressures, and shifting land use patterns. Such dynamics strain the region’s scarce water resources, negatively affecting the environment, tourism, recreation, agriculture, and economic prospects. Nadap, a hilly settlement within the watershed, experiences frequent flooding and poor water retention, yet it also boasts the highest solar panel capacity per property in Hungary. This research addresses these interconnected challenges by designing a solar-hydrodynamic network comprising four multi-purpose water reservoirs. By leveraging the settlement’s solar capacity and geographical features, the reservoirs provide numerous benefits to local stakeholders and extend their impact far beyond their borders. These include stormwater management with flash flood mitigation, seasonal green energy storage, water security for agriculture and irrigation, wildlife conservation, recreational opportunities, carbon-smart winery developments, and the creation of sustainable blue-green settlements. Reservoir locations and dimensions were determined by analyzing geographical characteristics, stormwater volume, energy demand, solar panel performance, and rainfall data. The hydrodynamic system, modeled in Matlab, was optimized to ensure efficient water usage for irrigation, animal hydration, and other needs while minimizing evaporation losses and carbon emissions. This research presents a design framework for low-carbon and cost-effective solutions that address water management and energy storage, promoting environmental, social, and economic sustainability. The multi-purpose use of retained rainwater solves various existing problems/challenges, strengthens a community’s self-sustainability, and fosters regional growth. This integrated approach can serve as a model for other municipalities and for developing cost-effective inter-settlement and cross-catchment solutions, with a short payback period, facing similar challenges. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

16 pages, 2463 KB  
Article
Thymopentin Enhances Antitumor Immunity Through Thymic Rejuvenation and T Cell Functional Reprogramming
by Md Amir Hossain, Ye Zhang, Li Ji, Yumei Chen, Yue Luan, Yaxuan Si, Yuqing Fang, Junlan Qiu, Zhuo Wang and Guilai Liu
Biomedicines 2025, 13(10), 2494; https://doi.org/10.3390/biomedicines13102494 - 13 Oct 2025
Abstract
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, [...] Read more.
Background/Objectives: T cell dysfunction represents a fundamental barrier to effective cancer immunotherapy. Although immune checkpoint blockades and adoptive cell transfer have achieved clinical success, therapeutic resistance remains prevalent across cancer types. Thymopentin (TP5), a synthetic immunomodulatory pentapeptide (Arg-Lys-Asp-Val-Tyr), has demonstrated immunostimulatory properties, yet its anticancer potential remains unexplored. The aim of this study was to investigate TP5’s antitumor efficacy and underlying immunological mechanisms. Methods: We evaluated TP5’s therapeutic effects in multiple murine tumor models, including B16-F10 melanoma, MC38 colorectal carcinoma, Hepa 1-6, and LM3 hepatocellular carcinoma. Immune cell populations and functional states were characterized using flow cytometry, ELISAs, and immunofluorescence analyses. The potential of TP5 as an adjuvant for T cell-based therapies was also systematically assessed. Results: The TP5 treatment markedly suppressed tumor growth across caner models through strictly T cell-dependent mechanisms. Critically, TP5 promoted thymic rejuvenation under immunocompromised conditions, restoring the thymus–tumor immunological balance and revitalizing peripheral T cell immunity. TP5 functionally reprogrammed T cell states, preserving effector function while ameliorating exhaustion. Furthermore, TP5 demonstrated synergistic efficacy when combined with adoptive T cell therapies, enhancing both proliferation and effector functions. Conclusions: TP5 represents a promising immunomodulator that addresses fundamental limitations of current T cell therapies by simultaneously enhancing T cell function and reversing thymic involution under immunocompromised conditions. Our findings provide compelling evidence for TP5’s clinical translation in cancer treatment. Full article
16 pages, 1652 KB  
Article
Comparative Effects of Trichoderma guizhouense NJAU4742 and Bacillus velezensis SQR9 on Growth and Pb Accumulation in Salix suchowensis
by Ruifang Huang, Baosong Wang, Ming Xu, Dezong Sui and Xudong He
Int. J. Mol. Sci. 2025, 26(20), 9961; https://doi.org/10.3390/ijms26209961 (registering DOI) - 13 Oct 2025
Abstract
Soil lead (Pb) contamination poses a severe threat to agricultural sustainability and food security. Phytoremediation offers a green alternative for remediation, yet its efficiency is limited by poor plant tolerance and restricted metal uptake. In this study we investigated the functional roles of [...] Read more.
Soil lead (Pb) contamination poses a severe threat to agricultural sustainability and food security. Phytoremediation offers a green alternative for remediation, yet its efficiency is limited by poor plant tolerance and restricted metal uptake. In this study we investigated the functional roles of the microbial inoculants Trichoderma guizhouense NJAU4742 and Bacillus velezensis SQR9 in enhancing the performance of Salix suchowensis P1024 grown in Pb-contaminated soil. NJAU4742 significantly increased plant biomass by 34% (p < 0.05), accompanied by increased soil microbial biomass and higher activities of urease, acid phosphatase, and sucrase. In contrast, SQR9 strongly enhanced Pb accumulation by 19% (p < 0.05), which was accompanied by upregulated antioxidant enzymes, reduced lipid peroxidation, and elevated cysteine levels. Random forest and correlation analyses demonstrated that soil nutrient cycling indices (urease, MBC, sucrase) were key predictors of biomass, whereas antioxidant defenses (POD, CAT) primarily explained Pb accumulation. These findings provide new insights into the distinct contributions of NJAU4742 and SQR9 to willow growth and Pb remediation, and provide a basis for developing more effective microbe-assisted phytoremediation strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

28 pages, 8832 KB  
Article
AoMbp1 Governs Conidiation and Trap Morphogenesis in Arthrobotrys oligospora Via Direct Transcriptional Activation of the MAPK Sensor AoSho1
by Ruobing Li, Lixiang Wei, Yanseng Sun, Chengzhi Zhang, Yuhang Nie, Qinglong Meng, Shuang Chen, Ming Wu, Xuepeng Cai, Jie Li, Qingling Meng and Jun Qiao
J. Fungi 2025, 11(10), 736; https://doi.org/10.3390/jof11100736 (registering DOI) - 13 Oct 2025
Abstract
The nematode-trapping fungus (NTF) Arthrobotrys oligospora (A. oligospora) is a promising biocontrol agent, but the transcriptional regulators governing its predation remain poorly understood. Here, we demonstrated that the APSES transcription factor AoMbp1 is a master regulator of its development and stress [...] Read more.
The nematode-trapping fungus (NTF) Arthrobotrys oligospora (A. oligospora) is a promising biocontrol agent, but the transcriptional regulators governing its predation remain poorly understood. Here, we demonstrated that the APSES transcription factor AoMbp1 is a master regulator of its development and stress adaptation. Deletion of AoMbp1 severely impaired mycelial growth, conidiation, trap formation, and tolerance to oxidative and osmotic stresses. Transcriptome analysis revealed that these defects were associated with the widespread downregulation of genes, including those within the MAPK signaling pathway. Crucially, we showed that AoMbp1 directly binds to the promoter of AoSho1, a key upstream sensor of the MAPK cascade, and activates its expression. This finding establishes a direct AoMbp1-AoSho1 regulatory axis controlling trap morphogenesis and environmental adaptation. Our study provides novel mechanistic insights into the regulation of nematode trapping and identifies a potential target for enhancing the efficacy of A. oligospora as a biocontrol agent. Full article
(This article belongs to the Special Issue Stress Research in Filamentous Fungi and Yeasts)
28 pages, 47363 KB  
Article
Spatial–Temporal Evolution and Influencing Factors of Land-Use Carbon Emissions: A Case Study of Jiangxi Province
by Tengfei Zhao, Xian Zhou, Zhiyu Jian, Jianlin Zhu, Mengba Liu and Shiping Yin
Appl. Sci. 2025, 15(20), 10986; https://doi.org/10.3390/app152010986 - 13 Oct 2025
Abstract
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon [...] Read more.
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon emissions is of crucial theoretical significance for achieving “dual carbon” goals and mitigating global climate change. Based on the land-use change data of Jiangxi Province, this study explored the Spatial–temporal relationship between land-use carbon emissions and land-use changes in Jiangxi Province from 2000 to 2020 using a model of land-use dynamic degrees, a model of land-use transfer matrices, and the IPCC carbon emission accounting model. In this study, the factors influencing changes in land-use carbon emissions were comprehensively analyzed using an LMDI model and the Tapio decoupling model. The results indicated that: (1) Jiangxi Province’s land-use changes show a “two-increase, four-decrease” trend, with construction land and unused land experiencing the most significant shifts, while water, grassland, cropland, and forestland changes stayed near 1%. (2) Net land-use carbon emissions exhibit a rapid then gradual increase, with higher emissions in the north/south and lower levels in central regions. While overall land-use carbon emission intensity is declining, per capita emissions continue to rise. (3) Land-use carbon emission changes are primarily driven by emission intensity, land-use structure, efficiency, and economic level. In Jiangxi, economic growth mainly increases land-use carbon emissions, while land-use efficiency enhancement counters this trend. Jiangxi Province shows weak land-use carbon emission–economic growth decoupling, with land-use carbon emissions rising more slowly than economic growth. This study not only provides a typical case analysis and methodological framework for understanding the carbon emission effects of human–land relationships in rapidly urbanizing regions but also offers a specific scientific basis and policy insights for Jiangxi Province and other similar regions to formulate differentiated territorial spatial planning, promote ecological protection and restoration, and achieve green and low-carbon development pathways under the “dual carbon” goals. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

12 pages, 1285 KB  
Article
Endoplasmic Reticulum Stress Drives VEGF Gene Expression in Monocytic Cells
by Fatemah Bahman, Taha Nadeem, Abdulrahman Alayyaf, Ashraf Al Madhoun, Fahd Al-Mulla, Sardar Sindhu and Rasheed Ahmad
Curr. Issues Mol. Biol. 2025, 47(10), 839; https://doi.org/10.3390/cimb47100839 (registering DOI) - 13 Oct 2025
Abstract
Obesity is characterized by chronic low-grade inflammation and oxidative stress, conditions that disrupt metabolic homeostasis and promote vascular endothelial growth factor (VEGF) expression. While hypoxia and fatty acid-induced oxidative stress are known regulators of VEGF, the contribution of endoplasmic reticulum (ER) stress in [...] Read more.
Obesity is characterized by chronic low-grade inflammation and oxidative stress, conditions that disrupt metabolic homeostasis and promote vascular endothelial growth factor (VEGF) expression. While hypoxia and fatty acid-induced oxidative stress are known regulators of VEGF, the contribution of endoplasmic reticulum (ER) stress in monocytic cells remains unclear. In this study, we investigated the interplay between ER stress and metabolic stress in regulating VEGF expression using THP-1 monocytic cells. Metabolic stress was induced by palmitic acid (PA) and ER stress by thapsigargin (TG). Co-treatment with PA and TG significantly increased VEGF mRNA and protein levels compared to PA alone. This effect was accompanied by enhanced reactive oxygen species (ROS) production and upregulation of ER stress markers, including CHOP, ATF6, and IRE1. Pretreatment with the antioxidant curcumin markedly reduced VEGF expression and ROS levels, indicating a ROS-dependent mechanism. Additionally, PA+TG co-treatment elevated transcripts of antioxidant defense genes such as SOD2 and NRF2, suggesting a compensatory cellular response to oxidative stress. These findings demonstrate that ER stress amplifies VEGF induction in monocytic cells under lipotoxic conditions through ROS-mediated pathways, highlighting a potential mechanism linking metabolic stress, inflammation, and angiogenesis in obesity-related disorders. Full article
(This article belongs to the Collection Molecular Mechanisms in Human Diseases)
Show Figures

Figure 1

Back to TopTop