Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = pump–valve cooperation control method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6319 KiB  
Article
A Multi-Mode Pressure Stabilization Control Method for Pump–Valve Cooperation in Liquid Supply System
by Peng Xu and Ziming Kou
Electronics 2024, 13(22), 4512; https://doi.org/10.3390/electronics13224512 - 17 Nov 2024
Cited by 1 | Viewed by 1141
Abstract
In order to solve the problems of frequent pressure fluctuations caused by frequent action of the unloading valve of the pump station and serious hydraulic shock due to the variable amount of fluid used in the hydraulic support system of the coal mining [...] Read more.
In order to solve the problems of frequent pressure fluctuations caused by frequent action of the unloading valve of the pump station and serious hydraulic shock due to the variable amount of fluid used in the hydraulic support system of the coal mining face and the irregularity of the load suffered by the system, a pump–valve cooperative multi-mode stabilizing control method based on a digital unloading valve was proposed. Firstly, a prototype of a digital unloading valve under high-pressure and high water-based conditions was developed, and a digital control scheme was proposed to control the pilot valve by a servo motor to adjust the system pressure in real time. Then, an experimental platform for simulating the hydraulic bracket and a co-simulation model was constructed, and the validity of the co-simulation model was verified through experiments. Secondly, a collaborative multi-mode pressure stabilization control method for the pump valve based on a GRNN (General Regression Neural Network) was established to control the flow and pressure output of the emulsion pumping station according to the actual working conditions. Finally, numerical research and experimental verification were carried out for different working conditions to prove the effectiveness of this method. The results showed that the proposed pressure stabilization control method could adaptively adjust the working state of the digital unloading valve and the liquid supply flow of the emulsion pump station according to the working condition of the hydraulic support, effectively reducing the frequency and amplitude of the system pressure fluctuations and making the system pressure more stable. Full article
Show Figures

Figure 1

28 pages, 6875 KiB  
Review
Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review
by Ioan Sarbu, Matei Mirza and Daniel Muntean
Energies 2022, 15(18), 6523; https://doi.org/10.3390/en15186523 - 7 Sep 2022
Cited by 25 | Viewed by 6806
Abstract
This article presents a complex and exhaustive review of the integration of renewable energy sources (RES) (specifically solar, geothermal, and hydraulic energies and heat pumps (HPs)) and the improvement of water pumping in district heating systems (DHSs) focused on low-temperature systems, to increase [...] Read more.
This article presents a complex and exhaustive review of the integration of renewable energy sources (RES) (specifically solar, geothermal, and hydraulic energies and heat pumps (HPs)) and the improvement of water pumping in district heating systems (DHSs) focused on low-temperature systems, to increase energy efficiency and environmental protection. For this aim, the main components of a DHS and the primary RES with applications in DHSs were described briefly. Finally, several case studies regarding the DHS in Timisoara, Romania, were analysed. Thus, by integrating water source HP (WSHP) systems in cooperation with solar thermal and photovoltaic (PV) collectors and reducing the supply temperature from 110 °C to 30 °C in DHS, which supplies the water radiators to consumers in a district of this city in a 58/40 °C regime of temperatures and produces domestic hot water (DHW) required by consumers at 52 °C, a thermal energy saving of 75%, a reduction in heat losses on the transmission network of 90% and a diminution of CO2 emissions of 77% were obtained. Installed PV panels generate 1160 MWh/year of electricity that is utilised to balance the electricity consumption of HP systems. Additionally, mounting pumps as turbines (PATs) for the recovery of excess hydraulic energy in the entire heating network resulted in electricity production of 378 MW, and the variable frequency drive’s (VFD) method for speed control for a heating station pump resulted in roughly 38% more energy savings than the throttle control valve technique. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop