Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (610)

Search Parameters:
Keywords = rab18

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3546 KB  
Article
SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer
by Beatriz M. Morales-Cabán, Yadira M. Cantres-Rosario, Eduardo L. Tosado-Rodríguez, Abiel Roche-Lima, Loyda M. Meléndez, Nawal M. Boukli and Ivette J. Suarez-Arroyo
Int. J. Mol. Sci. 2025, 26(19), 9577; https://doi.org/10.3390/ijms26199577 - 1 Oct 2025
Viewed by 284
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we [...] Read more.
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we investigated the role of SCAMP3 in ERK1/2 signaling and therapeutic response using TMT-based LC-MS/MS phosphoproteomics of wild-type (WT) and SCAMP3 knockout (SC3KO) SUM-149 cells under basal conditions, after epidermal growth factor (EGF) stimulation, and during ERK1/2 inhibition with MK-8353. A total of 4408 phosphosites were quantified, with 1093 significantly changed. SC3KO abolished residual ERK activity under MK-8353 and affected the compensatory activation of oncogenic pathways observed in WT cells. SC3KO reduced the phosphorylation of ERK feedback regulators RAF proto-oncogene serine/threonine-protein kinase Raf-1 (S43) and the dual-specificity mitogen-activated protein kinase kinase 2 (MEK2) (T394), affected other ERK targets, including nucleoporins, transcription factors, and metabolic enzymes triosephosphate isomerase (TPI1) (S21) and ATP-citrate lyase (ACLY) (S455). SCAMP3 loss also impaired the mammalian target of rapamycin complex I (mTORC1) signaling and disrupted autophagic flux, evidenced by elevated sequestosome-1 (SQSTM1/p62) and microtubule-associated protein light chain 3 (LC3B-II) with reduced levels of the autophagosome lysosome maturation marker, Rab7A. Beyond ERK substrates, SC3KO affected phosphorylation events mediated by other kinases. These findings position SCAMP3 as a central coordinator of ERK signaling and autophagy. Our results support SCAMP3 as a potential therapeutic target to enhance ERK1/2 inhibitor clinical efficacy and overcome adaptive resistance mechanisms in TNBC. Full article
Show Figures

Figure 1

21 pages, 2917 KB  
Article
Recirculating Aquaculture Biosolids Are Comparable to Synthetic Fertilizers for Grain Protein and Yield in Durum Wheat
by Ryan Wheaton, Claudette Wheaton, Tanner Conrad and Matthew Recsetar
Agronomy 2025, 15(9), 2237; https://doi.org/10.3390/agronomy15092237 - 22 Sep 2025
Viewed by 311
Abstract
Nitrogen is essential for durum wheat (Triticum turgidum subsp. durum) production, yet conventional sources such as urea-ammonium nitrate (UAN) and monoammonium phosphate (MAP) are energy-intensive to manufacture and, when mismanaged, contribute to soil degradation, nutrient runoff, and greenhouse gas emissions. Organic [...] Read more.
Nitrogen is essential for durum wheat (Triticum turgidum subsp. durum) production, yet conventional sources such as urea-ammonium nitrate (UAN) and monoammonium phosphate (MAP) are energy-intensive to manufacture and, when mismanaged, contribute to soil degradation, nutrient runoff, and greenhouse gas emissions. Organic alternatives such as dairy manure solids (DMS) may reduce reliance on synthetic fertilizers but risk phosphorus accumulation and nutrient imbalances. Recirculating aquaculture systems generate nutrient-rich biosolids (RAB) that remain underutilized as fertilizers despite the rapid expansion of global aquaculture. We conducted a field experiment in Tucson, Arizona, USA, during the 2023–2024 winter growing season to evaluate RAB as a nitrogen source for Desert Durum® wheat under irrigated arid conditions. Treatments supplied equivalent nitrogen rates using UAN, MAP, DMS, or RAB. Grain yields (3.6–4.8 t ha−1) were not significantly affected by fertilizer source, but grain protein concentration was: RAB (101 ± 4 g kg−1) was statistically comparable to UAN and MAP (96 ± 5 g kg−1) and significantly higher than DMS (83 ± 4 g kg−1) by ~20%. While this study was limited to small plots and a single season, these results demonstrate that aquaculture biosolids can maintain yields while enhancing protein compared with DMS, supporting their use as a supplement to or replacement for synthetic nitrogen fertilizers in arid wheat systems. Full article
Show Figures

Figure 1

21 pages, 1381 KB  
Review
The Role of the Beclin1 Complex in Rab9-Dependent Alternative Autophagy
by Sohyeon Baek, Yunha Jo and Jihoon Nah
Int. J. Mol. Sci. 2025, 26(18), 9151; https://doi.org/10.3390/ijms26189151 - 19 Sep 2025
Viewed by 432
Abstract
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, [...] Read more.
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, accumulating evidence has revealed the existence of an Atg5-Atg7-independent, alternative autophagy pathway that still relies on upstream regulators such as the unc-51 like autophagy activating kinase 1 (Ulk1) kinase and the Beclin1 complex. In this review, we provide a comprehensive overview of the role of the Beclin1 complex in canonical autophagy and highlight its emerging importance in alternative autophagy. Notably, the recent identification of transmembrane protein 9 (TMEM9) as a lysosomal protein that interacts with Beclin1 to promote member RAS oncogene family 9 (Rab9)-dependent autophagosome formation has significantly advanced our understanding of alternative autophagy regulation. Furthermore, this Ulk1-Rab9-Beclin1-dependent mitophagy has been shown to mediate to mitochondrial quality control in the heart, thereby contributing to cardioprotection under ischemic and metabolic stress conditions. We further examine how the Beclin1 complex functions as a central scaffold in both canonical and alternative autophagy, with a focus on its modulation by novel factors such as TMEM9 and the potential therapeutic implications of these regulatory mechanisms. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Graphical abstract

21 pages, 5069 KB  
Article
Integrated miRNA-mRNA Analyses of Triple-Negative Breast Cancer in Black and White Patients with or Without Obesity
by Fokhrul Hossain, Martha I. Gonzalez-Ramirez, Jone Garai, Diana Polania-Villanueva, Li Li, Farzeen Nafees, Md Manirujjaman, Bolin Liu, Samarpan Majumder, Xiao-Cheng Wu, Chindo Hicks, Luis Del Valle, Denise Danos, Augusto Ochoa, Lucio Miele and Jovanny Zabaleta
Int. J. Mol. Sci. 2025, 26(18), 9101; https://doi.org/10.3390/ijms26189101 - 18 Sep 2025
Viewed by 415
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous subtype of breast cancer. miRNAs play an essential role in TNBC pathogenesis and prognosis. Obesity is linked with an increased risk for several cancers, including breast cancer. Obesity is also related to the dysregulation of [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous subtype of breast cancer. miRNAs play an essential role in TNBC pathogenesis and prognosis. Obesity is linked with an increased risk for several cancers, including breast cancer. Obesity is also related to the dysregulation of miRNA expression in adipose tissues. However, there is limited knowledge about race- and obesity-specific differential miRNA expression in TNBC. We performed miRNA sequencing of 48 samples (24 tumor and 24 adjacent non-tumor tissues) and RNA sequencing of 24 tumors samples from Black (AA) and White (EA) TNBC patients with or without obesity. We identified 55 miRNAs exclusively associated with tumors in obese EA patients and 33 miRNAs in obese AA patients, each capable of distinguishing tumor tissues from obese from lean individuals within their respective racial groups. In EA, we detected 41 significant miRNA–mRNA correlations. Notably, miR-181b-5p and miR-877-5p acted as negative regulators of tumor-suppressor genes (e.g., HEY2, MCL2, HAND2), while miR-204-5p and miR-143-3p appeared to indirectly target oncogenes (e.g., RAB10, DR1, PTBP3, NCBP1). Among AA patients, we found 28 significant miRNA–mRNA interactions. miR-195-5p, miR-130a-3p, miR-130a-5p, miR-424-5p, miR-148a-3p, miR-374-5p, and miR-30a-5p each potentially downregulated two or more genes (e.g., CLCN4, PLCB1, CDC25B, AEBP2, ERBB4). Pathway enrichment analysis highlighted KRAS, ESR1, ESR2, RAB10, TNRC6C, and NCAN as the most commonly differentially expressed in EA, whereas ERBB4, PLCB1, and SERPINE1 were most frequently in AA. These findings highlight the importance of considering race-specific miRNA–mRNA signatures in understanding TNBC in the context of obesity, offering insights into biomarker-driven patient stratification for targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
Show Figures

Figure 1

19 pages, 3899 KB  
Article
An Automatic Brain Cortex Segmentation Technique Based on Dynamic Recalibration and Region Awareness
by Jiaofen Nan, Gaodeng Fan, Kaifan Zhang, Shuyao Zhai, Xueqi Jin, Duan Li and Chunlai Yu
Electronics 2025, 14(18), 3631; https://doi.org/10.3390/electronics14183631 - 13 Sep 2025
Viewed by 286
Abstract
To address the limitations in the accuracy of current cerebral cortex structure segmentation methods, this study proposes an automatic segmentation network based on dynamic recalibration and region awareness. The network is an improved version of the classic U-shaped architecture, incorporating a Dynamic Recalibration [...] Read more.
To address the limitations in the accuracy of current cerebral cortex structure segmentation methods, this study proposes an automatic segmentation network based on dynamic recalibration and region awareness. The network is an improved version of the classic U-shaped architecture, incorporating a Dynamic Recalibration Block (DRB) and a Region-Aware Block (RAB). The DRB enhances important feature channels by extracting global feature information across channels, computing the significance weights via a two-layer fully connected network, and applying these weights to the original feature maps for dynamic feature reweighting. Meanwhile, the RAB integrates spatial positional information and captures both global and local context across multiple dimensions. It recalibrates features using dimension-specific weights, enabling region-aware feature association and complementing the DRB’s function. Together, these components enable efficient and accurate segmentation of brain structures. The proposed DRA-Net model effectively overcomes the accuracy–efficiency trade-off in cortical segmentation through multi-scale feature fusion, dual attention mechanisms, and deep feature extraction strategies. Experimental results demonstrate that DRA-Net achieves an average Dice score of 91.35% across multiple datasets, outperforming segmentation atlases based on methods such as U-Net, QuickNAT, and FastSurfer. Full article
Show Figures

Figure 1

17 pages, 6302 KB  
Article
Integration of eQTL and GEO Datasets to Identify Genes Associated with Breast Ductal Carcinoma In Situ
by Cai-Qin Mo, Rui-Wang Xie, Wei-Wei Li, Min-Jie Zhong, Yu-Yang Li, Jun-Yu Lin, Juan-Si Zhang, Sheng-Kai Zheng, Wei Lin, Ling-Jun Kong, Sun-Wang Xu and Xiang-Jin Chen
Curr. Issues Mol. Biol. 2025, 47(9), 747; https://doi.org/10.3390/cimb47090747 - 11 Sep 2025
Viewed by 486
Abstract
Background: Breast ductal carcinoma in situ (DCIS), a common precursor of breast cancer, has poorly understood susceptible driver genes. This study aimed to identify genes influencing DCIS progression by integrating Mendelian randomization (MR) and Gene Expression Omnibus (GEO) datasets. Methods: The GEO database [...] Read more.
Background: Breast ductal carcinoma in situ (DCIS), a common precursor of breast cancer, has poorly understood susceptible driver genes. This study aimed to identify genes influencing DCIS progression by integrating Mendelian randomization (MR) and Gene Expression Omnibus (GEO) datasets. Methods: The GEO database was searched for DCIS-related datasets to extract differentially expressed genes (DEGs). MR was employed to find exposure single-nucleotide polymorphisms (SNPs) of expression quantitative trait locus (eQTL) gene expression from Genome-Wide Association Study database (GWAS) (IEU openGWAS project). DCIS was designated as the outcome variable. The intersection of genes was used for GO, KEGG and CIBERSORT analyses. The functional validation of selected DEGs was performed using Transwell invasion assays. Results: Four datasets (GSE7782, GSE16873, GSE21422, and GSE59246) and 19,943 eQTL exposure data were obtained from GEO and the IEU openGWAS project, respectively. By intersecting DEGs, 13 genes (LGALS8, PTPN12, YTHDC2, RNGTT, CYB5R2, KLHDC4, APOBEC3G, GPX3, RASA3, TSPAN4, MAPKAPK3, ZFP37, and RAB3IL1) were incorporated into subsequent KEGG and GO analyses. Functional assays confirmed that silencing PTPN12, YTHDC2 and MAPKAPK3, or overexpressing GPX3, RASA3 and TSPAN4, significantly suppressed DCIS cell invasion. These DEGs were linked to immune functions, such as antigen processing and presentation and the tumor microenvironment (TME), and they showed associations with dendritic cell activation differences. Conclusions: Thirteen genes were associated with DCIS progression, and six genes were validated in the cell experiments. KEGG and GO analyses highlight TME’s role in early breast cancer, enhancing understanding of DCIS occurrence and aiding identification of high-risk tumors. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

28 pages, 7900 KB  
Article
Sublethal Doxorubicin Promotes Extracellular Vesicle Biogenesis in A375 Melanoma Cells: Implications for Vesicle-Loaded TGF-β-Mediated Cancer Progression and Cardiovascular Pathophysiology
by Laura Fernanda Fernández-Fonseca, Susana Novoa-Herrán, Adriana Umaña-Pérez and Luis Alberto Gómez-Grosso
Int. J. Mol. Sci. 2025, 26(17), 8524; https://doi.org/10.3390/ijms26178524 - 2 Sep 2025
Viewed by 573
Abstract
Doxorubicin (Dox) is not a first-line treatment for melanoma due to limited antitumor efficacy and dose-dependent cardiotoxicity. However, sublethal doses may trigger adaptive cellular responses that influence tumor progression and systemic toxicity. Small extracellular vesicles (EVs) are key mediators of intercellular communication and [...] Read more.
Doxorubicin (Dox) is not a first-line treatment for melanoma due to limited antitumor efficacy and dose-dependent cardiotoxicity. However, sublethal doses may trigger adaptive cellular responses that influence tumor progression and systemic toxicity. Small extracellular vesicles (EVs) are key mediators of intercellular communication and can carry bioactive molecules that modulate both the tumor microenvironment and distant tissues. This study investigates how sublethal Dox exposure alters EV biogenesis and cargo in A375 melanoma cells and explores the potential implications for cardiovascular function. We treated human A375 melanoma cells with 10 nM dox for 96 h. EVs were isolated using differential ultracentrifugation and size exclusion chromatography. Vesicle characterization included Immunocytochemistry for CD63, CD81, CD9, Rab7 and TSG101, scanning electron microscopy (SEM) Nanoparticle Tracking Analysis (NTA), and Western blotting for CD81 and CytC. We analyzed cytokine content using cytokine membrane arrays. Guinea pig cardiomyocytes were exposed to the isolated vesicles, and mitochondrial activity was evaluated using the MTT assay. Statistical analysis included t-tests, ANOVA, Cohen’s d, and R2 and η2. Dox exposure significantly increased EV production (13.6-fold; p = 0.000014) and shifted vesicle size distribution. CD81 expression was significantly upregulated (p = 0.0083), and SEM (microscopy) confirmed enhanced vesiculation. EVs from treated cells were enriched in TGF-β (p = 0.0134), VEGF, CXCL1, CXCL12, CCL5, IL-3, IL-4, IL-10, Galectin-3, and KITLG. Cardiomyocytes exposed to these vesicles showed a 2.3-fold reduction in mitochondrial activity (p = 0.0021), an effect absent when vesicles were removed. Bioinformatic analysis linked EV cargo to pathways involved in cardiac hypertrophy, inflammation, and fibrosis. As conclusion, sublethal Doxorubicin reprograms melanoma-derived EVs by enhancing their production and enriching their cargo with profibrotic and immunomodulatory mediators. These vesicles may contribute to tumor progression and cardiovascular physiopathology, suggesting that targeting EVs could improve therapeutic outcomes in cancer and cardiovascular disease. Full article
Show Figures

Figure 1

17 pages, 3078 KB  
Article
Ferrostatin-1 Prevents Salivary Gland Dysfunction in an Ovariectomized Rat Model by Suppressing Mitophagy-Driven Ferroptosis
by Gi Cheol Park, Soo-Young Bang, Ji Min Kim, Sung-Chan Shin, Yong-il Cheon, Hanaro Park, Sunghwan Suh, Jung Hwan Cho, Eui-Suk Sung, Minhyung Lee, Jin-Choon Lee and Byung-Joo Lee
Antioxidants 2025, 14(9), 1058; https://doi.org/10.3390/antiox14091058 - 28 Aug 2025
Viewed by 662
Abstract
Salivary gland dysfunction is a common but underexplored complication of menopause that contributes to oral dryness, dysphagia, and increased risk of infection. Although ferroptosis, a form of regulated necrotic cell death driven by iron-dependent lipid peroxidation, has recently been implicated in postmenopausal tissue [...] Read more.
Salivary gland dysfunction is a common but underexplored complication of menopause that contributes to oral dryness, dysphagia, and increased risk of infection. Although ferroptosis, a form of regulated necrotic cell death driven by iron-dependent lipid peroxidation, has recently been implicated in postmenopausal tissue degeneration, its regulatory mechanisms in salivary glands remain unclear. In this study, we investigated the roles of mitochondrial dysfunction and mitophagy in driving ferroptosis-induced salivary gland injury in an ovariectomized (OVX) rat model of estrogen deficiency. OVX rats exhibited elevated markers of oxidative stress, lipid accumulation, and iron overload, and suppression of GPX4 activity in the salivary glands, consistent with ferroptotic activation. These changes were accompanied by impaired mitochondrial dynamics (MFN1 and OPA1), decreased expression of mitochondrial antioxidant regulators (PGC-1α, SOD, and catalase), and upregulation of mitophagy-related genes (PINK1, ULK1, Rab9, and LC3B), as well as LAMP, a lysosomal marker involved in autophagosome–lysosome fusion, while ferritinophagy (NCOA4) remained unchanged. Early administration of ferrostatin-1 effectively suppressed these pathological changes, preserving both glandular structure and function, as evidenced by the restored AQP5 and AMY2A expression. Collectively, our findings reveal that ferroptosis in estrogen-deficient salivary glands is regulated by mitochondrial instability and aberrant mitophagy, and ferrostatin-1 mitigates this cascade through multi-level mitochondrial protection. These results highlight ferrostatin-1 as a promising preventive agent against menopause-associated salivary gland dysfunction, with broader implications for organ-specific ferroptosis modulation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 9432 KB  
Article
Exploring the Anticancer Potential of Proton Pump Inhibitors by Targeting GRP78 and V-ATPase: Molecular Docking, Molecular Dynamics, PCA, and MM-GBSA Calculations
by Abdo A. Elfiky, Kirolos R. Mansour, Yousef Mohamed, Yomna Kh. Abdelaziz and Ian A. Nicholls
Int. J. Mol. Sci. 2025, 26(17), 8170; https://doi.org/10.3390/ijms26178170 - 22 Aug 2025
Viewed by 679
Abstract
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted [...] Read more.
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted to investigate the inhibitory potential of four proton pump inhibitors (PPIs), dexlasnoprazole (DEX), esomeprazole (ESO), pantoprazole (PAN), and rabeprazole (RAB), against GRP78 and V-ATPase. Molecular docking revealed high-affinity scores for PPIs against both proteins. Moreover, molecular dynamics showed favorable root mean square deviation values for GRP78 and V-ATPase complexes, whereas root mean square fluctuations were high at the substrate-binding subdomains of GRP78 complexes and the α-helices of V-ATPase. Meanwhile, the radius of gyration and the surface-accessible surface area of the complexes were not significantly affected by ligand binding. Trajectory projections of the first two principal components showed similar motions of GRP78 structures and the fluctuating nature of V-ATPase structures, while the free-energy landscape revealed the thermodynamically favored GRP78-RAB and V-ATPase-DEX conformations. Furthermore, the binding free energy was −16.59 and −18.97 kcal/mol for GRP78-RAB and V-ATPase-DEX, respectively, indicating their stability. According to our findings, RAB and DEX are promising candidates for GRP78 and V-ATPase inhibition experiments, respectively. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

44 pages, 1023 KB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Cited by 2 | Viewed by 2233
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

19 pages, 14487 KB  
Article
Genome-Wide Identification Analysis of the Rab11 Gene Family in Gossypium hirsutum and Its Expression Analysis in Verticillium dahliae
by Mengyuan Ma, Meng Zhao, Jiaxing Wang, Jianhang Zhang, Shuwei Qin, Ji Ke, Lvbing Fan, Wanting Yang, Wenjie Shen, Yaqian Lu, Mingqiang Bao, Aiping Cao, Hongbin Li and Asigul Ismayil
Genes 2025, 16(8), 961; https://doi.org/10.3390/genes16080961 - 14 Aug 2025
Viewed by 706
Abstract
Background/Objectives: RAB11 (RABA) is a type of RAB GTPase. RAB GTPases are key components of membrane trafficking mechanisms, Rab11 is implicated in a variety of biological developmental processes and responses to biotic and abiotic stresses. Nevertheless, the role of Rab11 in the [...] Read more.
Background/Objectives: RAB11 (RABA) is a type of RAB GTPase. RAB GTPases are key components of membrane trafficking mechanisms, Rab11 is implicated in a variety of biological developmental processes and responses to biotic and abiotic stresses. Nevertheless, the role of Rab11 in the defense mechanisms of cotton against Verticillium dahliae (V. dahliae) remains to be elucidated. Methods: In the present study, by analyzing the transcriptome data of Gossypium hirsutum (G. hirsutum) infected with V. dahliae, in combination with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, the research focused on endocytosis. Further, through bioinformatics approaches, the endocytosis-related gene Rab11 was identified. We conducted a genome-wide identification and analysis of Rab11 in G. hirsutum. In addition, by integrating transcription factor (TF) prediction, prediction of protein–protein interactions (PPI) and quantitative real-time polymerase chain reaction (qRT-PCR), the gene expression of Rab11 at different infection periods of V. dahliae (0, 24 and 72 hpi) were analyzed and validated. Results: The analysis of transcriptome data revealed that the endocytosis pathway is implicated in the stress response of cotton to V. dahliae. Additionally, three Rab11 genes were identified as being involved in this stress response. Phylogenetic analysis revealed that the 65 genes in the Rab11 family could be divided into four subgroups, each with similar gene structures and conserved motif patterns. Conclusions: The downregulation of Rab11 in G. hirsutum is closely linked to its defense against V. dahliae. TF prediction coupled with PPI offers a roadmap for dissecting the signaling pathways, functional validation, and network construction of the three GhRab11 genes. Full article
(This article belongs to the Special Issue Physiological and Molecular Mechanisms of Plant Stress Response)
Show Figures

Figure 1

23 pages, 3665 KB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Viewed by 667
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

11 pages, 1293 KB  
Article
RAB24 Missense Variant in Dogs with Cerebellar Ataxia
by Cleo Schwarz, Jan Wennemuth, Julien Guevar, Francesca Dörn, Vidhya Jagannathan and Tosso Leeb
Genes 2025, 16(8), 934; https://doi.org/10.3390/genes16080934 - 4 Aug 2025
Viewed by 759
Abstract
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar [...] Read more.
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar ataxia, hypermetria, and absent menace response. The MRI revealed generalized brain atrophy, reduced cortical demarcation, hypoplastic corpus callosum, and cerebellar folia thinning, highly suggestive of a neurodegenerative disorder. We sequenced the genomes of the two affected dogs and their unaffected parents. Filtering for protein-changing variants that had homozygous alternate genotypes in the affected dogs, heterozygous genotypes in the parents, and homozygous reference genotypes in 1576 control genomes yielded a single missense variant in the RAB24 gene, XM_038534663.1:c.239G>T or XP_038390591.1:p.(Gly80Val). Genotypes at this variant showed the expected co-segregation with the ataxia phenotype in the investigated family. The predicted amino acid affects the conserved RabF4 motif. Glycine-80 resides at the protein surface and the introduction of a hydrophobic isopropyl side chain of the mutant valine might impede solvent accessibility. Another missense variant in RAB24, p.Glu38Pro, was previously reported to cause a clinically similar form of cerebellar ataxia in Gordon Setters and Old English Sheepdogs. Taken together, the available data suggest that RAB24:p.Gly80Val represents the causal variant in the studied dogs. To the best of our knowledge, this is only the second report of a potentially pathogenic RAB24 variant in any species and further supports that RAB24 should be considered a candidate gene in human ataxia patients with unclear molecular etiology. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

30 pages, 4119 KB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 703
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

27 pages, 4786 KB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 1506
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

Back to TopTop