Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = rab proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2217 KB  
Article
TDP-43 Regulates Rab4 Levels to Support Synaptic Vesicle Recycling and Neuromuscular Connectivity in Drosophila and Human ALS Models
by Monsurat Gbadamosi, Giulia Romano, Michela Simbula, Giulia Canarutto, Linda Ottoboni, Stefania Corti and Fabian Feiguin
Int. J. Mol. Sci. 2025, 26(22), 11030; https://doi.org/10.3390/ijms262211030 - 14 Nov 2025
Viewed by 280
Abstract
The pathological loss of nuclear TDP-43 is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to extensive alterations in RNA metabolism and a broad number of neuronal transcripts. However, the key effectors linking TDP-43 dysfunction to synaptic defects remain [...] Read more.
The pathological loss of nuclear TDP-43 is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to extensive alterations in RNA metabolism and a broad number of neuronal transcripts. However, the key effectors linking TDP-43 dysfunction to synaptic defects remain unclear. In this study, using Drosophila and human iPSC-derived motoneurons, we identify Rab4 as a direct and conserved target of TDP-43, whose expression is necessary and sufficient to recover synaptic vesicle recycling, neuromuscular junction growth, and locomotor function in TDP-43-deficient motoneurons. Moreover, Rab4 activity promotes the presynaptic recruitment of futsch/MAP1B, a microtubule-associated protein also regulated by TDP-43, which autonomously supports synaptic growth and vesicle turnover. Together, these findings define a TDP-43/Rab4/futsch/MAP1B regulatory axis that couples endosomal dynamics to cytoskeletal assembly. Furthermore, this functionally coherent module provides a mechanistic basis for understanding how synaptic vulnerability is amplified in disease and offers a framework to identify key compensatory targets capable of sustaining neuronal function in the absence of TDP-43. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 2266 KB  
Article
Anti-Hyperpigmentation-Related Potential Activities in B16BL6 Cells and Chemical Composition of Essential Oil from Chamaecyparis pisifera Leaves
by Do Yoon Kim, Kyung Jong Won, Yoon Yi Kim, Da Yeon Yoo and Hwan Myung Lee
Pharmaceutics 2025, 17(11), 1386; https://doi.org/10.3390/pharmaceutics17111386 - 25 Oct 2025
Viewed by 641
Abstract
Background/Objectives: Chamaecyparis pisifera (C. pisifera; family Cupressaceae) is known to have insecticidal and antibacterial activities, but its effects on skin depigmentation-related activities have not been elucidated. Thus, in the present study, we aimed to investigate the anti-hyperpigmentation potential of C. [...] Read more.
Background/Objectives: Chamaecyparis pisifera (C. pisifera; family Cupressaceae) is known to have insecticidal and antibacterial activities, but its effects on skin depigmentation-related activities have not been elucidated. Thus, in the present study, we aimed to investigate the anti-hyperpigmentation potential of C. pisifera var. filifera leaf essential oil (CPEO), specially focusing on responses related to melanogenesis and melanin transport, using B16BL6 cells. Methods: CPEO was extracted by steam distillation, and its composition was determined by GC/MS spectrometry. The biological activities of CPEO on B16BL6 melanoma cells were analyzed using the water soluble tetrazolium salt, BrdU incorporation, ELISA, and immunoblotting assays. Results: Twenty-eight components were identified in CPEO. CPEO was noncytotoxic to B16BL6 cells at 1–100 μg/mL and reduced serum-induced proliferation in B16BL6 cells. CPEO significantly inhibited α-MSH-stimulated increases in melanin synthesis and tyrosinase activity in the cells (e.g., at 100 μg/mL CPEO, melanin synthesis: 117.89 ± 0.00% vs. 571.94 ± 0.81% with α-MSH; tyrosinase activity: 73.62 ± 0.00% vs. 322.60 ± 3.10% with α-MSH). CPEO also downregulated the expression levels of melanogenesis-related proteins (MITF, tyrosinase, TRP-1 and -2) and melanosome transport-related proteins (Rab27a, melanophilin, myosin Va) in cells exposed to α-MSH. Moreover, the essential oil increased the phosphorylations of MAPKs (p38, ERK1/2, and JNK) in α-MSH-treated B16BL6 cells. In addition, CPEO reduced the ultraviolet A (UVA) induced increases in α-MSH levels in HaCaT cells. In addition, conditioned medium from HaCaT cells irradiated with UVA (CM-UVA) in the presence of CPEO reduced melanin synthesis and tyrosinase activity in B16BL6 cells (e.g., at CM-UVA with 100 μg/mL CPEO, melanin synthesis: 100.92 ± 0.99% vs. 134.44 ± 0.97% with CM-UVA; tyrosinase activity: 101.02 ± 1.81% vs. 133.77 ± 1.88% with CM-UVA). Conclusions: These findings suggest that CPEO inhibits melanin production (probably through the regulation of MAPKs) and transport-related activities in B16BL6 cells, and that CPEO may serve as a potential natural anti-hyperpigmentation or skin whitening. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

19 pages, 3319 KB  
Article
EZH2 Inhibition in Mesothelioma Cells Increases the Release of Extracellular Vesicles That Skew Neutrophils Toward a Protumor Phenotype
by Giulia Pinton, Elia Bari, Silvia Fallarini, Valentina Gigliotti, Veronica De Giorgis, Fausto Chiazza, Maria Luisa Torre, Marcello Manfredi and Laura Moro
Int. J. Mol. Sci. 2025, 26(21), 10328; https://doi.org/10.3390/ijms262110328 - 23 Oct 2025
Viewed by 389
Abstract
We previously demonstrated that in BAP1-proficient pleural mesothelioma cells, CDKN2A is critical for mediating the response to selective EZH2 inhibition and highlighted a complex interplay between epigenetic regulation and the tumor immune microenvironment. In this study, we employed a quantitative proteomic mass spectrometry [...] Read more.
We previously demonstrated that in BAP1-proficient pleural mesothelioma cells, CDKN2A is critical for mediating the response to selective EZH2 inhibition and highlighted a complex interplay between epigenetic regulation and the tumor immune microenvironment. In this study, we employed a quantitative proteomic mass spectrometry approach to assess alterations in protein expression following EZH2 inhibition in BAP1- and CDKN2A-proficient mesothelioma cells cultured as spheroids. Additionally, we analyzed extracellular vesicles (EVs), which were isolated through tangential flow filtration. Flow cytometric analysis and co-culture systems were used to characterize the effects of EVs on neutrophils. Upon EZH2 inhibition, we demonstrated RAB27b and CD63 upregulation and increased release of extracellular vesicles. We found that a brief exposure to EVs derived from EZH2 inhibitor-treated cells skewed naïve neutrophils toward a pro-tumor phenotype characterized by high levels of PD-L1 and MSLN (Mesothelin) expression on the surface. These EV-elicited neutrophils suppressed T cell proliferation while enhancing tumor cell growth. Moreover, we observed changes in the EV cargo derived from EZH2 inhibitor-treated spheroids. Our findings highlight the significant role of EVs in creating an immunosuppressive microenvironment, and underscore the urgent need for further investigation into the regulation of neutrophil biology and function in the PM. Full article
(This article belongs to the Special Issue Advances and Insights in Tumorigenesis and Tumor Metastasis)
Show Figures

Figure 1

20 pages, 1511 KB  
Review
Promotion of Cardiovascular Homeostasis by the Perivascular Adipose Tissue Secretome
by Olivia R. Whittaker, Matthew D. Lynes, Ilka Pinz and Lucy Liaw
Int. J. Mol. Sci. 2025, 26(20), 10173; https://doi.org/10.3390/ijms262010173 - 20 Oct 2025
Viewed by 588
Abstract
Perivascular adipose tissue (PVAT) is a unique fat depot that is distributed around blood vessels, contiguous with the vascular adventitia. Due to this proximity, it serves as a local source of adipokines and vasoregulatory factors. Similar to other adipose depots, PVAT is responsive [...] Read more.
Perivascular adipose tissue (PVAT) is a unique fat depot that is distributed around blood vessels, contiguous with the vascular adventitia. Due to this proximity, it serves as a local source of adipokines and vasoregulatory factors. Similar to other adipose depots, PVAT is responsive to changes in metabolic state and, at least in mice, can transition to a thermogenic adipocyte phenotype depending on metabolic health. Cardiovascular disease risk is highly correlated with metabolic health and increases substantially in individuals with obesity or metabolic syndrome. Cardiovascular diseases, including atherosclerosis/coronary artery disease, aortic aneurysm, hypertension, arterial stiffening, and heart failure, have been associated with PVAT dysregulation. Understanding the cardiovascular protective effects of healthy PVAT can provide ways to modify disease progression to re-establish functional homeostasis. This review focuses on experimental studies that specifically define a signaling axis between PVAT and the cardiovascular system that provide cardioprotection. Our focus is primarily on the secreted contents of extracellular vesicles that initiate this adipose signaling axis and regulation of extracellular vesicle release by the trafficking molecule, RAB27a. We review the current literature on human and mouse studies and major categories of PVAT-derived signaling components including microRNAs, lipids, and proteins that contribute to cardiovascular homeostasis. Full article
(This article belongs to the Special Issue Signaling Pathways and Novel Therapies in Heart Disease)
Show Figures

Figure 1

21 pages, 3294 KB  
Article
Characterization of Corneal Defects in ATG7-Deficient Mice
by Thomas Volatier, Andreas Mourier, Johanna Mann, Berbang Meshko, Karina Hadrian, Claus Cursiefen and Maria Notara
Int. J. Mol. Sci. 2025, 26(20), 9989; https://doi.org/10.3390/ijms26209989 - 14 Oct 2025
Viewed by 929
Abstract
Regulated proteolysis via autophagy is essential for cellular homeostasis, yet the specific role of autophagy-related gene 7 (ATG7) in corneal epithelial maintenance remains unclear. Using a conditional knockout mouse model (Atg7f/f K14Cre+/−), we investigated the impact of ATG7 [...] Read more.
Regulated proteolysis via autophagy is essential for cellular homeostasis, yet the specific role of autophagy-related gene 7 (ATG7) in corneal epithelial maintenance remains unclear. Using a conditional knockout mouse model (Atg7f/f K14Cre+/−), we investigated the impact of ATG7 deficiency on corneal epithelial autophagy, morphology, and vascular dynamics. Loss of ATG7 disrupted autophagosome formation, evidenced by increased LC3B expression but reduced LC3B-positive puncta and absence of autophagosomes ultrastructurally. Although gross corneal morphology was preserved, ATG7 deficiency led to thickened epithelium and increased peripheral lymphatic vessel sprouting, indicating a pro-inflammatory and pro-lymphangiogenic microenvironment. Proteomic analysis revealed upregulation of RAB8, TM9S3, and RETR3, suggesting activation of compensatory pathways such as exophagy, reticulophagy, and Golgiphagy. Inflammatory and angiogenic components were downregulated, suggesting a moderate loss of inhibitory capacity based on the lymphatic phenotypes observed. At the same time, while these two compensatory changes occur, other proteins that positively regulate lysosome formation are reduced, resulting in a phenotype linked to deficient autophagy. These findings demonstrate that ATG7-mediated autophagy maintains corneal epithelial homeostasis and immune privilege, with implications for understanding corneal inflammation and lymphangiogenesis in ocular surface diseases. Full article
Show Figures

Figure 1

28 pages, 3546 KB  
Article
SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer
by Beatriz M. Morales-Cabán, Yadira M. Cantres-Rosario, Eduardo L. Tosado-Rodríguez, Abiel Roche-Lima, Loyda M. Meléndez, Nawal M. Boukli and Ivette J. Suarez-Arroyo
Int. J. Mol. Sci. 2025, 26(19), 9577; https://doi.org/10.3390/ijms26199577 - 1 Oct 2025
Viewed by 820
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we [...] Read more.
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we investigated the role of SCAMP3 in ERK1/2 signaling and therapeutic response using TMT-based LC-MS/MS phosphoproteomics of wild-type (WT) and SCAMP3 knockout (SC3KO) SUM-149 cells under basal conditions, after epidermal growth factor (EGF) stimulation, and during ERK1/2 inhibition with MK-8353. A total of 4408 phosphosites were quantified, with 1093 significantly changed. SC3KO abolished residual ERK activity under MK-8353 and affected the compensatory activation of oncogenic pathways observed in WT cells. SC3KO reduced the phosphorylation of ERK feedback regulators RAF proto-oncogene serine/threonine-protein kinase Raf-1 (S43) and the dual-specificity mitogen-activated protein kinase kinase 2 (MEK2) (T394), affected other ERK targets, including nucleoporins, transcription factors, and metabolic enzymes triosephosphate isomerase (TPI1) (S21) and ATP-citrate lyase (ACLY) (S455). SCAMP3 loss also impaired the mammalian target of rapamycin complex I (mTORC1) signaling and disrupted autophagic flux, evidenced by elevated sequestosome-1 (SQSTM1/p62) and microtubule-associated protein light chain 3 (LC3B-II) with reduced levels of the autophagosome lysosome maturation marker, Rab7A. Beyond ERK substrates, SC3KO affected phosphorylation events mediated by other kinases. These findings position SCAMP3 as a central coordinator of ERK signaling and autophagy. Our results support SCAMP3 as a potential therapeutic target to enhance ERK1/2 inhibitor clinical efficacy and overcome adaptive resistance mechanisms in TNBC. Full article
Show Figures

Figure 1

21 pages, 2917 KB  
Article
Recirculating Aquaculture Biosolids Are Comparable to Synthetic Fertilizers for Grain Protein and Yield in Durum Wheat
by Ryan Wheaton, Claudette Wheaton, Tanner Conrad and Matthew Recsetar
Agronomy 2025, 15(9), 2237; https://doi.org/10.3390/agronomy15092237 - 22 Sep 2025
Viewed by 757
Abstract
Nitrogen is essential for durum wheat (Triticum turgidum subsp. durum) production, yet conventional sources such as urea-ammonium nitrate (UAN) and monoammonium phosphate (MAP) are energy-intensive to manufacture and, when mismanaged, contribute to soil degradation, nutrient runoff, and greenhouse gas emissions. Organic [...] Read more.
Nitrogen is essential for durum wheat (Triticum turgidum subsp. durum) production, yet conventional sources such as urea-ammonium nitrate (UAN) and monoammonium phosphate (MAP) are energy-intensive to manufacture and, when mismanaged, contribute to soil degradation, nutrient runoff, and greenhouse gas emissions. Organic alternatives such as dairy manure solids (DMS) may reduce reliance on synthetic fertilizers but risk phosphorus accumulation and nutrient imbalances. Recirculating aquaculture systems generate nutrient-rich biosolids (RAB) that remain underutilized as fertilizers despite the rapid expansion of global aquaculture. We conducted a field experiment in Tucson, Arizona, USA, during the 2023–2024 winter growing season to evaluate RAB as a nitrogen source for Desert Durum® wheat under irrigated arid conditions. Treatments supplied equivalent nitrogen rates using UAN, MAP, DMS, or RAB. Grain yields (3.6–4.8 t ha−1) were not significantly affected by fertilizer source, but grain protein concentration was: RAB (101 ± 4 g kg−1) was statistically comparable to UAN and MAP (96 ± 5 g kg−1) and significantly higher than DMS (83 ± 4 g kg−1) by ~20%. While this study was limited to small plots and a single season, these results demonstrate that aquaculture biosolids can maintain yields while enhancing protein compared with DMS, supporting their use as a supplement to or replacement for synthetic nitrogen fertilizers in arid wheat systems. Full article
Show Figures

Figure 1

21 pages, 1381 KB  
Review
The Role of the Beclin1 Complex in Rab9-Dependent Alternative Autophagy
by Sohyeon Baek, Yunha Jo and Jihoon Nah
Int. J. Mol. Sci. 2025, 26(18), 9151; https://doi.org/10.3390/ijms26189151 - 19 Sep 2025
Viewed by 1160
Abstract
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, [...] Read more.
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, accumulating evidence has revealed the existence of an Atg5-Atg7-independent, alternative autophagy pathway that still relies on upstream regulators such as the unc-51 like autophagy activating kinase 1 (Ulk1) kinase and the Beclin1 complex. In this review, we provide a comprehensive overview of the role of the Beclin1 complex in canonical autophagy and highlight its emerging importance in alternative autophagy. Notably, the recent identification of transmembrane protein 9 (TMEM9) as a lysosomal protein that interacts with Beclin1 to promote member RAS oncogene family 9 (Rab9)-dependent autophagosome formation has significantly advanced our understanding of alternative autophagy regulation. Furthermore, this Ulk1-Rab9-Beclin1-dependent mitophagy has been shown to mediate to mitochondrial quality control in the heart, thereby contributing to cardioprotection under ischemic and metabolic stress conditions. We further examine how the Beclin1 complex functions as a central scaffold in both canonical and alternative autophagy, with a focus on its modulation by novel factors such as TMEM9 and the potential therapeutic implications of these regulatory mechanisms. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Graphical abstract

21 pages, 9432 KB  
Article
Exploring the Anticancer Potential of Proton Pump Inhibitors by Targeting GRP78 and V-ATPase: Molecular Docking, Molecular Dynamics, PCA, and MM-GBSA Calculations
by Abdo A. Elfiky, Kirolos R. Mansour, Yousef Mohamed, Yomna Kh. Abdelaziz and Ian A. Nicholls
Int. J. Mol. Sci. 2025, 26(17), 8170; https://doi.org/10.3390/ijms26178170 - 22 Aug 2025
Viewed by 1029
Abstract
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted [...] Read more.
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted to investigate the inhibitory potential of four proton pump inhibitors (PPIs), dexlasnoprazole (DEX), esomeprazole (ESO), pantoprazole (PAN), and rabeprazole (RAB), against GRP78 and V-ATPase. Molecular docking revealed high-affinity scores for PPIs against both proteins. Moreover, molecular dynamics showed favorable root mean square deviation values for GRP78 and V-ATPase complexes, whereas root mean square fluctuations were high at the substrate-binding subdomains of GRP78 complexes and the α-helices of V-ATPase. Meanwhile, the radius of gyration and the surface-accessible surface area of the complexes were not significantly affected by ligand binding. Trajectory projections of the first two principal components showed similar motions of GRP78 structures and the fluctuating nature of V-ATPase structures, while the free-energy landscape revealed the thermodynamically favored GRP78-RAB and V-ATPase-DEX conformations. Furthermore, the binding free energy was −16.59 and −18.97 kcal/mol for GRP78-RAB and V-ATPase-DEX, respectively, indicating their stability. According to our findings, RAB and DEX are promising candidates for GRP78 and V-ATPase inhibition experiments, respectively. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

44 pages, 1023 KB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Cited by 7 | Viewed by 4058
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

19 pages, 14487 KB  
Article
Genome-Wide Identification Analysis of the Rab11 Gene Family in Gossypium hirsutum and Its Expression Analysis in Verticillium dahliae
by Mengyuan Ma, Meng Zhao, Jiaxing Wang, Jianhang Zhang, Shuwei Qin, Ji Ke, Lvbing Fan, Wanting Yang, Wenjie Shen, Yaqian Lu, Mingqiang Bao, Aiping Cao, Hongbin Li and Asigul Ismayil
Genes 2025, 16(8), 961; https://doi.org/10.3390/genes16080961 - 14 Aug 2025
Viewed by 886
Abstract
Background/Objectives: RAB11 (RABA) is a type of RAB GTPase. RAB GTPases are key components of membrane trafficking mechanisms, Rab11 is implicated in a variety of biological developmental processes and responses to biotic and abiotic stresses. Nevertheless, the role of Rab11 in the [...] Read more.
Background/Objectives: RAB11 (RABA) is a type of RAB GTPase. RAB GTPases are key components of membrane trafficking mechanisms, Rab11 is implicated in a variety of biological developmental processes and responses to biotic and abiotic stresses. Nevertheless, the role of Rab11 in the defense mechanisms of cotton against Verticillium dahliae (V. dahliae) remains to be elucidated. Methods: In the present study, by analyzing the transcriptome data of Gossypium hirsutum (G. hirsutum) infected with V. dahliae, in combination with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, the research focused on endocytosis. Further, through bioinformatics approaches, the endocytosis-related gene Rab11 was identified. We conducted a genome-wide identification and analysis of Rab11 in G. hirsutum. In addition, by integrating transcription factor (TF) prediction, prediction of protein–protein interactions (PPI) and quantitative real-time polymerase chain reaction (qRT-PCR), the gene expression of Rab11 at different infection periods of V. dahliae (0, 24 and 72 hpi) were analyzed and validated. Results: The analysis of transcriptome data revealed that the endocytosis pathway is implicated in the stress response of cotton to V. dahliae. Additionally, three Rab11 genes were identified as being involved in this stress response. Phylogenetic analysis revealed that the 65 genes in the Rab11 family could be divided into four subgroups, each with similar gene structures and conserved motif patterns. Conclusions: The downregulation of Rab11 in G. hirsutum is closely linked to its defense against V. dahliae. TF prediction coupled with PPI offers a roadmap for dissecting the signaling pathways, functional validation, and network construction of the three GhRab11 genes. Full article
(This article belongs to the Special Issue Physiological and Molecular Mechanisms of Plant Stress Response)
Show Figures

Figure 1

23 pages, 3665 KB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Cited by 1 | Viewed by 1064
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

11 pages, 1293 KB  
Article
RAB24 Missense Variant in Dogs with Cerebellar Ataxia
by Cleo Schwarz, Jan Wennemuth, Julien Guevar, Francesca Dörn, Vidhya Jagannathan and Tosso Leeb
Genes 2025, 16(8), 934; https://doi.org/10.3390/genes16080934 - 4 Aug 2025
Viewed by 999
Abstract
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar [...] Read more.
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar ataxia, hypermetria, and absent menace response. The MRI revealed generalized brain atrophy, reduced cortical demarcation, hypoplastic corpus callosum, and cerebellar folia thinning, highly suggestive of a neurodegenerative disorder. We sequenced the genomes of the two affected dogs and their unaffected parents. Filtering for protein-changing variants that had homozygous alternate genotypes in the affected dogs, heterozygous genotypes in the parents, and homozygous reference genotypes in 1576 control genomes yielded a single missense variant in the RAB24 gene, XM_038534663.1:c.239G>T or XP_038390591.1:p.(Gly80Val). Genotypes at this variant showed the expected co-segregation with the ataxia phenotype in the investigated family. The predicted amino acid affects the conserved RabF4 motif. Glycine-80 resides at the protein surface and the introduction of a hydrophobic isopropyl side chain of the mutant valine might impede solvent accessibility. Another missense variant in RAB24, p.Glu38Pro, was previously reported to cause a clinically similar form of cerebellar ataxia in Gordon Setters and Old English Sheepdogs. Taken together, the available data suggest that RAB24:p.Gly80Val represents the causal variant in the studied dogs. To the best of our knowledge, this is only the second report of a potentially pathogenic RAB24 variant in any species and further supports that RAB24 should be considered a candidate gene in human ataxia patients with unclear molecular etiology. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

30 pages, 4119 KB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 977
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

11 pages, 2647 KB  
Communication
The Interaction of pT73-Rab10 with Myosin Va, but Not Myosin Vb, Is Regulated Though a Site in the Globular Tail Domain
by Lynne A. Lapierre, Elizabeth H. Manning, Kyra S. Thomas, Catherine Caldwell and James R. Goldenring
Cells 2025, 14(15), 1140; https://doi.org/10.3390/cells14151140 - 24 Jul 2025
Viewed by 602
Abstract
The phosphorylation of Rab10 (pT73-Rab10) by LRRK2 promotes the establishment of epithelial cell polarity by controlling the trafficking to the primary cilia membrane of cilia-resident proteins and signaling proteins. Previous studies have identified a site in the globular tail domain of MYO5A that [...] Read more.
The phosphorylation of Rab10 (pT73-Rab10) by LRRK2 promotes the establishment of epithelial cell polarity by controlling the trafficking to the primary cilia membrane of cilia-resident proteins and signaling proteins. Previous studies have identified a site in the globular tail domain of MYO5A that specifically binds to only the phosphorylated form of Rab10. In this work, we have demonstrated that pT73-Rab10 does not associate with the globular tail of MYO5B. We have mapped the putative binding site to a required three amino acids (MEN, 1473–1475) in the MYO5A globular tail domain that are not found in the MYO5B globular tail. Substitution of the MEN amino acid sequence found in MYO5A into the paralogous position in the MYO5B globular tail conferred the ability to associate with pT73-Rab10. The results demonstrate that the interactors with MYO5A and MYO5B are not completely overlapping and that the interaction of pT73-Rab10 is specific to the MYO5A globular tail domain. Full article
Show Figures

Graphical abstract

Back to TopTop