Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = pulse detonation combustor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6729 KB  
Article
Experimental Study on Ignition and Pressure-Gain Achievement in Low-Vacuum Conditions for a Pulsed Detonation Combustor
by Andrei Vlad Cojocea, Mihnea Gall, George Ionuț Vrabie, Tudor Cuciuc, Ionuț Porumbel, Gabriel Ursescu and Daniel Eugeniu Crunţeanu
Technologies 2024, 12(12), 252; https://doi.org/10.3390/technologies12120252 - 2 Dec 2024
Viewed by 3052
Abstract
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) [...] Read more.
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) for practical application, extensive experimental validation, particularly under vacuum conditions, is essential. This study focuses on the performance of a pulsed-detonation combustor (PDC) under near-vacuum conditions, with two primary objectives: to assess the combustor’s ignition capabilities and to characterize the shock wave behavior at the exit plane. To achieve these objectives, high-frequency pressure sensors are strategically positioned within both the vacuum chamber and the combustor prototype to capture the pressure cycles during operation, providing insights into pressure augmentation over a period of approximately 0.5 s. Additionally, the Schlieren visualization technique is employed to analyze and interpret the flow structures of the exhaust jet. The combination of these experimental methods enables a comprehensive understanding of the ignition dynamics and the development of shock waves, contributing valuable data to advance PGC technology for space-exploration applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

18 pages, 3285 KB  
Article
Experimental Investigations on the Impact of Hydrogen Injection Apertures in Pulsed Detonation Combustor
by Andrei Vlad Cojocea, Ionuț Porumbel, Mihnea Gall and Tudor Cuciuc
Energies 2024, 17(19), 4918; https://doi.org/10.3390/en17194918 - 1 Oct 2024
Cited by 2 | Viewed by 1475
Abstract
Combustion through detonation marks an important leap in efficiency over standard deflagration methods. This research introduces a Pulsed Detonation Combustor (PDC) model that uses Hydrogen as fuel and Oxygen as an oxidizer, specifically targeting carbon-free combustion efforts. The PDC aerodynamic features boost operating [...] Read more.
Combustion through detonation marks an important leap in efficiency over standard deflagration methods. This research introduces a Pulsed Detonation Combustor (PDC) model that uses Hydrogen as fuel and Oxygen as an oxidizer, specifically targeting carbon-free combustion efforts. The PDC aerodynamic features boost operating cycle frequency and facilitate Deflagration-to-Detonation Transition (DDT) within distances less than 200 mm by means of Hartmann–Sprenger resonators and cross-flow fuel/oxidizer injection. The achievement of quality mixing in a short-time filling process represents not only higher cycle operation but also enhanced performances. The scope of this paper is to assess the impact of different fuel injectors with different opening areas on the performances of the PDC. This assessment, expressed as a function of the Equivalence Ratio (ER), is conducted using two primary methods. Instantaneous static pressures are recorded and processed to extract the maximum and average cycle pressure and characterize the pressure augmentation. Thrust measurements obtained using a load cell are averaged over the detonation cycle to calculate the time-averaged thrust. The specific impulse is subsequently determined based on these thrust measurements and the corresponding mass flow data. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

21 pages, 11502 KB  
Article
Experimental Thrust and Specific Impulse Analysis of Pulsed Detonation Combustor
by Andrei Vlad Cojocea, Ionuț Porumbel, Mihnea Gall and Tudor Cuciuc
Appl. Sci. 2024, 14(14), 5999; https://doi.org/10.3390/app14145999 - 10 Jul 2024
Cited by 4 | Viewed by 3161
Abstract
Detonation combustion represents a significant advancement in efficiency over traditional deflagration methods. This paper presents a Pulsed Detonation Combustor (PDC) model that is designed with an aerodynamic mixing chamber featuring Hartmann–Sprenger resonators and crossflow injection. This design enhances operational cycle frequency and enables [...] Read more.
Detonation combustion represents a significant advancement in efficiency over traditional deflagration methods. This paper presents a Pulsed Detonation Combustor (PDC) model that is designed with an aerodynamic mixing chamber featuring Hartmann–Sprenger resonators and crossflow injection. This design enhances operational cycle frequency and enables sustained detonation over short distances (below 200 mm). The PDC’s performance was evaluated through a comprehensive full-factorial experimental campaign, incorporating four factors with four discrete levels each. Testing was conducted using both hydrogen/air and hydrogen/oxygen mixtures, highlighting the PDC’s potential as a carbon-free combustion chamber suitable for both air-breathing and space-based propulsion systems. One advantage is the versatility of our PDC breadboard, which lies in its applicability to both terrestrial and in-space applications, such as interplanetary travel or trajectory corrections. Thrust measurements were recorded using a load cell and time-averaged thrust levels were determined over the detonation cycle and are reported herein, together with the specific impulse. The results underscore the PDC’s promise as an efficient propulsion technology for future aerospace applications. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 16746 KB  
Article
An Experimental Investigation of Low-Frequency Active Excitation in Scramjet Combustor Using a Micro-Pulse Detonation Engine
by Keon-Hyeong Lee, Min-Su Kim, Jeong-Yeol Choi and Kenneth H. Yu
Aerospace 2024, 11(7), 559; https://doi.org/10.3390/aerospace11070559 - 8 Jul 2024
Cited by 2 | Viewed by 2298
Abstract
A micro-pulse detonation engine (μPDE) was designed and installed to a direct-connect scramjet combustor of Pusan National University (PNU-DCSC). The active excitation on the scramjet combustor was experimentally studied using the μPDE operating at frequencies of 10–20 Hz. A vitiation air heater (VAH) [...] Read more.
A micro-pulse detonation engine (μPDE) was designed and installed to a direct-connect scramjet combustor of Pusan National University (PNU-DCSC). The active excitation on the scramjet combustor was experimentally studied using the μPDE operating at frequencies of 10–20 Hz. A vitiation air heater (VAH) was used to supply high-enthalpy vitiated air to the isolator and the scramjet combustor at a Mach number of 2.0, with a total temperature of 1600 K and a total pressure of 1.68 MPa. The exit of μPDE was located at the center of the cavity of the scramjet combustor. Active excitation was performed at equivalence ratios of 0.111 and 0.163, and characteristics were analyzed through Schlieren recording and bottom wall pressure measurement. As a result, when the detonation emitted from the μPDE entered the scramjet combustor, it instantly formed a shock train and moved forward within the scramjet combustor. The flame instantaneously changed from the cavity shear layer flame to the cavity flame. Through bottom wall pressure measurement, it was also observed that active excitation resulted in a significant pressure increase near the cavity compared to when active excitation was not performed. This revealed combustion characteristics, indicating improved combustion efficiency from the pressure increase in the scramjet combustor. Full article
(This article belongs to the Special Issue Supersonic Combustion and Scramjet Propulsion)
Show Figures

Figure 1

16 pages, 8004 KB  
Article
Combustion Mechanism of Gasoline Detonation Tube and Coupling of Engine Turbocharging Cycle
by Diyun Huang, Jiayong Wang, Minshuo Shi, Puze Yang and Binyang Wu
Energies 2024, 17(11), 2466; https://doi.org/10.3390/en17112466 - 22 May 2024
Cited by 1 | Viewed by 1984
Abstract
Traditional exhaust-gas turbocharging exhibits hysteresis under variable working conditions. To achieve rapid-intake supercharging, this study investigates the synergistic coupling process between the detonation and diesel cycles using gasoline as fuel. A numerical simulation model is constructed to analyze the detonation characteristics of a [...] Read more.
Traditional exhaust-gas turbocharging exhibits hysteresis under variable working conditions. To achieve rapid-intake supercharging, this study investigates the synergistic coupling process between the detonation and diesel cycles using gasoline as fuel. A numerical simulation model is constructed to analyze the detonation characteristics of a pulse-detonation combustor (PDC), followed by experimental verification. The comprehensive process of the flame’s deflagration-to-detonation transition (DDT) and the formation of the detonation wave are discussed in detail. The airflow velocity, DDT time, and peak pressure of detonation tubes with five different blockage ratios (BR) are analyzed, with the results imported into a one-dimensional GT-POWER engine model. The results indicate that the generation of detonation waves is influenced by flame and compression wave interactions. Increasing the airflow does not shorten the DDT time, whereas increasing the BR causes the DDT time to decrease and then increase. Large BRs affect the initiation speed of detonation in the tube, while small BRs impact the DDT distance and peak pressure. Upon connection to the PDC, the transient response rate of the engine is slightly improved. These results can provide useful guidance for improving the transient response characteristics of engines. Full article
(This article belongs to the Topic Zero Carbon Vehicles and Power Generation)
Show Figures

Figure 1

21 pages, 9116 KB  
Article
Experimental Study on the Ignition Characteristics of Scramjet Combustor with Tandem Cavities Using Micro-Pulse Detonation Engine
by Min-Su Kim, In-Hoi Koo, Keon-Hyeong Lee, Eun-Sung Lee, Hyung-Seok Han, Seung-Min Jeong, Holak Kim and Jeong-Yeol Choi
Aerospace 2023, 10(8), 706; https://doi.org/10.3390/aerospace10080706 - 11 Aug 2023
Cited by 7 | Viewed by 3130
Abstract
This experimental investigation focused on the ignition and combustion characteristics of a tandem cavity-based scramjet combustor with side-by-side identical cavities. This study utilized the Pusan National University-direct connect scramjet combustor (PNU-DCSC), which was capable of simulating flight conditions at Mach number 4.0–5.0 and [...] Read more.
This experimental investigation focused on the ignition and combustion characteristics of a tandem cavity-based scramjet combustor with side-by-side identical cavities. This study utilized the Pusan National University-direct connect scramjet combustor (PNU-DCSC), which was capable of simulating flight conditions at Mach number 4.0–5.0 and altitudes of 20–25 km using the vitiated air heater (VAH). The combustion tests were conducted under off-design point conditions corresponding to low inlet enthalpy. It is a condition in which self-ignition does not occur, and a micro pulse detonation engine (μPDE) ignitor is used. The results revealed that as the injection pressure of the gaseous hydrogen fuel (GH2) and the corresponding equivalence ratio increased, the combustion mode transitioned from the cavity-shear layer flame to the jet-wake flame. Furthermore, the measured wall static pressure profiles along the isolator and scramjet combustor indicated that the region of elevated pressure distribution caused by the shock train expanded upstream with higher equivalence ratios. When ignited from the secondary cavity, the combustion area did not extend to the primary cavity at lower equivalence ratios, while it expanded upstream faster with higher equivalence ratios. Therefore, the combustion characteristics of the tandem cavity were found to vary based on the overall equivalence ratio of the main fuel (GH2) and ignition position. Full article
Show Figures

Figure 1

20 pages, 8709 KB  
Article
Ion Sensors for Pulsed and Continuous Detonation Combustors
by Sergey M. Frolov, Igor O. Shamshin, Viktor S. Aksenov, Vladislav S. Ivanov and Pavel A. Vlasov
Chemosensors 2023, 11(1), 33; https://doi.org/10.3390/chemosensors11010033 - 1 Jan 2023
Cited by 11 | Viewed by 3704
Abstract
Presented in the article are the design and operation principles of ion sensors intended for detecting the propagating reaction fronts, the deflagration/detonation mode, apparent subsonic/supersonic propagation velocity of the reaction front, and duration of heat release by measuring the ion current in the [...] Read more.
Presented in the article are the design and operation principles of ion sensors intended for detecting the propagating reaction fronts, the deflagration/detonation mode, apparent subsonic/supersonic propagation velocity of the reaction front, and duration of heat release by measuring the ion current in the reactive medium. The electrical circuits for ion sensors without and with intermediate amplifiers, with short response time and high sensitivity, as well as with the very wide dynamic range of operation in the reactive media with highly variable temperature and pressure, are provided and discussed. The main advantages of ion sensors are their very short response time of about 1 ms, versatility of design, and capability of detecting and monitoring reaction fronts of different intensities directly in combustion chambers. Several examples of ion sensor applications in sensing deflagration-to-detonation transition in pulsed detonation engines and developed detonations in rotating detonation engines operating on different fuel–air and fuel–oxygen mixtures are presented and discussed. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

16 pages, 4530 KB  
Article
Experimental Investigations on Detonation Initiation Characteristics of a Liquid-Fueled Pulse Detonation Combustor at Different Inlet Air Temperatures
by Wenhao Tan, Longxi Zheng, Jie Lu, Lingyi Wang and Daoen Zhou
Energies 2022, 15(23), 9102; https://doi.org/10.3390/en15239102 - 1 Dec 2022
Cited by 5 | Viewed by 2874
Abstract
The detonation initiation characteristics of a single tube liquid-fueled pulse detonation combustor (PDC) is investigated at different inlet air temperatures in this paper. The inner diameter of the PDC is 62 mm. Gasoline and air are used as fuel and oxidant, respectively. The [...] Read more.
The detonation initiation characteristics of a single tube liquid-fueled pulse detonation combustor (PDC) is investigated at different inlet air temperatures in this paper. The inner diameter of the PDC is 62 mm. Gasoline and air are used as fuel and oxidant, respectively. The inlet air temperature is 288–523 K and the operating frequency of the PDC is 10~30 Hz. The experimental results show that the deflagration to detonation transition (DDT) distance, detonation initiation time, DDT time and jet ignition time decrease with the increasing operating frequency at the same inlet temperature. When the inlet temperature is 288 K, the DDT distance is shortened from 860.5 mm to 787.7 mm as the operating frequency increases from 10 Hz to 30 Hz. The detonation initiation time, the jet ignition time and the DDT time are reduced from 10.01 ms, 7.66 ms and 2.35 ms to 6.55 ms, 4.99 ms and 1.56 ms, respectively. When the inlet air temperature increases, the atomization and evaporation of the gasoline is improved, which also leads to the decrease in the DDT distance, the detonation initiation time, the jet ignition time and the DDT time. For example, when the inlet air temperature increases from 288 K to 523 K at the frequency of 10 Hz, the DDT distance is shortened from 860.5 mm to 747.2 mm and the detonation initiation time, the jet ignition time and the DDT time is reduced to 5.867 ms, 2.51 ms and 1.11 ms, respectively. Additionally, the self-ignition caused by high inner wall temperature occurs when PDC is operating at high frequency under high inlet air temperature. Full article
(This article belongs to the Special Issue Heat and Thermal Fluid Flow for Advanced Aerospace Propulsion)
Show Figures

Figure 1

19 pages, 5019 KB  
Article
Pulse Detonation Assessment for Alternative Fuels
by Muhammad Hanafi Azami and Mark Savill
Energies 2017, 10(3), 369; https://doi.org/10.3390/en10030369 - 15 Mar 2017
Cited by 14 | Viewed by 8056
Abstract
The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion [...] Read more.
The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant. Full article
(This article belongs to the Special Issue Combustion and Propulsion)
Show Figures

Figure 1

Back to TopTop