Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = radiohalogenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1859 KB  
Article
PET and SPECT Tracer Development via Copper-Mediated Radiohalogenation of Divergent and Stable Aryl-Boronic Esters
by Austin Craig, Frederik J. Sachse, Markus Laube, Florian Brandt, Klaus Kopka and Sven Stadlbauer
Pharmaceutics 2025, 17(7), 837; https://doi.org/10.3390/pharmaceutics17070837 - 26 Jun 2025
Cited by 2 | Viewed by 879
Abstract
Background/Objectives: Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly sensitive clinical imaging modalities, frequently employed in conjunction with magnetic resonance imaging (MRI) or computed tomography (CT) for diagnosing a wide range of disorders. Efficient and robust radiolabeling methods [...] Read more.
Background/Objectives: Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly sensitive clinical imaging modalities, frequently employed in conjunction with magnetic resonance imaging (MRI) or computed tomography (CT) for diagnosing a wide range of disorders. Efficient and robust radiolabeling methods are needed to accommodate the increasing demand for PET and SPECT tracer development. Copper-mediated radiohalogenation (CMRH) reactions enable rapid late-stage preparation of radiolabeled arenes, yet synthetic challenges and radiolabeling precursors’ instability can limit the applications of CMRH approaches. Methods: A series of aryl-boronic acids were converted into their corresponding aryl-boronic acid 1,1,2,2-tetraethylethylene glycol esters [ArB(Epin)s] and aryl-boronic acid 1,1,2,2-tetrapropylethylene glycol esters [ArB(Ppin)s] as stable and versatile precursor building blocks for radiolabeling via CMRH. General protocols for the preparation of 18F-labeled and 123I-labeled arenes utilizing CMRH of these substrates were developed and applied. The radiochemical conversions (RCC) were determined by radio-(U)HPLC. Results: Both ArB(Epin)s and ArB(Ppin)s-based radiolabeling precursors were prepared in a one-step synthesis with chemical yields of 49–99%. Radiolabeling of the aryl-boronic esters with fluorine-18 or iodine-123 via CMRH furnished the corresponding radiolabeled arenes with RCC of 7–99% and 10–99%, respectively. Notably, a radiohalogenated prosthetic group containing a vinyl sulfone motif was obtained with an activity yield (AY) of 18 ± 3%, and applied towards the preparation of two clinically relevant PET tracers. Conclusions: This approach enables the synthesis of stable radiolabeling precursors and thus provides increased versatility in the application of CMRH, thereby supporting the development of novel PET and SPECT radiotracers. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

28 pages, 12562 KB  
Review
NOTA and NODAGA Radionuclide Complexing Agents: Versatile Approaches for Advancements in Radiochemistry
by Claudia G. Chambers, Jing Wang, Tamer M. Sakr, Yubin Miao and Charles J. Smith
Molecules 2025, 30(10), 2095; https://doi.org/10.3390/molecules30102095 - 8 May 2025
Cited by 1 | Viewed by 1432
Abstract
Effective molecular imaging and targeted cancer therapy rely on receptor-specific targeted delivery systems that are both metabolically stable and kinetically inert for optimal in vivo performance. Until now, no single metal complexing agent has demonstrated the versatility to coordinate metals across the periodic [...] Read more.
Effective molecular imaging and targeted cancer therapy rely on receptor-specific targeted delivery systems that are both metabolically stable and kinetically inert for optimal in vivo performance. Until now, no single metal complexing agent has demonstrated the versatility to coordinate metals across the periodic table while maintaining the kinetic inertness required for clinical theranostic applications. Therefore, enhancing the in vivo kinetic stability of radiolabeled, cell-targeting, biologically active compounds remains a critical goal to minimize unintended accumulation of radioactivity in collateral tissues. This review describes the usage of NOTA [NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid] and derivatives of NOTA, a metal complexing agent that has been found to have the ability to effectively coordinate with a wide range of radiometals, including metal-radiohalogens, to form stable complexes. This enables the development of new cell-targeting small molecule and peptide conjugates with the potential to resist demetallation in vivo, thereby reducing radionuclide uptake in non-target tissues. Herein, we discuss the design and development of NOTA-based, cell-targeting, small molecules having very high affinity and selectivity for the GRPR (Gastrin-Releasing Peptide Receptor), the SSTR2 (Somatostatin Receptor Subtype 2), and the MC1R (Melanocortin-1) receptors that are present on the surfaces of numerous solid primary human tumors and their metastatic counterparts. Full article
Show Figures

Figure 1

18 pages, 3589 KB  
Article
Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211
by Chiara Timperanza, Holger Jensen, Tom Bäck, Sture Lindegren and Emma Aneheim
Pharmaceuticals 2023, 16(4), 595; https://doi.org/10.3390/ph16040595 - 15 Apr 2023
Cited by 13 | Viewed by 3735
Abstract
To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we [...] Read more.
To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66–91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At. Full article
Show Figures

Figure 1

17 pages, 2355 KB  
Article
A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs
by Maria Noelia Chao, Jean-Michel Chezal, Eric Debiton, Damien Canitrot, Tiffany Witkowski, Sophie Levesque, Françoise Degoul, Sébastien Tarrit, Barbara Wenzel, Elisabeth Miot-Noirault, Audrey Serre and Aurélie Maisonial-Besset
Pharmaceuticals 2022, 15(2), 162; https://doi.org/10.3390/ph15020162 - 28 Jan 2022
Cited by 4 | Viewed by 3847
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, [...] Read more.
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%). Full article
Show Figures

Figure 1

12 pages, 1791 KB  
Article
Synthesis and Evaluation of a Dimeric RGD Peptide as a Preliminary Study for Radiotheranostics with Radiohalogens
by Hiroaki Echigo, Kenji Mishiro, Takeshi Fuchigami, Kazuhiro Shiba, Seigo Kinuya and Kazuma Ogawa
Molecules 2021, 26(20), 6107; https://doi.org/10.3390/molecules26206107 - 10 Oct 2021
Cited by 15 | Viewed by 3240
Abstract
We recently developed 125I- and 211At-labeled monomer RGD peptides using a novel radiolabeling method. Both labeled peptides showed high accumulation in the tumor and exhibited similar biodistribution, demonstrating their usefulness for radiotheranostics. This study applied the labeling method to a dimer [...] Read more.
We recently developed 125I- and 211At-labeled monomer RGD peptides using a novel radiolabeling method. Both labeled peptides showed high accumulation in the tumor and exhibited similar biodistribution, demonstrating their usefulness for radiotheranostics. This study applied the labeling method to a dimer RGD peptide with the aim of gaining higher accumulation in tumor tissues based on improved affinity with αvβ3 integrin. We synthesized an iodine-introduced dimer RGD peptide, E[c(RGDfK)] (6), and an 125/131I-labeled dimer RGD peptide, E[c(RGDfK)]{[125/131I]c[RGDf(4-I)K]} ([125/131I]6), and evaluated them as a preliminary step to the synthesis of an 211At-labeled dimer RGD peptide. The affinity of 6 for αvβ3 integrin was higher than that of a monomer RGD peptide. In the biodistribution experiment at 4 h postinjection, the accumulation of [125I]6 (4.12 ± 0.42% ID/g) in the tumor was significantly increased compared with that of 125I-labeled monomer RGD peptide (2.93 ± 0.08% ID/g). Moreover, the accumulation of [125I]6 in the tumor was greatly inhibited by co-injection of an excess RGD peptide. However, a single injection of [131I]6 (11.1 MBq) did not inhibit tumor growth in tumor-bearing mice. We expect that the labeling method for targeted alpha therapy with 211At using a dimer RGD peptide could prove useful in future clinical applications. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

22 pages, 2705 KB  
Review
Radiolabeling Strategies of Nanobodies for Imaging Applications
by Jim Küppers, Stefan Kürpig, Ralph A. Bundschuh, Markus Essler and Susanne Lütje
Diagnostics 2021, 11(9), 1530; https://doi.org/10.3390/diagnostics11091530 - 25 Aug 2021
Cited by 16 | Viewed by 7393
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the [...] Read more.
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 2627 KB  
Review
Applications of Radiolabelled Curcumin and Its Derivatives in Medicinal Chemistry
by Matteo Mari, Debora Carrozza, Erika Ferrari and Mattia Asti
Int. J. Mol. Sci. 2021, 22(14), 7410; https://doi.org/10.3390/ijms22147410 - 10 Jul 2021
Cited by 14 | Viewed by 3452
Abstract
Curcumin is a natural occurring molecule that has aroused much interest among researchers over the years due to its pleiotropic set of biological properties. In the nuclear medicine field, radiolabelled curcumin and curcumin derivatives have been studied as potential radiotracers for the early [...] Read more.
Curcumin is a natural occurring molecule that has aroused much interest among researchers over the years due to its pleiotropic set of biological properties. In the nuclear medicine field, radiolabelled curcumin and curcumin derivatives have been studied as potential radiotracers for the early diagnosis of Alzheimer’s disease and cancer. In the present review, the synthetic pathways, labelling methods and the preclinical investigations involving these radioactive compounds are treated. The studies entailed chemical modifications for enhancing curcumin stability, as well as its functionalisation for the labelling with several radiohalogens or metal radionuclides (fluorine-18, technetium-99m, gallium-68, etc.). Although some drawbacks have yet to be addressed, and none of the radiolabelled curcuminoids have so far achieved clinical application, the studies performed hitherto provide useful insights and lay the foundation for further developments. Full article
(This article belongs to the Special Issue Curcumin in Health and Disease 3.0)
Show Figures

Figure 1

30 pages, 35703 KB  
Review
Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals
by Sajid Mushtaq, Seong-Jae Yun and Jongho Jeon
Molecules 2019, 24(19), 3567; https://doi.org/10.3390/molecules24193567 - 2 Oct 2019
Cited by 58 | Viewed by 14284
Abstract
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for [...] Read more.
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction. Due to their excellent specificities and high reaction rates, these conjugation methods have been utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules. The radiolabeled products prepared by these methods have been applied to preclinical research, such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells. In this review, we explain the basics of these chemical reactions and introduce their recent applications in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current challenges, and prospects of using bioorthogonal conjugation reactions. Full article
(This article belongs to the Special Issue Past, Present, and Future of Radiochemical Synthesis)
Show Figures

Figure 1

25 pages, 5042 KB  
Article
A Practical Method for the Preparation of 18F-Labeled Aromatic Amino Acids from Nucleophilic [18F]Fluoride and Stannyl Precursors for Electrophilic Radiohalogenation
by Fadi Zarrad, Boris D. Zlatopolskiy, Philipp Krapf, Johannes Zischler and Bernd Neumaier
Molecules 2017, 22(12), 2231; https://doi.org/10.3390/molecules22122231 - 15 Dec 2017
Cited by 40 | Viewed by 8910
Abstract
In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the [...] Read more.
In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the production of clinically relevant positron emission tomography (PET) tracers was investigated. To this end, Cu-mediated radiofluorodestannylation using trimethyl(phenyl)tin as a model substrate was re-evaluated with respect to different reaction parameters. The resulting labeling protocol was applied for 18F-fluorination of different electron-rich, -neutral and -poor arylstannyl substrates in RCCs of 16–88%. Furthermore, this method was utilized for the synthesis of 18F-labeled aromatic amino acids from additionally N-Boc protected commercially available stannyl precursors routinely applied for electrophilic radiohalogenation. Finally, an automated synthesis of 6-[18F]fluoro-l-m-tyrosine (6-[18F]FMT), 2-[18F]fluoro-l-tyrosine (2-[18F]F-Tyr), 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine (6-[18F]FDOPA) and 3-O-methyl-6-[18F]FDOPA ([18F]OMFD) was established furnishing these PET probes in isolated radiochemical yields (RCYs) of 32–54% on a preparative scale. Remarkably, the automated radiosynthesis of 6-[18F]FDOPA afforded an exceptionally high RCY of 54 ± 5% (n = 5). Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

31 pages, 432 KB  
Review
Radiolabeling Strategies for Tumor-Targeting Proteinaceous Drugs
by Grant Sugiura, Helen Kühn, Max Sauter, Uwe Haberkorn and Walter Mier
Molecules 2014, 19(2), 2135-2165; https://doi.org/10.3390/molecules19022135 - 18 Feb 2014
Cited by 57 | Viewed by 17154
Abstract
Owing to their large size proteinaceous drugs offer higher operative information content compared to the small molecules that correspond to the traditional understanding of druglikeness. As a consequence these drugs allow developing patient-specific therapies that provide the means to go beyond the possibilities [...] Read more.
Owing to their large size proteinaceous drugs offer higher operative information content compared to the small molecules that correspond to the traditional understanding of druglikeness. As a consequence these drugs allow developing patient-specific therapies that provide the means to go beyond the possibilities of current drug therapy. However, the efficacy of these strategies, in particular “personalized medicine”, depends on precise information about individual target expression rates. Molecular imaging combines non-invasive imaging methods with tools of molecular and cellular biology and thus bridges current knowledge to the clinical use. Moreover, nuclear medicine techniques provide therapeutic applications with tracers that behave like the diagnostic tracer. The advantages of radioiodination, still the most versatile radiolabeling strategy, and other labeled compounds comprising covalently attached radioisotopes are compared to the use of chelator-protein conjugates that are complexed with metallic radioisotopes. With the techniques using radioactive isotopes as a reporting unit or even the therapeutic principle, care has to be taken to avoid cleavage of the radionuclide from the protein it is linked to. The tracers used in molecular imaging require labeling techniques that provide site specific conjugation and metabolic stability. Appropriate choice of the radionuclide allows tailoring the properties of the labeled protein to the application required. Until the event of positron emission tomography the spectrum of nuclides used to visualize cellular and biochemical processes was largely restricted to iodine isotopes and 99m-technetium. Today, several nuclides such as 18-fluorine, 68-gallium and 86-yttrium have fundamentally extended the possibilities of tracer design and in turn caused the need for the development of chemical methods for their conjugation. Full article
(This article belongs to the Special Issue Reagents and Methods for Protein Target Identification)
Show Figures

Figure 1

Back to TopTop