Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (493)

Search Parameters:
Keywords = props

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2476 KB  
Article
Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process
by Magdalena Kręcisz, Marta Klemens, Joanna Kolniak-Ostek, Bogdan Stępień, Maciej Combrzyński and Aleks Latański
Molecules 2025, 30(17), 3563; https://doi.org/10.3390/molecules30173563 (registering DOI) - 30 Aug 2025
Abstract
The aim of the study was to use vacuum impregnation (VI) with onion and beetroot juices as a pre-treatment before drying to develop innovative dried kohlrabi products. Two modern drying techniques were used: freeze-drying (FD) and vacuum drying (VD). The physicochemical properties were [...] Read more.
The aim of the study was to use vacuum impregnation (VI) with onion and beetroot juices as a pre-treatment before drying to develop innovative dried kohlrabi products. Two modern drying techniques were used: freeze-drying (FD) and vacuum drying (VD). The physicochemical properties were determined, including color, water activity, dry matter, density, volumetric gel index, texture, antioxidant capacity, total phenolic content (TPC), and volatile organic compounds (VOCs). It was shown that vacuum impregnation reduced the color lightness and springiness of kohlrabi. In addition, vegetables after VI showed an increase in dry matter, water activity, bulk density, volume gel index, color attributes a* and b*, color difference, hardness, and chewiness. Furthermore, the pre-treatment allowed for the introduction of additional VOCs characteristic of onions (1-Heptene, 2-methyl-(19.81%), Pentyl formate (19.81%), and 4-(Methylthio)butyl isothiocyanate (18.22%) in kohlrabi with onion juice: dimethyl trisulfide, methyl prop(en)yl disulfide, and 3,5-diethyl-1,2,4-trithiolane) and beetroot (dimethyl trisulfide), myrcene. The vacuum impregnation process significantly increased antioxidant capacity and total polyphenol content compared to raw samples. The results of dry weight, water activity, density, TPC, antioxidant capacity and texture in the case of freeze-dried products confirm that FD is a more advantageous method. In addition, freeze-drying allowed for significant preservation of volatile compounds and the color of kohlrabi. The results indicate the potential of VI as a method for modifying the properties of kohlrabi and producing functional and innovative dried products. Full article
Show Figures

Figure 1

22 pages, 2904 KB  
Article
Biochar and Natural Antioxidants as Components of Eco-Friendly Elastomer Composites
by Justyna Miedzianowska-Masłowska, Kalina Joanna Kaczmarek and Marcin Masłowski
Polymers 2025, 17(17), 2351; https://doi.org/10.3390/polym17172351 - 29 Aug 2025
Abstract
Modern trends in advanced material design increasingly emphasize sustainability and the use of naturally derived resources. One promising approach involves replacing synthetic additives with natural compounds that exhibit stabilizing properties. The aim of this study was to evaluate the effects of selected natural [...] Read more.
Modern trends in advanced material design increasingly emphasize sustainability and the use of naturally derived resources. One promising approach involves replacing synthetic additives with natural compounds that exhibit stabilizing properties. The aim of this study was to evaluate the effects of selected natural auxiliary substances—thymol (2-isopropyl-5-methylphenol), quercetin (3,3,4,5,7-pentahydroxyflavone) and caffeic acid (3-(3,4-dihydroxyphenyl)prop-2-enoic acid)—on the properties of elastomeric composites based on natural rubber. Biochar was used as the filler in the composites, serving as an eco-friendly alternative to conventional carbon black. The evaluation included measurements of crosslink density, hardness, mechanical properties and microstructural analysis of the resulting materials. The samples were also subjected to accelerated aging under thermo-oxidative conditions and UV radiation to assess their resistance to degradation. For comparison, the commonly used synthetic antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) was also analyzed. The results enabled the assessment of the potential of natural additives as environmentally friendly stabilizers in elastomeric systems, with respect to their effectiveness and impact on material durability. Full article
(This article belongs to the Special Issue Advances in Rubber Composites and Recovered Waste Rubber)
18 pages, 1328 KB  
Article
The Magnitude of Stress in the Prop Depending on Its Manual Tightening
by Milan Švolík, Peter Makýš, Patrik Šťastný, Ján Hlina and Marek Ďubek
Buildings 2025, 15(16), 2957; https://doi.org/10.3390/buildings15162957 - 20 Aug 2025
Viewed by 222
Abstract
Ensuring the stability of monolithic concrete slabs during construction represents a crucial safety challenge in monolithic reinforced concrete buildings. Theoretical models and structural analyses often assume ideal conditions of supporting props. However, significant deviations occur in practice due to variations in technical condition [...] Read more.
Ensuring the stability of monolithic concrete slabs during construction represents a crucial safety challenge in monolithic reinforced concrete buildings. Theoretical models and structural analyses often assume ideal conditions of supporting props. However, significant deviations occur in practice due to variations in technical condition and installation methods. This study investigates the magnitude of prestressing forces generated in adjustable telescopic steel props depending on manual tightening and hammer blows. Experimental measurements were conducted on different types of props compliant with EN 1065, including both new and worn specimens, to simulate real on-site conditions. The influence of worker body weight was also analyzed. The results confirmed that the technical condition of the prop is the decisive factor affecting the level of prestress. Props in poor condition achieved substantially lower and inconsistent prestressing forces, while new props subjected to five hammer blows reached maximum values up to 13.16 kN. This difference can significantly influence static calculations for slab construction. Contrary to expectations, the influence of worker body weight was not statistically significant; instead, the dominant role was played by installation technique and the accuracy of hammer blows. The findings contribute to the optimization of safety guidelines and the improvement of calculation models for temporary support systems in monolithic construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

2 pages, 991 KB  
Correction
Correction: Wang et al. Antiproliferative and Tubulin-Destabilising Effects of 3-(Prop-1-en-2-yl)azetidin-2-Ones and Related Compounds in MCF-7 and MDA-MB-231 Breast Cancer Cells. Pharmaceuticals 2023, 16, 1000
by Shu Wang, Azizah M. Malebari, Thomas F. Greene, Shubhangi Kandwal, Darren Fayne, Seema M. Nathwani, Daniela M. Zisterer, Brendan Twamley, Niamh M. O’Boyle and Mary J. Meegan
Pharmaceuticals 2025, 18(8), 1218; https://doi.org/10.3390/ph18081218 - 19 Aug 2025
Viewed by 237
Abstract
In the original publication [...] Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 9

22 pages, 3484 KB  
Article
Investigation of the Mixed Super-Early-Strength Agent of Mechanical and Hydration Properties of Concrete
by Huanqin Liu, Nuoqi Shi, Zhifa Yu, Yonglin Zhu and Xu Fu
Coatings 2025, 15(8), 960; https://doi.org/10.3390/coatings15080960 - 18 Aug 2025
Viewed by 281
Abstract
This paper discusses the potential of adding a self-made super-early-strength agent to produce quick-setting, quick-hardening, and high-strength concrete. A super-early-strength agent is prepared by mixing triethanolamine (TEA), aluminum sulfate (Al2(SO4)3·18H2O), formic acid (HCOOH), and sodium [...] Read more.
This paper discusses the potential of adding a self-made super-early-strength agent to produce quick-setting, quick-hardening, and high-strength concrete. A super-early-strength agent is prepared by mixing triethanolamine (TEA), aluminum sulfate (Al2(SO4)3·18H2O), formic acid (HCOOH), and sodium fluoride (NaF) with a water-reducing agent in different proportions. In this paper, the effects of super-early-strength agent ratio and dosage, water–binder ratio, silica fume content, and cementitious material content on the setting time and compressive strength of high-strength concrete were studied. The hydration characteristics were evaluated by X-ray diffraction (XRD) and TG-DSC thermal analysis. The results show that the high-strength concrete prepared by 42.5R ordinary Portland cement mixed with appropriate amount of silica fume and self-made super-early-strength agent has a compressive strength of 10 MPa in 6 h, a compressive strength of 40 MPa in 1 day, a compressive strength of not less than 80 MPa in 28 days, and a compressive strength of not shrinking in 180 days. Using conventional raw materials and general process methods, the concrete prepared according to the preparation method of this experiment can significantly shorten the setting time and improve the compressive strength. However, it is difficult to form concrete when the amount of super-early-strength agent is too large. Nevertheless, this study provides a theoretical basis for large-scale and high-value utilization of the potential of super-early-strength agents and development to improve efficiency. At the same time, it provides a reference for the application of coating technology in rapid repair engineering. Full article
Show Figures

Graphical abstract

18 pages, 5838 KB  
Article
Experimental Study on Effective Propping of Multi-Level Fractures Using Micro-Proppants
by Xiao Sun, Jingfu Mu, Xing Guo, Bo Cao, Tang Tang and Tao Zhang
Processes 2025, 13(8), 2503; https://doi.org/10.3390/pr13082503 - 8 Aug 2025
Viewed by 319
Abstract
In deep shale gas fracturing, the narrow width of micro fractures presents a challenge for conventional proppants (40/70 mesh, 70/140 mesh), which often fail to enter branch fractures, resulting in inadequate effective support volume. To address this, a high-efficiency propping strategy is proposed [...] Read more.
In deep shale gas fracturing, the narrow width of micro fractures presents a challenge for conventional proppants (40/70 mesh, 70/140 mesh), which often fail to enter branch fractures, resulting in inadequate effective support volume. To address this, a high-efficiency propping strategy is proposed based on the hybrid use of micro-proppants and conventional proppants. Utilizing a proppant transport experiment device, the effects of proppant size ratios and injection timing on proppant distribution were investigated to determine the optimal design parameters. The results indicate that the 200/400 mesh micro-proppant can effectively enter the distal micro fractures, thereby mitigating the problem of the non-uniform distribution of the proppant within the fracture network. To ensure effective propping of secondary fractures, the optimal pumping sequence is to inject quartz sand first, followed by ceramic proppants. The recommended ratio of 70/140 mesh quartz sand to 40/70 mesh ceramic proppants is 7:3. Additionally, for blended injection, the optimal mixing ratio of 70/140 mesh quartz sand to micro-proppant is 8:2. Field trials at the L-X1 well in the LZ block demonstrate that this strategy significantly boosts post-fracturing production, with test yields increasing 2.4 to 4 times. Full article
Show Figures

Figure 1

23 pages, 3665 KB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Viewed by 431
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

18 pages, 10032 KB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 366
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

13 pages, 1486 KB  
Article
Evaluation of Miscible Gas Injection Strategies for Enhanced Oil Recovery in High-Salinity Reservoirs
by Mohamed Metwally and Emmanuel Gyimah
Processes 2025, 13(8), 2429; https://doi.org/10.3390/pr13082429 - 31 Jul 2025
Viewed by 386
Abstract
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios [...] Read more.
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios were simulated to assess phase behavior, miscibility, and swelling factors. The results indicate that carbon dioxide (CO2) and enriched separator gas offer the most technically and economically viable options, with CO2 demonstrating superior swelling performance and lower miscibility pressure requirements. The findings underscore the potential of CO2-EOR as a sustainable and effective recovery method in pressure-depleted, high-salinity environments. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

33 pages, 6092 KB  
Article
3D Reconstruction of Unrealised Monumental Heritage and Its Impact on Gallery Experience
by Jure Ahtik, Anja Škerjanc, Helena Gabrijelčič Tomc and Tanja Nuša Kočevar
Buildings 2025, 15(15), 2632; https://doi.org/10.3390/buildings15152632 - 25 Jul 2025
Viewed by 330
Abstract
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D [...] Read more.
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D reconstructed monument in the exhibition “Plečnik and the Sacred” was analysed. Using the available references and interpretative approaches, a digital and 3D-printed reconstruction was created that retains Plečnik’s architectural style. The experimental phase included a detailed interpretation of the studied references, 3D modelling, 3D printing, exhibition and experience analysis. The dimensions of the finished 3D-printed model are 52.80 × 55.21 × 44.60 cm. It was produced using stereolithography (SLA) for figurative elements and fused deposition modelling (FDM) for architectural components. The reconstruction was evaluated using participant testing, including semantic differential analysis, comparative studies, and knowledge-based questionnaires. The results showed that architectural elements were reconstructed with an average similarity score of 1.97 out of 5. Statues followed with a score of 1.81, and props, though detailed, met audience expectations, scoring 1.61. Clothing received the lowest score of 1.40. This research emphasises the importance of a hypothetical digital 3D reconstruction of never constructed monument for broader understanding of Plečnik’s legacy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 2567 KB  
Article
Optimization and Characterization of Bioactive Metabolites from Cave-Derived Rhodococcus jialingiae C1
by Muhammad Rafiq, Umaira Bugti, Muhammad Hayat, Wasim Sajjad, Imran Ali Sani, Nazeer Ahmed, Noor Hassan, Yanyan Wang and Yingqian Kang
Biomolecules 2025, 15(8), 1071; https://doi.org/10.3390/biom15081071 - 24 Jul 2025
Viewed by 346
Abstract
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits [...] Read more.
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits prominent antibacterial activity against multidrug-resistant pathogens (MDR), including Escherichia coli, Staphylococcus aureus, and Micrococcus luteus. It also demonstrates substantial antioxidant activity, with 71% and 58.39% DPPH radical scavenging. Optimization of physicochemical conditions, such as media, pH, temperature, and nitrogen and carbon sources and concentrations substantially enhanced both biomass and metabolite yields. Optimal conditions comprise specialized media, a pH of 7, a temperature of 30 °C, peptone (1.0 g/L) as the nitrogen source, and glucose (0.5 g/L) as the carbon source. HPLC and QTOF-MS analyses uncovered numerous metabolites, including a phenolic compound, 2-[(E)-3-hydroxy-3-(4-methoxyphenyl) prop-2-enoyl]-4-methoxyphenolate, Streptolactam C, Puromycin, and a putative aromatic polyketide highlighting the C1 isolate chemical. Remarkably, one compound (C14H36N7) demonstrated a special molecular profile, signifying structural novelty and warranting further characterization by techniques such as 1H and 13C NMR. These findings highlight the biotechnological capacity of the C1 isolate as a source of novel antimicrobials and antioxidants, linking environmental adaptation to metabolic potential and supporting natural product discovery pipelines against antibiotic resistance. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

14 pages, 2797 KB  
Article
Homo- Versus Hetero- [2+2+2] Rhodium-Catalyzed Cycloaddition: Effect of a Self-Assembled Capsule on the Catalytic Outcome
by Maxime Steinmetz and David Sémeril
Molecules 2025, 30(14), 3052; https://doi.org/10.3390/molecules30143052 - 21 Jul 2025
Viewed by 333
Abstract
The cationic chloro-P-{[4-(diphenylphosphanyl)phenyl]-N,N-dimethylmethanammonio(norbornadiene)rhodium(I) complex was encapsulated inside a self-assembled hexameric capsule. This capsule was obtained through a reaction involving 2,8,14,20-tetra-undecyl-resorcin[4]arene and water in chloroform. The formation of an inclusion complex was deduced from a combination of spectral [...] Read more.
The cationic chloro-P-{[4-(diphenylphosphanyl)phenyl]-N,N-dimethylmethanammonio(norbornadiene)rhodium(I) complex was encapsulated inside a self-assembled hexameric capsule. This capsule was obtained through a reaction involving 2,8,14,20-tetra-undecyl-resorcin[4]arene and water in chloroform. The formation of an inclusion complex was deduced from a combination of spectral measurements (UV-visible spectroscopy, 1H, 31P{1H} NMR and DOSY). The rhodium complex was evaluated in the [2+2+2] cycloaddition between N,N-dipropargyl-p-toluenesulfonamide and arylacetylene derivatives. In the presence of two equivalents of arylacetylenes in water-saturated chloroform at 60 °C for 24 h, the 4-methyl-N-(prop-2-yn-1-yl)-N-((2-tosylisoindolin-5-yl)methyl)benzenesulfonamide, the homocycloaddition product of 1,6-diyne is predominantly formed. In the presence of the supramolecular capsule, a selectivity inversion in favor of 5-aryl-2-tosylisoindoline is observed, with heterocycloaddition products formed in proportions between 53 and 69%. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

18 pages, 4232 KB  
Article
Experimental Investigation on the Influence of Proppant Crushing on the Propped Fracture Conductivity
by Wen Wang, Desheng Zhou, Tuan Gu, Yanhua Yan, Xin Yang and Shucan Xu
Processes 2025, 13(7), 2166; https://doi.org/10.3390/pr13072166 - 7 Jul 2025
Viewed by 301
Abstract
Hydraulic fracturing is a key stimulation technique for enhancing the productivity of tight sandstone reservoirs, with the conductivity of propped fractures serving as a critical parameter for evaluating stimulation effectiveness. This study investigated the conductivity behavior of propped fractures through laboratory experiments using [...] Read more.
Hydraulic fracturing is a key stimulation technique for enhancing the productivity of tight sandstone reservoirs, with the conductivity of propped fractures serving as a critical parameter for evaluating stimulation effectiveness. This study investigated the conductivity behavior of propped fractures through laboratory experiments using commonly used oilfield proppants. The effects of proppant size, type, concentration, and proppant combination on fracture conductivity were systematically evaluated. Results show that at low closure stress, conductivity differences among various proppant types are negligible. However, under high closure stress, proppants with lower compressive strength exhibit significantly higher crushing rates, resulting in reduced conductivity compared to high-strength proppants. In mixtures of silica sand and ceramic proppant proppants, increasing the ceramic content lowers the overall crushing rate and mitigates conductivity degradation. Additionally, blending proppants of different sizes under high stress reduces breakage, with finer particles contributing to this effect. Higher proppant concentrations also lead to lower crushing rates and improved fracture conductivity. This work provides valuable insights into optimizing proppant selection and design for reservoir stimulation and oil and gas recovery. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 1022 KB  
Article
Fluorinated Analogs of Organosulfur Compounds from Garlic (Allium sativum): Synthesis and Chemistry
by Eric Block, Benjamin Bechand, Sivaji Gundala, Abith Vattekkatte and Kai Wang
Molecules 2025, 30(13), 2841; https://doi.org/10.3390/molecules30132841 - 2 Jul 2025
Viewed by 537
Abstract
We report the first syntheses—from commercially available 3-chloro-2-fluoroprop-1-ene (9)—of key garlic-derived compounds containing sp2-fluorine. We also report synthesis of fluoro-5,6-dihydrothiopyrans by trapping 2-fluorothioacrolein (15). Thus, difluoroallicin (12, S-(2-fluoro-2-propenyl) 2-fluoroprop-2-ene-1-sulfinothioate) is prepared by peracid oxidation [...] Read more.
We report the first syntheses—from commercially available 3-chloro-2-fluoroprop-1-ene (9)—of key garlic-derived compounds containing sp2-fluorine. We also report synthesis of fluoro-5,6-dihydrothiopyrans by trapping 2-fluorothioacrolein (15). Thus, difluoroallicin (12, S-(2-fluoro-2-propenyl) 2-fluoroprop-2-ene-1-sulfinothioate) is prepared by peracid oxidation of 1,2-bis(2-fluoro-2-propenyl)disulfane (11). S-2-Fluoro-2-propenyl-l-cysteine (2-fluorodeoxyalliin, 13), synthesized from cysteine and characterized by X-ray crystallography, is oxidized to its S-oxide, 2-fluoroalliin (22). The latter, with alliinase-containing powdered fresh garlic, gives a mixture of 12, allicin (1), and isomers of monofluoroallicin (23), indicating that 22 serves as a substrate for garlic alliinase. Upon heating, 12 generates transient 15, which dimerizes giving difluoro vinyl dithiins 6 and 7. Ethyl acrylate trapping of 15 affords 5- and 6-substituted 3-fluoro-5,6-dihydro-4H-thiopyrans (19 and 20). In 1,1,1,3,3,3-hexafluoro-2-propanol (HEFP) as solvent, 12 is converted into trifluoroajoene ((E,Z)-1-(2-fluoro-3-((2-fluoro-2-propenyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoro-2-propenyl)disulfane; 18). Liquid sulfur converts 11 to a (CH2=CFCH2)2Sn mixture (n = 4–15), characterized by UPLC-(Ag+)-coordination ion spray-mass spectrometry. Full article
Show Figures

Figure 1

20 pages, 2332 KB  
Article
Photophysical Properties and Protein Binding Studies of Piperazine-Substituted Anthracene-BODIPY Dyads for Antimicrobial Photodynamic Therapy
by Stephen O’Sullivan, Leila Tabrizi, Kaja Turzańska, Ian P. Clark, Deirdre Fitzgerald-Hughes and Mary T. Pryce
Molecules 2025, 30(13), 2727; https://doi.org/10.3390/molecules30132727 - 25 Jun 2025
Viewed by 885
Abstract
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial [...] Read more.
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial photodynamic therapy. BDP-1 exhibits absorption and emission maxima at 507 nm and 516 nm, respectively, with a Stokes shift of 344 cm−1 in dichloromethane (DCM), characteristic of unsubstituted BODIPYs. In contrast, BDP-2 undergoes a red-shift in the absorption maximum to 552 nm (Stokes shift of 633 cm−1), which is attributed to the extended conjugation from the introduction of the alkyne groups. Time-resolved infrared spectroscopy confirmed efficient spin-orbit charge transfer intersystem crossing, and nanosecond transient absorption studies confirmed the formation of a long-lived triplet state for BDP-2 (up to 138 µs in MeCN). A binding constant (Kb) of 9.6 × 104 M−1 was obtained for BDP-2 when titrated with bovine serum albumin (BSA), which is higher than comparable BODIPY derivatives. BDP-2 displayed improved hemocompatibility compared to BDP-1 (<5% haemolysis of human erythrocytes up to 200 μg·mL−1). Antimicrobial activity of BDP-1 and BDP-2 was most potent when irradiated at 370 nm compared to the other wavelengths employed. However, BDP-2 did not retain the potent (6 log) and rapid (within 15 min) eradication of Staphylococcus aureus achieved by BDP-1 under irradiation at 370 nm. These findings demonstrate the rational design of BDP-2 as a biocompatible, and heavy-atom-free BODIPY offering promise for targeted antimicrobial photodynamic therapeutic applications. Full article
(This article belongs to the Special Issue BODIPYs: State of the Art and Future Perspectives)
Show Figures

Graphical abstract

Back to TopTop