Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = q-Changhee polynomials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 275 KB  
Article
Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on p
by Maryam Salem Alatawi, Waseem Ahmad Khan and Ugur Duran
Axioms 2024, 13(7), 421; https://doi.org/10.3390/axioms13070421 - 22 Jun 2024
Cited by 1 | Viewed by 1004
Abstract
Since the constructions of p-adic q-integrals, these integrals as well as particular cases have been used not only as integral representations of many special functions, polynomials, and numbers, but they also allow for deep examinations of many families of special numbers [...] Read more.
Since the constructions of p-adic q-integrals, these integrals as well as particular cases have been used not only as integral representations of many special functions, polynomials, and numbers, but they also allow for deep examinations of many families of special numbers and polynomials, such as central Fubini, Bernoulli, central Bell, and Changhee numbers and polynomials. One of the key applications of these integrals is for obtaining the symmetric identities of certain special polynomials. In this study, we focus on a novel generalization of degenerate central Fubini polynomials. First, we introduce two variable degenerate w-torsion central Fubini polynomials by means of their exponential generating function. Then, we provide a fermionic p-adic integral representation of these polynomials. Through this representation, we investigate several symmetric identities for these polynomials using special p-adic integral techniques. Also, using series manipulation methods, we obtain an identity of symmetry for the two variable degenerate w-torsion central Fubini polynomials. Finally, we provide a representation of the degenerate differential operator on the two variable degenerate w-torsion central Fubini polynomials related to the degenerate central factorial polynomials of the second kind. Full article
(This article belongs to the Special Issue Advanced Approximation Techniques and Their Applications, 2nd Edition)
11 pages, 264 KB  
Article
Several Symmetric Identities of the Generalized Degenerate Fubini Polynomials by the Fermionic p-Adic Integral on Zp
by Maryam Salem Alatawi, Waseem Ahmad Khan and Ugur Duran
Symmetry 2024, 16(6), 686; https://doi.org/10.3390/sym16060686 - 3 Jun 2024
Cited by 1 | Viewed by 817
Abstract
After constructions of p-adic q-integrals, in recent years, these integrals with some of their special cases have not only been utilized as integral representations of many special numbers, polynomials, and functions but have also given the chance for deep analysis of [...] Read more.
After constructions of p-adic q-integrals, in recent years, these integrals with some of their special cases have not only been utilized as integral representations of many special numbers, polynomials, and functions but have also given the chance for deep analysis of many families of special polynomials and numbers, such as Bernoulli, Fubini, Bell, and Changhee polynomials and numbers. One of the main applications of these integrals is to obtain symmetric identities for the special polynomials. In this study, we focus on a novel extension of the degenerate Fubini polynomials and on obtaining some symmetric identities for them. First, we introduce the two-variable degenerate w-torsion Fubini polynomials by means of their exponential generating function. Then, we provide a fermionic p-adic integral representation of these polynomials. By this representation, we derive some new symmetric identities for these polynomials, using some special p-adic integral techniques. Lastly, by using some series manipulation techniques, we obtain more identities of symmetry for the two variable degenerate w-torsion Fubini polynomials. Full article
14 pages, 314 KB  
Article
On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
by Chuanjun Zhang, Waseem Ahmad Khan and Can Kızılateş
Symmetry 2023, 15(4), 851; https://doi.org/10.3390/sym15040851 - 2 Apr 2023
Cited by 8 | Viewed by 1956
Abstract
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the (p,q)–Fibonacci polynomials,  [...] Read more.
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the (p,q)–Fibonacci polynomials, (p,q)–Lucas polynomials, and Changhee numbers, we define the (p,q)–Fibonacci–Changhee polynomials and (p,q)–Lucas–Changhee polynomials, respectively. We obtain some important identities and relations of these newly established polynomials by using their generating functions and functional equations. Then, we generalize the (p,q)–Fibonacci–Changhee polynomials and the (p,q)–Lucas–Changhee polynomials called generalized (p,q)–Fibonacci–Lucas–Changhee polynomials. We derive a determinantal representation for the generalized (p,q)–Fibonacci–Lucas–Changhee polynomials in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the (p,q)–Fibonacci–Lucas–Changhee polynomials. Full article
9 pages, 254 KB  
Article
Symmetric Properties of Carlitz’s Type q-Changhee Polynomials
by Yunjae Kim, Byung Moon Kim and Jin-Woo Park
Symmetry 2018, 10(11), 634; https://doi.org/10.3390/sym10110634 - 13 Nov 2018
Cited by 1 | Viewed by 2981
Abstract
Changhee polynomials were introduced by Kim, and the generalizations of these polynomials have been characterized. In our paper, we investigate various interesting symmetric identities for Carlitz’s type q-Changhee polynomials under the symmetry group of order n arising from the fermionic p-adic [...] Read more.
Changhee polynomials were introduced by Kim, and the generalizations of these polynomials have been characterized. In our paper, we investigate various interesting symmetric identities for Carlitz’s type q-Changhee polynomials under the symmetry group of order n arising from the fermionic p-adic q-integral on Z p . Full article
(This article belongs to the Special Issue Current Trends in Symmetric Polynomials with their Applications)
Back to TopTop