Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,200)

Search Parameters:
Keywords = public-use buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2960 KB  
Article
Quantifying and Optimizing Vegetation Carbon Storage in Building-Attached Green Spaces for Sustainable Urban Development
by Wenjun Peng, Xinqiang Zou, Yanyan Huang and Hui Li
Sustainability 2025, 17(17), 8088; https://doi.org/10.3390/su17178088 (registering DOI) - 8 Sep 2025
Abstract
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public [...] Read more.
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public building in Wuhan, China, using field surveys and species-specific allometric equations. Total carbon storage reached 19,873.43 kg C, dominated by the green square (84.98%), followed by a roof garden (12.29%) and sunken courtyard (2.72%). Regression analysis revealed strong correlations between carbon storage and morphological traits, with diameter at breast height (DBH) showing the highest predictive power for trees (r = 0.976 for evergreen, 0.821 for deciduous), while crown diameter (CD) best predicted shrub carbon storage (r = 0.833). Plant configuration optimization strategies were developed through correlation analysis and ecological principles, including replacing low carbon sequestering species with high carbon native species, enhancing vertical stratification, and implementing multi-layered planting. These strategies increased total carbon storage by 131.5% to 45,964.00 kg C, with carbon density rising from 2.00 kg C∙m−2 to 4.63 kg C∙m−2. The findings provide a quantitative framework and practical strategies for integrating carbon management into the design of building-attached green spaces, supporting climate-responsive urban planning and advancing sustainable development goals. Full article
Show Figures

Figure 1

1242 KB  
Review
Perceptions of Multi-Story Wood Buildings: A Scoping Review
by Arati Paudel, Pipiet Larasatie, Sagar Godar Chhetri, Elena Rubino and Kevin Boston
Buildings 2025, 15(17), 3246; https://doi.org/10.3390/buildings15173246 (registering DOI) - 8 Sep 2025
Abstract
The construction sector contributes significantly to global greenhouse gases, accounting for 39% of worldwide emissions. Multi-story wood buildings (MSWBs) present a sustainable alternative to traditional emissions-intensive construction materials like concrete and steel. However, only a few studies have investigated how potential customers perceive [...] Read more.
The construction sector contributes significantly to global greenhouse gases, accounting for 39% of worldwide emissions. Multi-story wood buildings (MSWBs) present a sustainable alternative to traditional emissions-intensive construction materials like concrete and steel. However, only a few studies have investigated how potential customers perceive MSWBs, which influences their acceptance and demand. This study uses a concept-driven scoping review to explore perceptions and concerns about living in MSWBs and to understand barriers to their adoption. Through a narrative synthesis of 20 peer-reviewed articles, this study uncovered five key themes: environmental sustainability, fire safety, human well-being, structural durability, and costs. These findings highlight opportunities and challenges for MSWBs’ market growth and inform future communication strategies to enhance public acceptance and promote sustainable construction and the built environment. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

6 pages, 1077 KB  
Proceeding Paper
Advancing Effective Climate Change Education by Using Remote Sensing Technologies: Leveraging the Research Infrastructure of the LAP/AUTh in Greece
by Konstantinos Michailidis, Katerina Garane, Chrysanthi Topaloglou and Dimitris Balis
Environ. Earth Sci. Proc. 2025, 35(1), 3; https://doi.org/10.3390/eesp2025035003 - 8 Sep 2025
Abstract
Raising awareness and understanding of climate change among younger generations is crucial for building a sustainable future. The Laboratory of Atmospheric Physics (LAP) within the School of Physics of the Aristotle University of Thessaloniki (AUTh) supports this goal by developing innovative educational activities [...] Read more.
Raising awareness and understanding of climate change among younger generations is crucial for building a sustainable future. The Laboratory of Atmospheric Physics (LAP) within the School of Physics of the Aristotle University of Thessaloniki (AUTh) supports this goal by developing innovative educational activities centered on atmospheric processes and climate science. Drawing on its expertise in atmospheric monitoring and remote sensing, LAP makes complex scientific concepts accessible to school students through interactive workshops, hands-on experiments, and data-driven projects using real-time environmental measurements. By integrating research-grade tools and open-access satellite data from ESA, NASA, and EUMETSAT, LAP bridges academic research and public understanding. These activities foster critical thinking, environmental responsibility, and student engagement with real-world climate monitoring practices. Moreover, LAP contributes to the ACTRIS network, offering high-quality data and expertise at both national and European levels. Through these efforts, LAP serves as a hub for climate education, turning awareness into action and inspiring future climate-conscious citizens. Full article
Show Figures

Figure 1

22 pages, 19940 KB  
Article
Augmented Reality in Review Processes for Building Authorities: A Case Study in Vienna
by Alexander Gerger, Harald Urban, Konstantin Höbart, Gabriel Pelikan and Christian Schranz
Buildings 2025, 15(17), 3228; https://doi.org/10.3390/buildings15173228 - 8 Sep 2025
Abstract
The digital transformation of the construction industry is still lagging due to its incomplete implementation throughout the entire building lifecycle. One stakeholder in particular has been largely overlooked thus far: public administration. This study explores the potential integration of augmented reality (AR) into [...] Read more.
The digital transformation of the construction industry is still lagging due to its incomplete implementation throughout the entire building lifecycle. One stakeholder in particular has been largely overlooked thus far: public administration. This study explores the potential integration of augmented reality (AR) into the processes of building authorities, with a particular focus on the review part of the permissions process, taking the City of Vienna as an example. As part of the EU-funded BRISE-Vienna project, an AR platform was developed and tested and an AR application was designed to enhance the transparency, stakeholder communication, and efficiency throughout the process. This study compares the proposed AR-based review process with the traditional plan-based approach, assessing both hard and soft factors. To this end, the durations of the individual process steps were measured, with a particular focus on the time spent by the officers (as a hard factor). In addition, qualitative surveys were conducted to gather the subjective impressions of the test participants (as soft factors). The key findings were a reduction in the officers’ workloads and an improvement in spatial understanding. While the overall review time remained similar, the use of AR reduced officers’ workload by over 40%. Additionally, the test participants stated that AR improved their spatial understanding and alleviated the time pressure within the process. This case study demonstrates the potential of AR in the permissions process and could serve as a model for other cities and countries. Full article
Show Figures

Figure 1

23 pages, 7556 KB  
Article
On-Site Monitoring and a Hybrid Prediction Method for Noise Impact on Sensitive Buildings near Urban Rail Transit
by Yanmei Cao, Yefan Geng, Jianguo Chen and Jiangchuan Ni
Buildings 2025, 15(17), 3227; https://doi.org/10.3390/buildings15173227 - 7 Sep 2025
Abstract
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate [...] Read more.
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate prediction of noise levels adjacent to structures through traditional experimental or empirical formula-based methods is challenging. In this paper, on-site multi-dimensional noise monitoring of the noise source affecting the sensitive buildings was first carried out, and a hybrid prediction method combining normative formulas, numerical simulations, and experimental research is proposed and validated. This approach effectively addresses the shortcomings of traditional prediction methods in terms of source strength determination, propagation path distribution, and accuracy of results. The results show that, while predicting or assessing the noise impact on sensitive buildings and interior residents, it is important to properly consider the impact of background noise (such as road traffic) as well as vibration radiation noise of bridge structures. The predicted results obtained by using this method closely match the measured results, with errors controlled within 3 dB(A). The noise prediction error in front of buildings is controlled within 2 dB(A), fully meeting the requirements for environmental noise assessment. Full article
Show Figures

Figure 1

18 pages, 3499 KB  
Article
Identification of Habitat Improvement Needs and Construction Strategies for Traditional Villages Based on the Kano Model—Taking 112 Villages in Northeastern Hubei Province, China, as an Example
by Liquan Xu, Yan Xu and Lei Yuan
Land 2025, 14(9), 1809; https://doi.org/10.3390/land14091809 - 5 Sep 2025
Viewed by 198
Abstract
To address the misalignment between conservation–development policies and villagers’ needs in traditional villages, this study identifies core demands through a questionnaire survey in 112 villages across three counties in Hubei Province, China. An evaluation system encompassing public facilities, infrastructure, exterior environment, interior environment, [...] Read more.
To address the misalignment between conservation–development policies and villagers’ needs in traditional villages, this study identifies core demands through a questionnaire survey in 112 villages across three counties in Hubei Province, China. An evaluation system encompassing public facilities, infrastructure, exterior environment, interior environment, and village culture (23 indicators) was analyzed using the Kano model and Better–Worse coefficients (211 valid questionnaires). Results reveal the primary needs ranking: village culture > exterior environment > interior environment > infrastructure > public services. Key findings show villagers prioritize traditional building conservation, cultural identity, and roof improvement, while certain public service investments (e.g., water supply, signage, education) yield lower satisfaction. Notably, villagers are indifferent to lighting improvements. This indicates a deviation from past government priorities and underscores the necessity of integrating villager perspectives into “top-down” decision-making for sustainable village development. The findings provide practical guidance for habitat improvement and precise policy formulation in Northeastern Hubei. Full article
Show Figures

Figure 1

26 pages, 5004 KB  
Article
Effectiveness of Modern Models Belonging to the YOLO and Vision Transformer Architectures in Dangerous Items Detection
by Zbigniew Omiotek
Electronics 2025, 14(17), 3540; https://doi.org/10.3390/electronics14173540 - 5 Sep 2025
Viewed by 294
Abstract
The effectiveness of recently developed tools for detecting dangerous items is overestimated due to the low quality of the datasets used to build the models. The main drawbacks of these datasets include the unrepresentative range of conditions in which the items are presented, [...] Read more.
The effectiveness of recently developed tools for detecting dangerous items is overestimated due to the low quality of the datasets used to build the models. The main drawbacks of these datasets include the unrepresentative range of conditions in which the items are presented, the limited number of classes representing items being detected, and the small number of instances of items belonging to individual classes. To fill the gap in this area, a comprehensive dataset dedicated to the detection of items most used in various acts of public security violations has been built. The dataset includes items such as a machete, knife, baseball bat, rifle, and gun, which are presented in varying quality and under different environmental conditions. The specificity of the constructed dataset allows for more reliable results, which give a better idea of the effectiveness of item detection in real-world conditions. The collected dataset was used to build and compare the effectiveness of modern models for detecting items belonging to the YOLO and Vision Transformer (ViT) architectures. Based on a comprehensive analysis of the results, taking into account accuracy and performance, it turned out that the best results were achieved by the YOLOv11m model, for which Recall = 88.2%, Precision = 89.6%, mAP@50 = 91.8%, mAP@50–95 = 73.7%, Inference time = 1.9 ms. The test results make it possible to recommend this model for use in public security monitoring systems aimed at detecting potentially dangerous items. Full article
(This article belongs to the Special Issue Convolutional Neural Networks and Vision Applications, 4th Edition)
Show Figures

Figure 1

26 pages, 5867 KB  
Article
High-Temperature Risk Assessment and Adaptive Strategy in Dalian Based on Refined Population Prediction Method
by Ziding Wang, Zekun Du, Fei Guo, Jing Dong and Hongchi Zhang
Sustainability 2025, 17(17), 7985; https://doi.org/10.3390/su17177985 - 4 Sep 2025
Viewed by 370
Abstract
Extremely high temperatures can severely impact urban livability and public health safety. However, risk assessments for high temperatures in cold-region cities remain inadequate. This study focuses on Dalian, a coastal city in northeastern China. Utilizing multi-source data, we established a population density prediction [...] Read more.
Extremely high temperatures can severely impact urban livability and public health safety. However, risk assessments for high temperatures in cold-region cities remain inadequate. This study focuses on Dalian, a coastal city in northeastern China. Utilizing multi-source data, we established a population density prediction model based on the random forest algorithm and a heat vulnerability index (HVI) framework following the “Exposure-Sensitivity-Adaptability” paradigm constructed using an indicator system method, thereby building a high-temperature risk assessment system suited for more refined research. The results indicate the following: (1) Strong positive correlations exist between nighttime light brightness (NL), Road Density (RD), the proportion of flat area (SLP), the land surface temperature (LST), and the population distribution density, with correlation coefficients reaching 0.963, 0.963, 0.956, and 0.954, respectively. (2) Significant disparities exist in the spatial distribution of different criterion layers within the study area. Areas characterized by high exposure, high sensitivity, and low adaptability account for 13.04%, 8.05%, and 21.44% of the total area, respectively, with exposure being the primary contributing factor to high-temperature risk. (3) Areas classified as high-risk or extremely high-risk for high temperatures constitute 31.57% of the study area. The spatial distribution exhibits a distinct pattern, decreasing gradually from east to west and from the coast inland. This study provides a valuable tool for decision-makers to propose targeted adaptation strategies and measures based on the assessment results, thereby better addressing the challenges posed by climate change-induced high-temperature risks and promoting sustainable urban development. Full article
Show Figures

Figure 1

16 pages, 4161 KB  
Brief Report
Preventing Frailty Through Healthy Environments: The Slovenian Systemic Pre-Frailty Project
by Anja Jutraž, Nina Pirnat and Branko Gabrovec
Buildings 2025, 15(17), 3182; https://doi.org/10.3390/buildings15173182 - 4 Sep 2025
Viewed by 189
Abstract
As society ages, there is a growing concern about the comfort and health of elderly people. Although populations around the world, including Slovenia, are rapidly aging, evidence that increasing longevity is being accompanied by an extended period of good health is scarce. An [...] Read more.
As society ages, there is a growing concern about the comfort and health of elderly people. Although populations around the world, including Slovenia, are rapidly aging, evidence that increasing longevity is being accompanied by an extended period of good health is scarce. An increasing number of older adults live with chronic diseases, functional limitations, or frailty. In 2025, Slovenia launched the project Systemic Approach to Frailty with a Focus on Pre-Frailty for Healthy and Hight-Quality Ageing, within the European Cohesion Policy Programme 2021–2027, aiming to address frailty through multidimensional and community-based interventions. In addition to presenting the project framework, this paper provides an analytical preliminary review of existing literature, critically reflecting on research gaps in the field. The main aim of this paper is to explore the possibilities for creating healthy living environments that support the prevention and management of frailty. The project’s core innovation lies in the integration of public health principles into urban planning and design through a structured, community-based approach and the use of the Living Environmental Assessment (OBO) Tool. This tool enables urban planners, municipalities, and local communities to collaboratively evaluate and co-design living environments (e.g., optimizing walkability, green space access, barrier-free design, and social amenities) to build resilience and independence among older adults. Designing inclusive, accessible, and health-promoting environments can help to prevent frailty and improve well-being across all age groups. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 3606 KB  
Article
Dual-Stream Attention-Enhanced Memory Networks for Video Anomaly Detection
by Weishan Gao, Xiaoyin Wang, Ye Wang and Xiaochuan Jing
Sensors 2025, 25(17), 5496; https://doi.org/10.3390/s25175496 - 4 Sep 2025
Viewed by 363
Abstract
Weakly supervised video anomaly detection (WSVAD) aims to identify unusual events using only video-level labels. However, current methods face several key challenges, including ineffective modelling of complex temporal dependencies, indistinct feature boundaries between visually similar normal and abnormal events, and high false alarm [...] Read more.
Weakly supervised video anomaly detection (WSVAD) aims to identify unusual events using only video-level labels. However, current methods face several key challenges, including ineffective modelling of complex temporal dependencies, indistinct feature boundaries between visually similar normal and abnormal events, and high false alarm rates caused by an inability to distinguish salient events from complex background noise. This paper proposes a novel method that systematically enhances feature representation and discrimination to address these challenges. The proposed method first builds robust temporal representations by employing a hierarchical multi-scale temporal encoder and a position-aware global relation network to capture both local and long-range dependencies. The core of this method is the dual-stream attention-enhanced memory network, which achieves precise discrimination by learning distinct normal and abnormal patterns via dual memory banks, while utilising bidirectional spatial attention to mitigate background noise and focus on salient events before memory querying. The models underwent a comprehensive evaluation utilising solely RGB features on two demanding public datasets, UCF-Crime and XD-Violence. The experimental findings indicate that the proposed method attains state-of-the-art performance, achieving 87.43% AUC on UCF-Crime and 85.51% AP on XD-Violence. This result demonstrates that the proposed “attention-guided prototype matching” paradigm effectively resolves the aforementioned challenges, enabling robust and precise anomaly detection. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 5594 KB  
Article
Analysis of Bifurcation and Stability in an Epidemic Model of HPV Infection and Cervical Cancer with Two Time Delays
by Mengyuan Hua and Tiansi Zhang
Axioms 2025, 14(9), 680; https://doi.org/10.3390/axioms14090680 - 3 Sep 2025
Viewed by 140
Abstract
Cervical cancer (CC), which continues to be a major public health concern that causes cancer deaths among women worldwide, is mostly caused by persistent human papillomavirus (HPV) infection. This study suggests a dual-delay model of HPV-C infection dynamics that takes into account both [...] Read more.
Cervical cancer (CC), which continues to be a major public health concern that causes cancer deaths among women worldwide, is mostly caused by persistent human papillomavirus (HPV) infection. This study suggests a dual-delay model of HPV-C infection dynamics that takes into account both cancerous delay and the immune response delay. We identify disease-free and diseased equilibria, investigate their local asymptotic stability, and show that the system is non-negative and bounded. We prove the global asymptotic stability of the equilibria by building Lyapunov functions and using the basic reproduction number R0, and look into the existence of Hopf bifurcations. Additionally, we use forward sensitivity analysis to determine important control parameters. Lastly, the theoretical results were confirmed by numerical simulations. The study demonstrates that time delays play a crucial role in viral transmission and carcinogenesis. The process from HPV infection to the formation of cervical cancer is more correctly simulated by this model, which offers a theoretical mathematical basis for researching the pathophysiology of cervical cancer and developing clinical prevention and control measures. Full article
Show Figures

Figure 1

23 pages, 4556 KB  
Article
Structural, Social, and Ecological Dimensions of Female Labor Force Participation: A Bayesian Analysis Across National Contexts
by Bediha Sahin
Land 2025, 14(9), 1793; https://doi.org/10.3390/land14091793 - 3 Sep 2025
Viewed by 351
Abstract
Although there are still significant inequalities, women’s labor force participation has increased in many parts of the world. These disparities are linked to socio-economic, territorial, and institutional conditions, such as access to land, quality of infrastructure, and the availability of decent work in [...] Read more.
Although there are still significant inequalities, women’s labor force participation has increased in many parts of the world. These disparities are linked to socio-economic, territorial, and institutional conditions, such as access to land, quality of infrastructure, and the availability of decent work in both urban and rural areas. To understand how these socio-economic and spatial factors interact with national economic and policy frameworks is essential for analyzing gender participation in work. In this study, we examine the structural, territorial, and socio-economic factors shaping female labor force participation in 49 countries between 2013 and 2022, covering Europe, Asia, Latin America, and Africa. We investigate the interaction between macroeconomic conditions, public investment in education, and spatial inequalities. In addition, we focus on how these factors work together within different institutional settings. The analysis also considers territorial aspects such as urban–rural differences, regional development issues, and land-related livelihoods. The data were collected from the World Bank’s World Development Indicators to build a balanced panel. We implemented a Bayesian hierarchical panel regression model to understand how economic, institutional, and spatial factors jointly influence women’s participation in the labor force across different national and regional contexts. For model specification, we used standardized predictors and country-level intercepts to allow the model to account for institutional differences. The results indicate that national income levels and female unemployment rates are the most important factors affecting participation. On the other hand, tertiary enrollment and public education spending have weaker or mixed effects. Notably, although more women now complete higher education, many, especially in non-OECD countries, still face barriers to entering formal employment. Furthermore, in many developing countries, women still encounter restricted access to formal and secure jobs, particularly in rural and less developed areas. These findings show that economic growth is not the only factor needed to achieve gender equality in the labor market. Sustainable progress requires plans that bring together labor reforms, better education, care services, and fair growth in all regions. It is also important to fix problems with land, close the gap between cities and villages, and address environmental challenges. By linking labor markets, education, and land-linked spatial constraints, the study informs SDGs 5 (Gender Equality), 8 (Decent Work and Economic Growth), and 10 (Reduced Inequalities). Full article
Show Figures

Figure 1

30 pages, 6860 KB  
Article
The Mashrabiya in Islamic Public Architecture: A Comparative Analysis of Forms and Meanings Across Different Contexts
by Silvia Mazzetto and Sabrina Noca
Heritage 2025, 8(9), 355; https://doi.org/10.3390/heritage8090355 - 2 Sep 2025
Viewed by 649
Abstract
The mashrabiya is a key element that characterizes Islamic architecture, and in recent years it has been reintroduced into public building designs, partially due to its strong symbolic significance. Focusing on the application of mashrabiyas in historical public buildings, this work aims to [...] Read more.
The mashrabiya is a key element that characterizes Islamic architecture, and in recent years it has been reintroduced into public building designs, partially due to its strong symbolic significance. Focusing on the application of mashrabiyas in historical public buildings, this work aims to contribute by examining the use of this architectural element in traditional Islamic public architecture. This area has received comparatively less attention in the existing literature, which predominantly focuses on residential applications. While the functions and applications of mashrabiyas in the residential context are well documented, their role within public structures remains less explored. This study investigates their functions in eight case studies from Egypt, Syria, Morocco, and India, spanning four public building types: mosques, Quranic schools, bimaristans, and caravanserais. The methodology considers the mashrabiya within four categories of public buildings in Islamic architecture across diverse geographical contexts, trying to understand possible unique characteristics in its form, material, and function. The choice of this method is based on the need to identify possible analogies or specific differences among the various examples of mashrabiya analyzed within their respective typologies. The results show that the mashrabiya in Islamic public buildings has transcended its functional aspects to hold a symbolic meaning in Islamic culture. Over the centuries, it has been a significant and constant presence in Islamic public buildings. The choice of materials—wood and stone—reflects geographical and technological influences; however, despite design variations, all refer to abstract geometric motifs central to Islamic decorative tradition. Full article
(This article belongs to the Section Architectural Heritage)
Show Figures

Figure 1

17 pages, 5226 KB  
Article
Impact of Grated Inlet Clogging on Urban Pluvial Flooding
by Beniamino Russo, Viviane Beiró, Pedro Luis Lopez-Julian and Alejandro Acero
Hydrology 2025, 12(9), 231; https://doi.org/10.3390/hydrology12090231 - 2 Sep 2025
Viewed by 307
Abstract
This study aims to analyse the effect of partially clogged inlets on the behaviour of urban drainage systems at the city scale, particularly regarding intercepted volumes and flood depths. The main challenges were to represent the inlet network in detail at a rather [...] Read more.
This study aims to analyse the effect of partially clogged inlets on the behaviour of urban drainage systems at the city scale, particularly regarding intercepted volumes and flood depths. The main challenges were to represent the inlet network in detail at a rather large scale and to avoid the effect of sewer network surcharging on the draining capacity of inlets. This goal has been achieved through a 1D/2D coupled hydraulic model of the whole urban drainage system in La Almunia de Doña Godina (Zaragoza, Spain). The model focuses on the interaction between grated drain inlets and the sewer network under partial clogging conditions. The model is fed with data obtained on field surveys. These surveys identified 948 inlets, classified into 43 types based on geometry and grouped into 7 categories for modelling purposes. Clogging patterns were derived from field observations or estimated using progressive clogging trends. The hydrological model combines a semi-distributed approach for micro-catchments (buildings and courtyards) and a distributed “rain-on-grid” approach for public spaces (streets, squares). The model assesses the impact of inlet clogging on network performance and surface flooding during four rainfall scenarios. Results include inlet interception volumes, flooded surface areas, and flow hydrographs intercepted by single inlets. Specifically, the reduction in intercepted volume ranged from approximately 7% under a mild inlet clogging condition to nearly 50% under severe clogging conditions. Also, the model results show the significant influence of the 2D mesh detail on flood depths. For instance, a mesh with high resolution and break lines representing streets curbs showed a 38% increase in urban areas with flood depths above 1 cm compared to a scenario with a lower-resolution 2D mesh and no curbs. The findings highlight how inlet clogging significantly affects the efficiency of urban drainage systems and increases the surface flood hazard. Further novelties of this work are the extent of the analysis (city scale) and the approach to improve the 2D mesh to assess flood depth. Full article
Show Figures

Graphical abstract

32 pages, 1433 KB  
Article
Aging in Place in Jordan: Assessing Home Modifications, Accessibility Barriers, and Cultural Constraints
by Majd Al-Homoud
Buildings 2025, 15(17), 3125; https://doi.org/10.3390/buildings15173125 - 1 Sep 2025
Viewed by 301
Abstract
Jordan’s aging population faces a critical challenge: a strong cultural preference for aging at home, rooted in Islamic ethics of familial care (birr al-wālidayn), conflicts with housing stock that is largely unsafe and inaccessible. This first national mixed-methods study examines the intersection of [...] Read more.
Jordan’s aging population faces a critical challenge: a strong cultural preference for aging at home, rooted in Islamic ethics of familial care (birr al-wālidayn), conflicts with housing stock that is largely unsafe and inaccessible. This first national mixed-methods study examines the intersection of home modifications, socio-economic barriers, and cultural constraints to aging in place. Data from 587 surveys and 35 interviews across seven governorates were analyzed using chi-square tests, linear regression, and thematic coding. Results indicate that while physical modifications significantly improve accessibility to key spaces like kitchens and reception areas (majlis) (χ2 = 341.86, p < 0.001), their adoption is severely limited. Socio-economic barriers are paramount, with 34% of households unable to afford the median modification cost of over $1500. Cultural resistance is equally critical; 22% of widows avoid modifications like grab bars to prevent the ‘medicalization’ of their home, prioritizing aesthetic and symbolic integrity over safety. The study reveals a significant gendered decision-making dynamic, with men controlling 72% of structural modifications (β = 0.27, p < 0.001). We conclude that effective policy must integrate universal design with Islamic care ethics. We propose three actionable recommendations: (1) mandating universal design in building codes (aligned with SDG 11), (2) establishing means-tested subsidy programs (aligned with SDG 10), and (3) launching public awareness campaigns co-led by faith leaders to reframe modifications as preserving dignity (karama) (aligned with SDG 3). This approach provides a model for other rapidly aging Middle Eastern societies facing similar cultural-infrastructural tensions. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop