Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = radiometric corrections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4736 KB  
Article
Radiometric Cross-Calibration and Validation of KOMPSAT-3/AEISS Using Sentinel-2A/MSI
by Jin-Hyeok Choi, Kyoung-Wook Jin, Dong-Hwan Cha, Kyung-Bae Choi, Yong-Han Jo, Kwang-Nyun Kim, Gwui-Bong Kang, Ho-Yeon Shin, Ji-Yun Lee, Eunyeong Kim, Hojong Chang and Yun Gon Lee
Remote Sens. 2025, 17(19), 3280; https://doi.org/10.3390/rs17193280 - 24 Sep 2025
Viewed by 381
Abstract
The successful launch of Korea Multipurpose Satellite-3/Advanced Earth Imaging Sensor System (KOMPSAT-3/AEISS) on 18 May 2012 allowed the Republic of Korea to meet the growing demand for high-resolution satellite imagery. However, like all satellite sensors, KOMPSAT-3/AEISS experienced temporal changes post-launch and thus requires [...] Read more.
The successful launch of Korea Multipurpose Satellite-3/Advanced Earth Imaging Sensor System (KOMPSAT-3/AEISS) on 18 May 2012 allowed the Republic of Korea to meet the growing demand for high-resolution satellite imagery. However, like all satellite sensors, KOMPSAT-3/AEISS experienced temporal changes post-launch and thus requires ongoing evaluation and calibration. Although more than a decade has passed since launch, the KOMPSAT-3/AEISS mission and its multi-year data archive remain widely used. This study focused on the cross-calibration of KOMPSAT-3/AEISS with Sentinel-2A/Multispectral Instrument (MSI) by comparing the radiometric responses of the two satellite sensors under similar observation conditions, leveraging the linear relationship between Digital Numbers (DN) and top-of-atmosphere (TOA) radiance. Cross-calibration was performed using near-simultaneous satellite images of the same region, and the Spectral Band Adjustment Factor (SBAF) was calculated and applied to account for differences in spectral response functions (SRF). Additionally, Bidirectional Reflectance Distribution Function (BRDF) correction was applied using MODIS-based kernel models to minimize angular reflectance effects caused by differences in viewing and illumination geometry. This study aims to evaluate the radiometric consistency of KOMPSAT-3/AEISS relative to Sentinel-2A/MSI over Baotou scenes acquired in 2022–2023, derive band-specific calibration coefficients and compare them with prior results, and conduct a side-by-side comparison of cross-calibration and vicarious calibration. Furthermore, the cross-calibration yielded band-specific gains of 0.0196 (Blue), 0.0237 (Green), 0.0214 (Red), and 0.0136 (NIR). These findings offer valuable implications for Earth observation, environmental monitoring, and the planning and execution of future satellite missions. Full article
Show Figures

Graphical abstract

22 pages, 14069 KB  
Article
Assessment of Atmospheric Correction Algorithms for Landsat-8/9 Operational Land Imager over Inland and Coastal Waters
by Yiqiang Hu, Haigang Zhan, Qingyou He and Weikang Zhan
Remote Sens. 2025, 17(17), 3055; https://doi.org/10.3390/rs17173055 - 2 Sep 2025
Cited by 1 | Viewed by 1123
Abstract
Atmospheric correction (AC) over inland and coastal waters remains a key challenge in ocean color remote sensing, often limiting the effective use of satellite data for aquatic monitoring. AC algorithm performance is highly sensitive to water type and optical properties. To address this, [...] Read more.
Atmospheric correction (AC) over inland and coastal waters remains a key challenge in ocean color remote sensing, often limiting the effective use of satellite data for aquatic monitoring. AC algorithm performance is highly sensitive to water type and optical properties. To address this, we systematically evaluated six state-of-the-art AC algorithms—ACOLITE, C2RCC, iCOR, L2GEN, OC-SMART, and POLYMER—using Landsat-8/9 OLI data. This study leverages 440 high-quality in situ radiometric matchups spanning a wide range of aquatic environments, including inland lakes from China’s Satellite-Ground Synchronous Campaign and coastal waters from the globally distributed GLORIA dataset. These complementary datasets provide a robust benchmark for evaluating AC algorithm performance. A unified Optical Water Type (OWT) classification framework ensured consistency across environmental conditions. Results highlight significant variability in algorithm performance based on water type. In coastal waters, L2GEN demonstrated the lowest errors in visible bands, whereas OC-SMART achieved superior overall accuracy in inland waters. Notably, ACOLITE exhibited better performance than other algorithms in the blue spectral region (443 and 482 nm) for inland waters. OWT-specific analysis showed that OC-SMART maintained robust accuracy across the turbidity gradient, while ACOLITE and iCOR excelled in highly turbid waters (OWTs 5–6). In contrast, L2GEN, C2RCC, and POLYMER were more effective in clearer waters (OWTs 3–4). The study further discusses the applicability of each algorithm and offers recommendations for mitigating adjacency effects (AE) to improve AC accuracy. These findings provide valuable guidance for selecting and optimizing AC strategies for inland and coastal water monitoring. Full article
Show Figures

Graphical abstract

26 pages, 62819 KB  
Article
Low-Light Image Dehazing and Enhancement via Multi-Feature Domain Fusion
by Jiaxin Wu, Han Ai, Ping Zhou, Hao Wang, Haifeng Zhang, Gaopeng Zhang and Weining Chen
Remote Sens. 2025, 17(17), 2944; https://doi.org/10.3390/rs17172944 - 25 Aug 2025
Viewed by 859
Abstract
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot [...] Read more.
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot effectively address unknown real-world degradations. Therefore, we design a joint processing framework, WFDiff, which fully exploits the advantages of Fourier–wavelet dual-domain features and innovatively integrates the inverse diffusion process through differentiable operators to construct a multi-scale degradation collaborative correction system. Specifically, in the reverse diffusion process, a dual-domain feature interaction module is designed, and the joint probability distribution of the generated image and real data is constrained through differentiable operators: on the one hand, a global frequency-domain prior is established by jointly constraining Fourier amplitude and phase, effectively maintaining the radiometric consistency of the image; on the other hand, wavelets are used to capture high-frequency details and edge structures in the spatial domain to improve the prediction process. On this basis, a cross-overlapping-block adaptive smoothing estimation algorithm is proposed, which achieves dynamic fusion of multi-scale features through a differentiable weighting strategy, effectively solving the problem of restoring images of different sizes and avoiding local inconsistencies. In view of the current lack of remote-sensing data for low-light haze scenarios, we constructed the Hazy-Dark dataset. Physical experiments and ablation experiments show that the proposed method outperforms existing single-task or simple cascade methods in terms of image fidelity, detail recovery capability, and visual naturalness, providing a new paradigm for remote-sensing image processing under coupled degradations. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

30 pages, 1292 KB  
Review
Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges
by Xiaofei Yang, Junying Chen, Xiaohan Lu, Hao Liu, Yanfu Liu, Xuqian Bai, Long Qian and Zhitao Zhang
Plants 2025, 14(16), 2544; https://doi.org/10.3390/plants14162544 - 15 Aug 2025
Cited by 2 | Viewed by 1359
Abstract
With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress [...] Read more.
With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress and key technological pathways in UAV-based remote sensing for crop water and nutrient monitoring. It provides an in-depth analysis of UAV platforms, sensor configurations, and their suitability across diverse agricultural applications. The review also highlights critical data processing steps—including radiometric correction, image stitching, segmentation, and data fusion—and compares three major modeling approaches for parameter inversion: vegetation index-based, data-driven, and physically based methods. Representative application cases across various crops and spatiotemporal scales are summarized. Furthermore, the review explores factors affecting monitoring performance, such as crop growth stages, spatial resolution, illumination and meteorological conditions, and model generalization. Despite significant advancements, current limitations include insufficient sensor versatility, labor-intensive data processing chains, and limited model scalability. Finally, the review outlines future directions, including the integration of edge intelligence, hybrid physical–data modeling, and multi-source, three-dimensional collaborative sensing. This work aims to provide theoretical insights and technical support for advancing UAV-based remote sensing in precision agriculture. Full article
Show Figures

Figure 1

20 pages, 3015 KB  
Article
Radiometric Correction of Stray Radiation Induced by Non-Nominal Optical Paths in Fengyun-4B Geostationary Interferometric Infrared Sounder Based on Pre-Launch Thermal Vacuum Calibration
by Xiao Liang, Yaopu Zou, Changpei Han, Libing Li, Yuanshu Zhang and Jieling Yu
Remote Sens. 2025, 17(16), 2828; https://doi.org/10.3390/rs17162828 - 14 Aug 2025
Viewed by 354
Abstract
The Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Fengyun-4B satellite plays a critical role in numerical weather prediction and extreme weather monitoring. To meet the requirements of quantitative remote sensing and high-precision operational applications for radiometric calibration accuracy, this study, based on pre-launch [...] Read more.
The Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Fengyun-4B satellite plays a critical role in numerical weather prediction and extreme weather monitoring. To meet the requirements of quantitative remote sensing and high-precision operational applications for radiometric calibration accuracy, this study, based on pre-launch calibration experiments, conducts a novel modeling analysis of the coupling between stray radiation at the input side and the system’s nonlinearity, and proposes a correction method for nonlinear coupling errors. This method explicitly models and physically traces the calibration residuals caused by stray radiation introduced via non-nominal optical paths under the effect of system nonlinearity, which are related to the radiance of the observed target. Experimental results show that, within the brightness temperature range of 200–320 K, the calibration bias is reduced from approximately 0.7 to 0.3–0.4 K, with good consistency and stability observed across channels and pixels. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

27 pages, 17353 KB  
Article
A Framework to Retrieve Water Quality Parameters in Small, Optically Diverse Freshwater Ecosystems Using Sentinel-2 MSI Imagery
by Matheus Henrique Tavares, David Guimarães, Joana Roussillon, Valentin Baute, Julien Cucherousset, Stéphanie Boulêtreau and Jean-Michel Martinez
Remote Sens. 2025, 17(15), 2729; https://doi.org/10.3390/rs17152729 - 7 Aug 2025
Viewed by 719
Abstract
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland [...] Read more.
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland water bodies. However, due to spatial, radiometric, and spectral constraints, it has been heavily focused on large lakes. Sentinel-2 MSI is the first sensor with the capability to consistently retrieve a wide range of essential water quality variables, such as chlorophyll-a concentration (chl-a) and water transparency, in small water bodies, and to provide long time series. Here, we provide and validate a framework for retrieving two variables, chl-a and turbidity, over lakes with diverse optical characteristics using Sentinel-2 imagery. It is based on GRS for atmospheric and sun glint correction, WaterDetect for water detection, and inversion models that were automatically selected based on two different sets of optical water types (OWTs)—one for each variable; for chl-a, we produced a blended product for improved spatial representation. To validate the approach, we compared the products with more than 600 in situ data from 108 lakes located in the Adour–Garonne river basins, ranging from 3 to ∼5000 ha, as well as remote sensing reflectance (Rrs) data collected during 10 field campaigns during the summer and spring seasons. Rrs retrieval (n = 65) was robust for bands 2 to 5, with MAPE varying from 15 to 32% and achieving correlation from 0.74 up to 0.92. For bands 6 to 8A, the Rrs retrieval was much less accurate, being influenced by adjacency effects. Glint removal significantly enhanced Rrs accuracy, with RMSE improving from 0.0067 to 0.0021 sr−1 for band 4, for example. Water quality retrieval showed consistent results, with an MAPE of 56%, an RMSE of 11.4 mg m−3, and an r of 0.76 for chl-a, and an MAPE of 47%, an RMSE of 9.7 NTU, and an r of 0.87 for turbidity, and no significant effect of lake area or lake depth on retrieval errors. The temporal and spatial representations of the selected parameters were also shown to be consistent, demonstrating that the framework is robust and can be applied over lakes as small as 3 ha. The validated methods can be applied to retrieve time series of chl-a and turbidity starting from 2016 and with a frequency of up to 5 days, largely expanding the database collected by water agencies. This dataset will be extremely useful for studying the dynamics of these small freshwater ecosystems. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 4142 KB  
Article
Onboard Real-Time Hyperspectral Image Processing System Design for Unmanned Aerial Vehicles
by Ruifan Yang, Min Huang, Wenhao Zhao, Zixuan Zhang, Yan Sun, Lulu Qian and Zhanchao Wang
Sensors 2025, 25(15), 4822; https://doi.org/10.3390/s25154822 - 5 Aug 2025
Viewed by 1098
Abstract
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA [...] Read more.
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA SSD storage. Through hardware-level task partitioning—utilizing FPGA for high-speed data buffering and ARM for core computational processing—it achieves a real-time end-to-end acquisition–storage–processing–display pipeline. The compact integrated device exhibits a total weight of merely 6 kg and power consumption of 40 W, suitable for airborne platforms. Experimental validation confirms the system’s capability to store over 200 frames per second (at 640 × 270 resolution, matching the camera’s maximum frame rate), quick-look imaging capability, and demonstrated real-time processing efficacy via relative radio-metric correction tasks (processing 5000 image frames within 1000 ms). This framework provides an effective technical solution to address hyperspectral data processing bottlenecks more efficiently on UAV platforms for dynamic scenario applications. Future work includes actual flight deployment to verify performance in operational environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

29 pages, 9060 KB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 823
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

26 pages, 54898 KB  
Article
MSWF: A Multi-Modal Remote Sensing Image Matching Method Based on a Side Window Filter with Global Position, Orientation, and Scale Guidance
by Jiaqing Ye, Guorong Yu and Haizhou Bao
Sensors 2025, 25(14), 4472; https://doi.org/10.3390/s25144472 - 18 Jul 2025
Viewed by 712
Abstract
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window [...] Read more.
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window scale space is constructed based on the side window filter (SWF), which can preserve shared image contours and facilitate the extraction of feature points within this newly defined scale space. Second, noise thresholds in phase congruency (PC) computation are adaptively refined with the Weibull distribution; weighted phase features are then exploited to determine the principal orientation of each point, from which a maximum index map (MIM) descriptor is constructed. Third, coarse position, orientation, and scale information obtained through global matching are employed to estimate image-pair geometry, after which descriptors are recalculated for precise correspondence search. MSWF is benchmarked against eight state-of-the-art multi-modal methods—six hand-crafted (PSO-SIFT, LGHD, RIFT, RIFT2, HAPCG, COFSM) and two learning-based (CMM-Net, RedFeat) methods—on three public datasets. Experiments demonstrate that MSWF consistently achieves the highest number of correct matches (NCM) and the highest rate of correct matches (RCM) while delivering the lowest root mean square error (RMSE), confirming its superiority for challenging MRSI registration tasks. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 13659 KB  
Article
Adaptive Guided Filtering and Spectral-Entropy-Based Non-Uniformity Correction for High-Resolution Infrared Line-Scan Images
by Mingsheng Huang, Yanghang Zhu, Qingwu Duan, Yaohua Zhu, Jingyu Jiang and Yong Zhang
Sensors 2025, 25(14), 4287; https://doi.org/10.3390/s25144287 - 9 Jul 2025
Viewed by 525
Abstract
Stripe noise along the scanning direction significantly degrades the quality of high-resolution infrared line-scan images and impairs downstream tasks such as target detection and radiometric analysis. This paper presents a lightweight, single-frame, reference-free non-uniformity correction (NUC) method tailored for such images. The proposed [...] Read more.
Stripe noise along the scanning direction significantly degrades the quality of high-resolution infrared line-scan images and impairs downstream tasks such as target detection and radiometric analysis. This paper presents a lightweight, single-frame, reference-free non-uniformity correction (NUC) method tailored for such images. The proposed approach enhances the directionality of stripe noise by projecting the 2D image into a 1D row-mean signal, followed by adaptive guided filtering driven by local median absolute deviation (MAD) to ensure spatial adaptivity and structure preservation. A spectral-entropy-constrained frequency-domain masking strategy is further introduced to suppress periodic and non-periodic interference. Extensive experiments on simulated and real datasets demonstrate that the method consistently outperforms six state-of-the-art algorithms across multiple metrics while maintaining the fastest runtime. The proposed method is highly suitable for real-time deployment in airborne, satellite-based, and embedded infrared imaging systems. It provides a robust and interpretable framework for future infrared enhancement tasks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 6055 KB  
Article
Assessment of Remote Sensing Reflectance Glint Correction Methods from Fixed Automated Above-Water Hyperspectral Radiometric Measurement in Highly Turbid Coastal Waters
by Behnaz Arabi, Masoud Moradi, Annelies Hommersom, Johan van der Molen and Leon Serre-Fredj
Remote Sens. 2025, 17(13), 2209; https://doi.org/10.3390/rs17132209 - 26 Jun 2025
Cited by 1 | Viewed by 751
Abstract
Fixed automated (unmanned) above-water radiometric measurements are subject to unavoidable sky conditions and surface perturbations, leading to significant uncertainties in retrieved water surface remote sensing reflectances (Rrs(λ), sr−1). This study evaluates various above-water Rrs(λ) glint correction [...] Read more.
Fixed automated (unmanned) above-water radiometric measurements are subject to unavoidable sky conditions and surface perturbations, leading to significant uncertainties in retrieved water surface remote sensing reflectances (Rrs(λ), sr−1). This study evaluates various above-water Rrs(λ) glint correction methods using a comprehensive dataset collected at the Royal Netherlands Institute for Sea Research (NIOZ) Jetty Station located in the Marsdiep tidal inlet of the Dutch Wadden Sea, the Netherlands. The dataset includes in-situ water constituent concentrations (2006–2020), inherent optical properties (IOPs) (2006–2007), and above-water hyperspectral (ir)radiance observations collected every 10 min (2006–2023). The bio-optical models were validated using in-situ IOPs and utilized to generate glint-free remote sensing reflectances, Rrs,ref(λ), using a robust IOP-to-Rrs forward model. The Rrs,ref(λ) spectra were used as a benchmark to assess the accuracy of glint correction methods under various environmental conditions, including different sun positions, wind speeds, cloudiness, and aerosol loads. The results indicate that the three-component reflectance model (3C) outperforms other methods across all conditions, producing the highest percentage of high-quality Rrs(λ) spectra with minimal errors. Methods relying on fixed or lookup-table-based glint correction factors exhibited significant errors under overcast skies, high wind speeds, and varying aerosol optical thickness. The study highlights the critical importance of surface-reflected skylight corrections and wavelength-dependent glint estimations for accurate above-water Rrs(λ) retrievals. Two showcases on chlorophyll-a and total suspended matter retrieval further demonstrate the superiority of the 3C model in minimizing uncertainties. The findings highlight the importance of adaptable correction models that account for environmental variability to ensure accurate Rrs(λ) retrieval and reliable long-term water quality monitoring from hyperspectral radiometric measurements. Full article
Show Figures

Figure 1

20 pages, 4858 KB  
Article
Sensitive Multispectral Variable Screening Method and Yield Prediction Models for Sugarcane Based on Gray Relational Analysis and Correlation Analysis
by Shimin Zhang, Huojuan Qin, Xiuhua Li, Muqing Zhang, Wei Yao, Xuegang Lyu and Hongtao Jiang
Remote Sens. 2025, 17(12), 2055; https://doi.org/10.3390/rs17122055 - 14 Jun 2025
Cited by 1 | Viewed by 701
Abstract
Sugarcane yield prediction plays a pivotal role in enabling farmers to monitor crop development and optimize cultivation practices, guiding harvesting operations for sugar mills. In this study, we established three experimental fields, which were planted with three main sugarcane cultivars in Guangxi, China, [...] Read more.
Sugarcane yield prediction plays a pivotal role in enabling farmers to monitor crop development and optimize cultivation practices, guiding harvesting operations for sugar mills. In this study, we established three experimental fields, which were planted with three main sugarcane cultivars in Guangxi, China, respectively, implementing a multi-gradient fertilization design with 39 plots and 810 sampling grids. Multispectral imagery was acquired by unmanned aerial vehicles (UAVs) during five critical growth stages: mid-tillering (T1), late-tillering (T2), mid-elongation (T3), late-elongation (T4), and maturation (T5). Following rigorous image preprocessing (including stitching, geometric correction, and radiometric correction), 16 VIs were extracted. To identify yield-sensitive vegetation indices (VIs), a spectral feature selection criterion combining gray relational analysis and correlation analysis (GRD-r) was proposed. Subsequently, three supervised learning algorithms—Gradient Boosting Decision Tree (GBDT), Random Forest (RF), and Support Vector Machine (SVM)—were employed to develop both single-stage and multi-stage yield prediction models. Results demonstrated that multi-stage models consistently outperformed their single-stage counterparts. Among the single-stage models, the RF model using T3-stage features achieved the highest accuracy (R2 = 0.78, RMSEV = 7.47 t/hm2). The best performance among multi-stage models was obtained using a GBDT model constructed from a combination of DVI (T1), NDVI (T2), TDVI (T3), NDVI (T4), and SRPI (T5), yielding R2 = 0.83 and RMSEV = 6.63 t/hm2. This study highlights the advantages of integrating multi-temporal spectral features and advanced machine learning techniques for improving sugarcane yield prediction, providing a theoretical foundation and practical guidance for precision agriculture and harvest logistics. Full article
(This article belongs to the Special Issue Proximal and Remote Sensing for Precision Crop Management II)
Show Figures

Figure 1

21 pages, 23619 KB  
Article
Optimizing Data Consistency in UAV Multispectral Imaging for Radiometric Correction and Sensor Conversion Models
by Weiguang Yang, Huaiyuan Fu, Weicheng Xu, Jinhao Wu, Shiyuan Liu, Xi Li, Jiangtao Tan, Yubin Lan and Lei Zhang
Remote Sens. 2025, 17(12), 2001; https://doi.org/10.3390/rs17122001 - 10 Jun 2025
Viewed by 753
Abstract
Recent advancements in precision agriculture have been significantly bolstered by the Uncrewed Aerial Vehicles (UAVs) equipped with multispectral sensors. These systems are pivotal in transforming sensor-recorded Digital Number (DN) values into universal reflectance, crucial for ensuring data consistency irrespective of collection time, region, [...] Read more.
Recent advancements in precision agriculture have been significantly bolstered by the Uncrewed Aerial Vehicles (UAVs) equipped with multispectral sensors. These systems are pivotal in transforming sensor-recorded Digital Number (DN) values into universal reflectance, crucial for ensuring data consistency irrespective of collection time, region, and illumination. This study, conducted across three regions in China using Sequoia and Phantom 4 Multispectral cameras, focused on examining the effects of radiometric correction on data consistency and accuracy, and developing a conversion model for data from these two sensors. Our findings revealed that radiometric correction substantially enhances data consistency in vegetated areas for both sensors, though its impact on non-vegetated areas is limited. Recalibrating reflectance for calibration plates significantly improved the consistency of band values and the accuracy of vegetation index calculations for both cameras. Decision tree and random forest models emerged as more effective for data conversion between the sensors, achieving R2 values up to 0.91. Additionally, the P4M generally outperformed the Sequoia in accuracy, particularly with standard reflectance calibration. These insights emphasize the critical role of radiometric correction in UAV remote sensing for precision agriculture, underscoring the complexities of sensor data consistency and the potential for generalization of models across multi-sensor platforms. Full article
Show Figures

Figure 1

21 pages, 6990 KB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Viewed by 1977
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

37 pages, 49892 KB  
Article
Pressure-Related Discrepancies in Landsat 8 Level 2 Collection 2 Surface Reflectance Products and Their Correction
by Santosh Adhikari, Larry Leigh and Dinithi Siriwardana Pathiranage
Remote Sens. 2025, 17(10), 1676; https://doi.org/10.3390/rs17101676 - 9 May 2025
Viewed by 1324
Abstract
Landsat 8 Level 2 Collection 2 (L2C2) surface reflectance (SR) products are widely used in various scientific applications by the remote sensing community, where their accuracy is vital for reliable analysis. However, discrepancies have been observed at shorter wavelength bands, which can affect [...] Read more.
Landsat 8 Level 2 Collection 2 (L2C2) surface reflectance (SR) products are widely used in various scientific applications by the remote sensing community, where their accuracy is vital for reliable analysis. However, discrepancies have been observed at shorter wavelength bands, which can affect certain applications. This study investigates the root cause of these differences by analyzing the assumptions made in the Land Surface Reflectance Code (LaSRC), the atmospheric correction algorithm of Landsat 8, as currently implemented at United States Geological Survey Earth Resources Observation and Science (USGS EROS), and proposes a correction method. To quantify these discrepancies, ground truth SR measurements from the Radiometric Calibration Network (RadCalNet) and Arable Mark 2 sensors were compared with the Landsat 8 SR. Additionally, the surface pressure measurements from RadCalNet and the National Centers for Environmental Information (NCEI) were evaluated against the LaSRC-calculated surface pressure values. The findings reveal that the discrepancies arose from using a single scene center surface pressure for the entire Landsat 8 scene pixels. The pressure-related discrepancies were most pronounced in the coastal aerosol and blue bands, with greater deviations observed in regions where the elevation of the study area differed substantially from the scene center, such as Railroad Valley Playa (RVUS) and Baotao Sand (BSCN). To address this issue, an exponential correction model was developed, reducing the mean error in the coastal aerosol band for RVUS from 0.0226 to 0.0029 (about two units of reflectance), which can be substantial for dark vegetative and water targets. In the blue band, there is a smaller improvement in the mean error, from 0.0095 to −0.0032 (about half a unit of reflectance). For the green band, the reduction in error was much less due to the significantly lesser impact of aerosol on this band. Overall, this study underscores the need for a more precise estimation of surface pressure in LaSRC to enhance the reliability of Landsat 8 SR products in remote sensing applications. Full article
Show Figures

Figure 1

Back to TopTop