Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (804)

Search Parameters:
Keywords = quasi-dynamic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 5207 KB  
Article
Noise-Induced Transitions in Nonlinear Oscillators: From Quasi-Periodic Stability to Stochastic Chaos
by Adil Jhangeer and Atef Abdelkader
Fractal Fract. 2025, 9(8), 550; https://doi.org/10.3390/fractalfract9080550 - 21 Aug 2025
Viewed by 139
Abstract
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, [...] Read more.
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, chaos, and stochastic disorder. The study reveals that quasi-periodic attractors exhibit robust topological structure under moderate noise but progressively disintegrate as stochastic intensity increases, leading to high-dimensional chaotic-like behavior. Recurrence quantification and Lyapunov spectra validate the transition from coherent dynamics to noise-dominated regimes. Poincaré maps and sensitivity analysis expose multistability and intricate basin geometries, while the Fokker–Planck formalism uncovers non-equilibrium steady states characterized by circulating probability currents. Together, these results provide a unified framework for understanding the geometry, statistics, and stability of noisy nonlinear systems. The findings have broad implications for systems ranging from mechanical oscillators to biological rhythms and offer a roadmap for future investigations into fractional dynamics, topological analysis, and data-driven modeling. Full article
Show Figures

Figure 1

22 pages, 5990 KB  
Article
An Integrated Quasi-Zero-Stiffness Mechanism with Arrayed Piezoelectric Cantilevers for Low-Frequency Vibration Isolation and Broadband Energy Harvesting
by Kangkang Guo, Anjie Sun and Junhai He
Sensors 2025, 25(16), 5180; https://doi.org/10.3390/s25165180 - 20 Aug 2025
Viewed by 277
Abstract
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed [...] Read more.
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed of a linkage-horizontal spring (negative stiffness) and a vertical spring; the other is an energy-harvesting component with an array of parameter-differentiated piezoelectric cantilever beams. Aiming at the conflict between the structural dynamic stiffness approaching zero and broadening the effective working range, this paper establishes a dual-objective optimization function based on the Pareto principle on the basis of static analysis and uses the grid search method combined with actual working conditions to determine the optimal parameter combination. By establishing a multi-degree-of-freedom electromechanical coupling model, the harmonic balance method is used to derive analytical solutions, which are then verified by numerical simulations. The influence laws of external excitations and system parameters on vibration isolation and energy-harvesting performance are quantitatively analyzed. The results show that the optimized structure has an initial vibration isolation frequency below 2 Hz, with a vibration isolation rate exceeding 60% in the 3 to 5 Hz ultra-low frequency range and a minimum transmissibility of the order of 10−2 (vibration isolation rate > 98%). The parameter-differentiated piezoelectric array effectively broadens the energy-harvesting frequency band, which coincides with the vibration isolation range. Synergistic optimization of both performances can be achieved by adjusting system damping, parameters of piezoelectric vibrators, and load resistance. This study provides a theoretical reference for the integrated design of low-frequency vibration control and energy recovery, and its engineering implementation requires further experimental verification. Full article
(This article belongs to the Special Issue Wireless Sensor Networks with Energy Harvesting)
Show Figures

Figure 1

23 pages, 10218 KB  
Article
Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations
by Fangfei Li, Guoxiang Yang, Dengke Guo, Xiaoning Liu, Xiaoliang Wang and Gengkai Hu
Sustainability 2025, 17(16), 7374; https://doi.org/10.3390/su17167374 - 14 Aug 2025
Viewed by 328
Abstract
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions [...] Read more.
Understanding the dynamic response and failure mechanisms of rock slopes during earthquakes is crucial in sustainable geohazard prevention and mitigation engineering. The initiation of landslides involves complex interactions between seismic wave propagation, dynamic rock mass behavior, and crack network evolution, and these interactions are heavily influenced by the slope geometry, lithology, and structural parameters of the slope. However, systematic studies remain limited due to experimental challenges and the inherent variability of landslide scenarios. This study employs Discrete Element Method (DEM) modeling to comprehensively investigate how geological structure parameters control the dynamic amplification and deformation characteristic of typical bedding/anti-dip layered slopes consist of parallel distributed rock masses and joint faces, with calibrated mechanical properties. A soft-bond model (SBM) is utilized to accurately simulate the quasi-brittle rock behavior. Numerical results reveal distinct dynamic responses between bedding and anti-dip slopes, where local amplification zones (LAZs) act as seismic energy concentrators, while potential sliding zones (PSZs) exhibit hindering effects. Parametric analyses of strata dip angles and thicknesses identify a critical dip range where slope stability drastically decreases, highlighting high-risk configurations for earthquake-induced landslides. By linking the slope failure mechanism to seismic risk reduction strategies, this work provides practical guidelines for sustainable slope design and landslide mitigation in tectonically active regions. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

19 pages, 3285 KB  
Article
Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints
by Yukang Cai, Yongsheng Jia, Shaobin Hu, Jinshan Sun and Yingkang Yao
Sustainability 2025, 17(16), 7297; https://doi.org/10.3390/su17167297 - 12 Aug 2025
Viewed by 317
Abstract
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and [...] Read more.
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and fluid dynamics during Sc-CO2 thermal shock fracturing. Key novel findings reveal the following: (1) The fracturing mechanism integrates transient hydrodynamic shock with quasi-static pressure loading, generating characteristic bimodal pressure curves where secondary peak amplification specifically indicates inhibited interwell fracture coalescence under anisotropic stress configurations. (2) Fracture paths undergo spatiotemporal reorientation—initial propagation aligns with in situ stress orientation, while subsequent growth follows thermal shock-induced principal stress trajectories. (3) Stress heterogeneity modulates fracture network complexity through confinement effects: elevated normal stresses perpendicular to fracture planes reduce pressure gradients (compared to isotropic conditions) and delay crack initiation, yet sustain higher pressure plateaus by constraining fracture connectivity despite fluid leakage. Numerical simulations systematically demonstrate that stress anisotropy plays a dual role—enhancing peak pressures while limiting fracture network development. This demonstrates the dual roles of the technology in enhancing environmental sustainability through waterless operations and reducing carbon footprint. Full article
Show Figures

Figure 1

15 pages, 3001 KB  
Article
Analytical Prediction of Fatigue Life for Roller Bearings Considering Impact Loading
by Yuwei Liu, Haosen Gong, Yufei Li, Zehai Gao and Tong Zhao
Processes 2025, 13(8), 2545; https://doi.org/10.3390/pr13082545 - 12 Aug 2025
Viewed by 280
Abstract
During the actual operating conditions, it is inevitable that rolling bearings will be subjected to impact loading. However, due to the very short duration of impact loading, previous studies have almost ignored the influence of impact loading on fatigue life of roller bearings. [...] Read more.
During the actual operating conditions, it is inevitable that rolling bearings will be subjected to impact loading. However, due to the very short duration of impact loading, previous studies have almost ignored the influence of impact loading on fatigue life of roller bearings. This paper attempts to construct a numerical framework to address the above issues, thereby providing a theoretical basis for predicting fatigue life of roller bearings under frequent impact loading. A quasi-dynamic model of roller bearings is established to capture the instantaneous fluctuation in roller–raceway contact loads due to impact loading. Then, the influence of impact loading on the fatigue life of roller bearings is accurately characterized based on Miner’s rule. The results show that the frequent impact loading causes a significant decrease in the fatigue life of roller bearings, and the extent of fatigue life decrease depends on the bearing speeds and load conditions. To accurately predict the fatigue life of roller bearings under actual operating conditions, it is necessary to account for the influence of the impact loading, especially for high speeds and light load conditions. Full article
Show Figures

Figure 1

18 pages, 1156 KB  
Article
Modeling of Isometric Muscle Properties via Controllable Nonlinear Spring and Hybrid Model of Proprioceptive Receptors
by Mario Spirito
Muscles 2025, 4(3), 29; https://doi.org/10.3390/muscles4030029 - 11 Aug 2025
Viewed by 213
Abstract
This work investigates the macroscopic behavior of skeletal muscles from a system-theoretic perspective. Based on data available in the literature, we propose an initial evaluation model for isometric force generation, i.e., force produced at a constant muscle length or in quasi-static conditions, as [...] Read more.
This work investigates the macroscopic behavior of skeletal muscles from a system-theoretic perspective. Based on data available in the literature, we propose an initial evaluation model for isometric force generation, i.e., force produced at a constant muscle length or in quasi-static conditions, as a function of muscle length and neuronal excitation frequency. This model enables a more physics-inspired representation of isometric force by employing a nonlinear spring framework with controllable properties such as stiffness and rest length. Finally, we introduce a hybrid dynamical filter model to describe components of the sensory system responsible for relaying information about muscle length and its rate of change back to the Central Nervous System. As an application case, we present the modeling of the oculomotor system, highlighting the relevance of the proposed modeling approach in a physiologically meaningful control task. Full article
Show Figures

Figure 1

21 pages, 1788 KB  
Article
Model of Aquifer-Level Changes Based on Evaporation Intensity and Infiltration Coefficient
by Abdinabi Mukhamadiyev and Marat Karimov
Mathematics 2025, 13(16), 2562; https://doi.org/10.3390/math13162562 - 10 Aug 2025
Viewed by 221
Abstract
Developing improved mathematical and numerical models of groundwater flow is crucial for monitoring and forecasting water resources. Most existing models are linear and fail to capture the complex physical processes involved in groundwater dynamics. This study aims to develop a nonlinear mathematical model [...] Read more.
Developing improved mathematical and numerical models of groundwater flow is crucial for monitoring and forecasting water resources. Most existing models are linear and fail to capture the complex physical processes involved in groundwater dynamics. This study aims to develop a nonlinear mathematical model for observing and forecasting changes in groundwater levels influenced by water intake wells, evaporation, and precipitation. The proposed mathematical model is formulated as a nonlinear differential equation. To solve this model, it was reduced to a dimensionless form, and the quasi-linearization method was employed to simplify the calculations. The finite difference method was then used to obtain a numerical solution. An algorithm and software were developed to demonstrate the results of the calculations. Numerical calculations performed using the developed software provide insights into the effects of water intake wells, surface evaporation, and precipitation on groundwater levels. The findings of this study hold practical significance for optimizing the sustainable use of water resources and highlighting how the location and flow rate of water intake wells impact groundwater levels. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

20 pages, 4801 KB  
Article
Modeling Anisotropic Crosswell Magnetic Responses: A Magnetic-Source Integral Approach with Air-Effect Analysis
by Qingrui Chen, Yinming Zhou, Kun Li, Jiaxuan Ling and Dexiang Zhu
Appl. Sci. 2025, 15(16), 8810; https://doi.org/10.3390/app15168810 - 9 Aug 2025
Viewed by 324
Abstract
Crosswell electromagnetic imaging serves as a pivotal method for analyzing the distribution of residual oil in oil and gas reservoirs, as well as for optimizing drilling strategies. Current challenges in crosswell electromagnetic (EM) modeling encompass large-scale discretization, with limited research addressing the effects [...] Read more.
Crosswell electromagnetic imaging serves as a pivotal method for analyzing the distribution of residual oil in oil and gas reservoirs, as well as for optimizing drilling strategies. Current challenges in crosswell electromagnetic (EM) modeling encompass large-scale discretization, with limited research addressing the effects of magnetic sources in anisotropic media or the influence of borehole air. This study introduces a novel iterative Fourier domain integral algorithm for three-dimensional (3D) magnetic-source magnetic simulation in an anisotropic medium. The proposed method employs the Fourier domain method and quasi-complete Fourier techniques to realize adaptive sampling and efficient 3D modeling. The accuracy and efficiency of the method are validated through models. Parametric analyses quantify the impact of several factors, including source depth, frequency, borehole air effects, and conductivity anisotropy on magnetic field components. For the dynamic monitoring of oil and gas reservoirs, the relationship among the magnetic field, frequency, and water saturation is discussed. Furthermore, comparative response differences between electric and magnetic sources are examined, thereby providing theoretical foundations for real-time EM imaging in anisotropic hydrocarbon reservoirs. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 1484 KB  
Article
Digital Twin-Enhanced Programming Education: An Empirical Study on Learning Engagement and Skill Acquisition
by Ming Lu and Zhongyi Hu
Computers 2025, 14(8), 322; https://doi.org/10.3390/computers14080322 - 8 Aug 2025
Viewed by 488
Abstract
As an introductory core course in computer science and related fields, “Fundamentals of Programming” has always faced many challenges in stimulating students’ interest in learning and cultivating their practical coding abilities. The traditional teaching model often fails to effectively connect theoretical knowledge with [...] Read more.
As an introductory core course in computer science and related fields, “Fundamentals of Programming” has always faced many challenges in stimulating students’ interest in learning and cultivating their practical coding abilities. The traditional teaching model often fails to effectively connect theoretical knowledge with practical applications, resulting in a low retention rate of students’ learning and a weak ability to solve practical problems. Digital twin (DT) technology offers a novel approach to addressing these challenges by creating dynamic, virtual replicas of physical systems with real-time, interactive capabilities. This study explores DT integration in programming teaching and its impact on learning engagement (behavioral, cognitive, emotional) and skill acquisition (syntax, algorithm design, debugging). A quasi-experimental design was employed to study 135 first-year undergraduate students, divided into an experimental group (n = 90) using a DT-based learning environment and a control group (n = 45) receiving traditional instruction. Quantitative data analysis was conducted on participation surveys, planning evaluations, and qualitative feedback. The results showed that, compared with the control group, the DT group exhibited a higher level of sustained participation (p < 0.01) and achieved better results in actual coding tasks (p < 0.05). Students with limited coding experience showed the most significant progress in algorithmic thinking. The findings highlight that digital twin technology significantly enhances engagement and skill acquisition in introductory programming, particularly benefiting novice learners through immersive, theory-aligned experiences. This study establishes a new paradigm for introductory programming education by addressing two critical gaps in digital twin applications: (1) differential effects on students with varying prior knowledge (engagement/skill acquisition) and (2) pedagogical mechanisms in conceptual visualization and authentic context creation. Full article
(This article belongs to the Special Issue Future Trends in Computer Programming Education)
Show Figures

Figure 1

27 pages, 3796 KB  
Review
A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying
by Yunfei Wang, Weidong Jia, Mingxiong Ou, Xuejun Wang and Xiang Dong
Sensors 2025, 25(16), 4898; https://doi.org/10.3390/s25164898 - 8 Aug 2025
Viewed by 253
Abstract
With the advancement of precision agriculture, variable-rate spraying (VRS) technology has demonstrated significant potential in enhancing pesticide utilization efficiency and promoting environmental sustainability, particularly in orchard applications. As a critical medium for pesticide transport, the dynamic structural characteristics of orchard canopies exert a [...] Read more.
With the advancement of precision agriculture, variable-rate spraying (VRS) technology has demonstrated significant potential in enhancing pesticide utilization efficiency and promoting environmental sustainability, particularly in orchard applications. As a critical medium for pesticide transport, the dynamic structural characteristics of orchard canopies exert a profound influence on spraying effectiveness. This review systematically summarizes recent progress in the dynamic perception and modeling of orchard canopies, with a particular focus on key sensing technologies such as LiDAR, Vision Sensor, multispectral/hyperspectral sensors, and point cloud processing techniques. Furthermore, it discusses the construction methodologies of static, quasi-dynamic, and fully dynamic canopy modeling frameworks. The integration of canopy sensing technologies into VRS systems is also analyzed, including their roles in spray path planning, nozzle control strategies, and precise droplet transport regulation. Finally, the review identifies key challenges—particularly the trade-offs between real-time performance, seasonal adaptability, and modeling accuracy—and outlines future research directions centered on multimodal perception, hybrid modeling approaches combining physics-based and data-driven methods, and intelligent control strategies. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

34 pages, 3002 KB  
Article
A Refined Fuzzy MARCOS Approach with Quasi-D-Overlap Functions for Intuitive, Consistent, and Flexible Sensor Selection in IoT-Based Healthcare Systems
by Mahmut Baydaş, Safiye Turgay, Mert Kadem Ömeroğlu, Abdulkadir Aydin, Gıyasettin Baydaş, Željko Stević, Enes Emre Başar, Murat İnci and Mehmet Selçuk
Mathematics 2025, 13(15), 2530; https://doi.org/10.3390/math13152530 - 6 Aug 2025
Viewed by 455
Abstract
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp [...] Read more.
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp transitions between preference levels. These assumptions can lead to decision outcomes with insufficient differentiation, limited discriminatory capacity, and potential issues in consistency and sensitivity. To overcome these limitations, this study proposes a novel fuzzy decision-making framework by integrating Quasi-D-Overlap functions into the fuzzy MARCOS (Measurement of Alternatives and Ranking According to Compromise Solution) method. Quasi-D-Overlap functions represent a generalized extension of classical overlap operators, capable of capturing partial overlaps and interdependencies among criteria while preserving essential mathematical properties such as associativity and boundedness. This integration enables a more intuitive, flexible, and semantically rich modeling of real-world fuzzy decision problems. In the context of real-time health monitoring, a case study is conducted using a hybrid edge–cloud architecture, involving sensor tasks such as heartrate monitoring and glucose level estimation. The results demonstrate that the proposed method provides greater stability, enhanced discrimination, and improved responsiveness to weight variations compared to traditional fuzzy MCDM techniques. Furthermore, it effectively supports decision-makers in identifying optimal sensor alternatives by balancing critical factors such as accuracy, energy consumption, latency, and error tolerance. Overall, the study fills a significant methodological gap in fuzzy MCDM literature and introduces a robust fuzzy aggregation strategy that facilitates interpretable, consistent, and reliable decision making in dynamic and uncertain healthcare environments. Full article
Show Figures

Figure 1

28 pages, 10200 KB  
Article
Real-Time Temperature Estimation of the Machine Drive SiC Modules Consisting of Parallel Chips per Switch for Reliability Modelling and Lifetime Prediction
by Tamer Kamel, Olamide Olagunju and Temitope Johnson
Machines 2025, 13(8), 689; https://doi.org/10.3390/machines13080689 - 5 Aug 2025
Viewed by 398
Abstract
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements [...] Read more.
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements of temperature-sensitive electrical parameters (TSEP) approach, particularly the quasi-threshold voltage and the on-state drain to source voltage, to estimate the junction temperature in real time. The proposed procedure firstly applied computational fluid dynamics analysis on the module under study to determine the chip which undergoes the maximum junction temperature during typical operation of the module. Then, a calibration phase, using double-pulse tests on the selected chip, is used to generate look-up tables to relate the TSEPs under study to the junction temperature. Next, the real-time estimation of junction temperature was accomplished during the on-line operation of the three-phase inverter, taking into account the induced distortion/noises due to operation of the parallel-connected chips in the module. After that, a comparison between the two TSEPs under study was provided to demonstrate their advantages/drawbacks. Finally, reliability modelling was developed to predict the lifetime of the studied module based on the estimated junction temperature under a predetermined mission profile. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

25 pages, 4865 KB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Viewed by 242
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

32 pages, 12538 KB  
Article
Study on Vibration Characteristics and Harmonic Suppression of an Integrated Electric Drive System Considering the Electromechanical Coupling Effect
by Yue Cui, Hong Lu, Jinli Xu, Yongquan Zhang and Lin Zou
Actuators 2025, 14(8), 386; https://doi.org/10.3390/act14080386 - 4 Aug 2025
Viewed by 289
Abstract
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degree-of-freedom nonlinear torsional–planar dynamic [...] Read more.
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degree-of-freedom nonlinear torsional–planar dynamic model was developed, with electromagnetic torque and output speed as coupling terms. The model’s accuracy was experimentally validated, and the system’s dynamic responses were analyzed under different working conditions. To mitigate vibrations caused by torque ripple, a coordinated control strategy was proposed, combining a quasi-proportional multi-resonant (QPMR) controller and a full-frequency harmonic controller (FFHC). The results demonstrate that the proposed strategy effectively suppresses multi-order current harmonics in the driving motor, reduces torque ripple by 45.1%, and enhances transmission stability. In addition, the proposed electromechanical coupling model provides valuable guidance for the analysis of integrated electric drive systems. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

20 pages, 3145 KB  
Article
Determination of Dynamic Elastic Properties of 3D-Printed Nylon 12CF Using Impulse Excitation of Vibration
by Pedro F. Garcia, Armando Ramalho, Joel C. Vasco, Rui B. Ruben and Carlos Capela
Polymers 2025, 17(15), 2135; https://doi.org/10.3390/polym17152135 - 4 Aug 2025
Viewed by 447
Abstract
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic [...] Read more.
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM). Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

Back to TopTop