Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (834)

Search Parameters:
Keywords = rainfall erosivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6994 KB  
Article
Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation
by Yuhang Liu, Sui Zhang, Jiwei Wang, Rongyan Gao, Jiaxuan Liu, Siqi Liu, Xuebing Hu, Jianrong Liu and Ruiqiang Bai
Atmosphere 2025, 16(9), 1045; https://doi.org/10.3390/atmos16091045 - 2 Sep 2025
Viewed by 186
Abstract
Soil erosion is a critical ecological challenge in semi-arid regions of China, particularly in the Yellow River Basin, where Pisha sandstone slopes undergo rapid degradation. Rill erosion, driven by rainfall and overland flow, destabilizes slopes and accelerates ecosystem degradation. To address this, we [...] Read more.
Soil erosion is a critical ecological challenge in semi-arid regions of China, particularly in the Yellow River Basin, where Pisha sandstone slopes undergo rapid degradation. Rill erosion, driven by rainfall and overland flow, destabilizes slopes and accelerates ecosystem degradation. To address this, we developed a multi-view stereo observation system that integrates Structure-from-Motion (SFM) and multi-view stereo (MVS) for high-precision, dynamic monitoring of rill erosion. Laboratory rainfall simulations were conducted under four inflow rates (2–8 L/min), corresponding to rainfall intensities of 30–120 mm/h. The erosion process was divided into four phases: infiltration and particle rolling, splash and sheet erosion, incipient rill incision, and mature rill networks, with erosion concentrated in the middle and lower slope sections. The SFM-MVS system achieved planimetric and vertical errors of 3.1 mm and 3.7 mm, respectively, providing approximately 25% higher accuracy and nearly 50% faster processing compared with LiDAR and UAV photogrammetry. Infiltration stabilized at approximately 6.2 mm/h under low flows (2 L/min) but declined to less than 4 mm/h under high flows (≥6 L/min), leading to intensified rill incision and coarse-particle transport (up to 21.4% of sediment). These results demonstrate that the SFM-MVS system offers a scalable and non-invasive method for quantifying erosion dynamics, with direct implications for field monitoring, ecological restoration, and soil conservation planning. Full article
(This article belongs to the Special Issue Research About Permafrost–Atmosphere Interactions (2nd Edition))
Show Figures

Figure 1

23 pages, 9602 KB  
Article
Evolution and Attribution Analysis of the Relationship Among Soil Erosion Negative Service, Carbon Sequestration, and Water Yield in the Yellow River Basin After the Grain for Green Program
by Menghao Yang, Ming Wang, Lianhai Cao, Haipeng Zhang, Huhu Niu and Jun Liu
Remote Sens. 2025, 17(17), 3028; https://doi.org/10.3390/rs17173028 - 1 Sep 2025
Viewed by 216
Abstract
Understanding the tradeoff and synergy among ecosystem services (ESs) and their influencing factors is a prerequisite for simultaneously managing multiple ESs and holds significant importance for achieving harmonious regional development between humans and nature. Existing research predominantly focuses on the overall characteristics of [...] Read more.
Understanding the tradeoff and synergy among ecosystem services (ESs) and their influencing factors is a prerequisite for simultaneously managing multiple ESs and holds significant importance for achieving harmonious regional development between humans and nature. Existing research predominantly focuses on the overall characteristics of tradeoff and synergy, while studies on spatially differentiated tradeoff and synergy characteristics remain limited. In addition, their driving mechanisms are not yet fully understood, especially in large-scale river basins. This study, taking the Yellow River Basin (YRB) from 2000 to 2023 as the study area, employed multi-source data and multiple models to quantify three ESs, including soil erosion negative service (indirectly reflecting the soil conservation service function), carbon sequestration, and water yield. Combining Pearson correlation analysis, a geographically weighted regression model, and optimal parameter geographical detection, we identified the spatiotemporal interaction relationships and their dominant drivers. The results indicated that soil erosion negative services decreased by 24.89%, while carbon sequestration and water yield increased by 53.30% and 38.47%, respectively. The most significant improvements in the three ESs were observed in the midstream of the YRB. Spatially, soil erosion negative service decreased from west to east. Carbon sequestration exhibited a spatial pattern of higher values in the south and east and lower values in the north and west. Water yield decreased from south to north. Tradeoff relationships existed between soil erosion negative service and carbon sequestration and between soil erosion negative service and water yield. A synergistic relationship existed between carbon sequestration and water yield. Over time, the proportion of areas showing synergy among these three ESs decreased. However, synergistic areas remained more common than tradeoff areas. This was especially evident in the relationship between carbon sequestration and water yield, where synergy consistently accounted for over 78% of the YRB. Rainfall, soil properties, and fractional vegetation cover were identified as important drivers of the tradeoff/synergy between soil erosion negative service and carbon sequestration. Rainfall, temperature, fractional vegetation cover, and elevation were significant drivers of the interactions between carbon sequestration and water yield. Population density, fractional vegetation cover, GDP density, and rainfall were the main influencing factors for the tradeoff/synergy between soil erosion negative service and water yield. Our general methodology and results provide valuable decision-making references for policymakers, highlighting the necessity of considering the spatiotemporal heterogeneity in ESs tradeoff characteristics and their underlying driving factors. Full article
Show Figures

Figure 1

14 pages, 2725 KB  
Article
Quantifying Soil Erosion Processes Based on Micro-ΔDEM
by Na Ta, Chenguang Wang, Shixiang Zhao and Qingfeng Zhang
Water 2025, 17(17), 2557; https://doi.org/10.3390/w17172557 - 28 Aug 2025
Viewed by 441
Abstract
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional [...] Read more.
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional farming practices on the Loess Plateau: artificial backhoe, artificial digging, and contour tillage (CT), with no tillage (CK) designated as the control group. The objective was to meticulously investigate the variations in microtopography, runoff, and sediment yield under disparate treatment conditions, rainfall intensities (60 mm/h and 90 mm/h), and slope gradients (5°, 10°, and 20°). The principal findings were as follows: With the amplification of rainfall intensity, the elevation change rate and fractal dimension of various treatments generally exhibited an upward trend, whereas the structural ratio showed a downward tendency. As the slope gradient increased, the elevation change rate and structural ratio of different treatments typically increased. However, the fractal dimension displayed no conspicuous alteration at a rainfall intensity of 60 mm/h and a decreasing trend at 90 mm/h. Under different rainfall intensity scenarios, a robust linear correlation existed between the fractal dimension and both runoff and sediment yield (R2 > 0.73), rendering it an outstanding parameter for estimating these variables within the scope of this research. Path analysis revealed that the indirect effect of microtopography on sediment yield, which was mediated by runoff, constituted 77.80–96.47% of the direct effect. Moreover, under different rainfall intensities, the alterations in runoff and sediment yield ensuing from unit-scale changes in the fractal dimension varied significantly. Specifically, at a rainfall intensity of 90 mm/h, these changes were 1.70-fold and 3.75-fold those at 60 mm/h, respectively. Overall, the CT treatment engendered the lowest runoff and sediment yield, along with the highest fractal dimension, thereby emerging as the most efficacious measure for soil and water conservation in this study. The research outcomes offer valuable perspectives for further elucidating the mechanisms through which tillage practices impinge upon soil erosion. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

20 pages, 11941 KB  
Article
Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province
by Yaping Lu, Jingcheng Fu and Li Tang
Water 2025, 17(17), 2527; https://doi.org/10.3390/w17172527 - 25 Aug 2025
Viewed by 564
Abstract
This study investigates the spatial coupling between geohazard susceptibility and soil conservation capacity in Guangdong Province, China, using integrated spatial analysis and machine learning approaches. Through kernel density estimation, hotspot analysis, principal component analysis (PCA), and t-SNE clustering applied to 11,252 geohazard records [...] Read more.
This study investigates the spatial coupling between geohazard susceptibility and soil conservation capacity in Guangdong Province, China, using integrated spatial analysis and machine learning approaches. Through kernel density estimation, hotspot analysis, principal component analysis (PCA), and t-SNE clustering applied to 11,252 geohazard records and nine soil conservation factors, we identify three critical mechanisms: (1) Topographic steepness (LS factor) constitutes the primary control on geohazard distribution (r = 0.162, p < 0.001), with high-risk clusters concentrated in northeastern mountainous regions (Meizhou-Huizhou-Heyuan); (2) Vegetation coverage (C_mean) mediates rainfall impacts, exhibiting significant risk reduction (r = −0.099, p < 0.001) despite counterintuitive negative correlations with mean rainfall erosivity; (3) Soil conservation effectiveness depends on topographic context, reducing geohazard density in moderate slopes (Cluster 0: 527.04) but proving insufficient in extreme terrain (Cluster 2: LS = 20.587). The emerging role of rainfall variability (R_slope, r = 0.183) highlights climate change impacts. Full article
Show Figures

Figure 1

19 pages, 5591 KB  
Article
The Evolution Mechanism and Stability Prediction of the Wanshuitian Landslide, an Oblique-Dip Slope Wedge Landslide in the Three Gorges Reservoir Area
by Chu Xu, Chang Zhou and Wei Huang
Appl. Sci. 2025, 15(16), 9194; https://doi.org/10.3390/app15169194 - 21 Aug 2025
Viewed by 337
Abstract
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, [...] Read more.
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, based on the Wanshuitian landslide. Following four heavy rainfall events from 3 to 13 July 2024, this landslide exhibited significant deformation on the 17th and was completely destroyed within 40 min. The dimensions of the landslide were 350 m in length, 160 m in width, and 20 m in thickness, with a volume estimated at 8.0 × 105 m3. The characteristics of landslide deformation and the changes in moisture content within the shallow slide body were ascertained using unmanned aerial vehicles, moisture meters, and mobile phone photography. The landslide was identified to have occurred within the weathered residual layer of mudstone, situated between two sandstone layers, with the eastern boundary defined by an inclined rock layer. Upon transitioning into the accelerated deformation stage, the landslide initially exhibited uniform overall sliding deformation, culminating in accelerated deformation destruction. The dip structure created terrain disparities, resulting in a step-like terrain on the left bank and gentler slopes on the right bank, with interbedded soil and rock in a shallow layer, because the interlayered soft and hard geological conditions caused varied weathering and erosion patterns on the riverbank slopes. The interbedded weak–hard stratum layer fostered the development of the oblique-dip slope wedge landslide. Based on the improved Green–Ampt model, we developed a stability prediction methodology for an oblique-dip slope wedge landslide and determined the rainfall infiltration depth threshold of the Wanshuitian landslide (9.8 m). This study aimed not merely to sharpen the evolution mechanism and stability prediction of the Wanshuitian landslide but also to formulate more effective landslide-monitoring strategies and emergency management measures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 8271 KB  
Article
Characteristics of Hydrodynamic Parameters of Different Understory Vegetation Patterns
by Chenhui Zhang, Jiali Wang and Jianbo Jia
Plants 2025, 14(16), 2556; https://doi.org/10.3390/plants14162556 - 17 Aug 2025
Viewed by 384
Abstract
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, [...] Read more.
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, 60%, and 90%) were set up by simulating rainfall (45, 60, 90, and 120 mm·h−1) to evaluate the runoff-sediment process and the response characteristics of hydrodynamic parameters. The results showed that increasing vegetation cover significantly reduced soil erosion on forest slopes (p < 0.05). When the vegetation cover ranged from 60% to 90%, vegetation pattern C and pattern D were the most effective in suppressing erosion, where increased cover improved runoff stability. Under low-cover conditions, overland flow tended toward turbulent and rapid regimes, whereas under high cover conditions, flow was primarily laminar and slow. Patterns C and D significantly reduced flow velocity and water depth (p < 0.05). Structural equation patterning revealed that, under different vegetation patterns, the runoff power (ω), Reynolds number (Re), and resistance coefficient (f) more effectively characterized the erosion process. Among these, the Reynolds number and runoff power were the dominant factors driving erosion on red soil slopes. By contrast, runoff shear stress was significantly reduced under high-cover conditions and showed weak correlation with sediment yield, suggesting that it was unsuitable as an indicator of slope erosion. Segmental vegetation arrangements and increasing vegetation cover near runoff outlets—especially at 60–90% coverage—effectively reduced soil erosion. These findings provide scientific insight into the hydrodynamic mechanisms of vegetation cover on slopes and offer theoretical support for optimizing soil and water conservation strategies on hilly terrain. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

18 pages, 9226 KB  
Article
Statistical Characteristics of Hourly Extreme Heavy Rainfall over the Loess Plateau, China: A 43 Year Study
by Hui Yuan, Fan Hu, Wei Zhang, Xiaokai Meng, Yuan Gao and Shenming Fu
Sustainability 2025, 17(16), 7395; https://doi.org/10.3390/su17167395 - 15 Aug 2025
Viewed by 340
Abstract
The Loess Plateau, possessing the world’s most extensive loess deposits, is highly vulnerable to accelerated soil erosion and vegetation loss triggered by extreme hourly rainfall (EHR) events due to the inherently erodible nature of its porous, weakly cemented sediment structure. EHR exacerbates soil [...] Read more.
The Loess Plateau, possessing the world’s most extensive loess deposits, is highly vulnerable to accelerated soil erosion and vegetation loss triggered by extreme hourly rainfall (EHR) events due to the inherently erodible nature of its porous, weakly cemented sediment structure. EHR exacerbates soil erosion, induces flash flooding, compromises power infrastructure, and jeopardizes agricultural productivity. Through analysis of 43 years (1981–2023) of station observational data and ERA5 reanalysis, we present the first comprehensive assessment of EHR characteristics across the plateau. Results reveal pronounced spatial heterogeneity, with southeastern regions exhibiting higher EHR intensity thresholds and frequency compared to northwestern areas. EHR frequency correlates positively with elevation, while intensity decreases with altitude, demonstrating orographic modulation. Synoptic-scale background environment of EHR events is characterized by upper-level divergence, mid-tropospheric warm advection, and lower-tropospheric convergence, all of which are linked to summer monsoon systems. Temporally, EHR peaks in July during the East Asian summer monsoon and exhibits a bimodal diurnal cycle (0700/1700 LST). Long-term trends reveal a significant overall increase in the frequency of EHR events (~0.82 events a−1). While an overall increase in EHR intensity is also observed, it fails to achieve statistical significance due to opposing regional signals. Collectively, these trends elevate the risks of slope failures and debris flows. Our findings highlight three priority interventions: (i) implementation of elevation-adapted early warning systems, (ii) targeted agricultural soil conservation practices, and (iii) climate-resilient infrastructure design for high-risk valleys—all essential for safeguarding this ecologically sensitive region against intensifying hydroclimatic extremes. Full article
Show Figures

Figure 1

19 pages, 9115 KB  
Article
The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall
by Lele Niu, Jinfei Hu, Pengfei Li, Guangju Zhao and Xingmin Mu
Water 2025, 17(16), 2411; https://doi.org/10.3390/w17162411 - 15 Aug 2025
Viewed by 439
Abstract
Determining the impact of vegetation restoration on runoff and sediment yield is crucial for formulating science-based slope management practices. The study analyzed runoff and sediment yield behavior in relation to varying vegetation cover and components, based on field-simulated rainfall experiments. The results showed [...] Read more.
Determining the impact of vegetation restoration on runoff and sediment yield is crucial for formulating science-based slope management practices. The study analyzed runoff and sediment yield behavior in relation to varying vegetation cover and components, based on field-simulated rainfall experiments. The results showed that both runoff and sediment yield rates tended to decrease as vegetation cover increased. Vegetation contributed more significantly to the reduction in sediment yield than to the reduction in runoff. For a rainfall intensity of 1.5 mm·min−1, the sediment yield reduced to 37%, 73%, 78%, and 94% under the vegetation coverage of 20%, 40%, 60%, and 90%, respectively. The corresponding sediment yield reduction effects at the rainfall intensity of 2.0 mm·min−1 were 27%, 67%, 78% and 89%, respectively. At a rainfall intensity of 1.5 mm·min−1, the sediment yield reduction contributions of the litter layer, stem-leaf layer, and roots were 36%, 3%, and 51%, respectively. The corresponding sediment yield reduction contributions at the 2.0 mm·min−1 rainfall intensity were 30%, 7%, and 51%, respectively. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

18 pages, 3209 KB  
Article
Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam
by Tran Thanh Duc, Chau Thi Minh Tran, Ty Huu Pham, Nguyen Hoang Khanh Linh and Tung Gia Pham
GeoHazards 2025, 6(3), 43; https://doi.org/10.3390/geohazards6030043 - 8 Aug 2025
Viewed by 469
Abstract
Soil erosion threatens agricultural sustainability in tropical upland areas. This study evaluated soil erosion in Nam Dong district, Central Vietnam, using the Universal Soil Loss Equation (USLE) model and the Analytic Hierarchy Process (AHP) based on local stakeholder input. The USLE employed spatial [...] Read more.
Soil erosion threatens agricultural sustainability in tropical upland areas. This study evaluated soil erosion in Nam Dong district, Central Vietnam, using the Universal Soil Loss Equation (USLE) model and the Analytic Hierarchy Process (AHP) based on local stakeholder input. The USLE employed spatial data on rainfall, soil, topography, and land cover, while the AHP incorporated the perspectives of nine diverse community members. Both models identified the mountainous central region as most at risk; the USLE classified 62% of land as extreme erosion, whereas the AHP classified 82% as severe. These differences reflect the empirical approach of USLE versus the perception-driven results of the AHP. The study found that applying both methods independently and comparing their outcomes can yield different soil erosion scenarios. Furthermore, additional research is recommended to explore the use of the AHP as a tool for calibrating the relative importance of input factors in the USLE model. This approach could enhance the accuracy of soil erosion risk assessments and support more effectively targeted conservation strategies in complex upland landscapes. Full article
Show Figures

Figure 1

17 pages, 12127 KB  
Article
Shoreline Response to Hurricane Otis and Flooding Impact from Hurricane John in Acapulco, Mexico
by Luis Valderrama-Landeros, Iliana Pérez-Espinosa, Edgar Villeda-Chávez, Rafael Alarcón-Medina and Francisco Flores-de-Santiago
Coasts 2025, 5(3), 28; https://doi.org/10.3390/coasts5030028 - 4 Aug 2025
Viewed by 1892
Abstract
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 [...] Read more.
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 September 2024), Hurricane John—a Category 2 storm—caused severe flooding despite its lower intensity, primarily due to its unusual trajectory and prolonged rainfall. Digital shoreline analysis of PlanetScope images (captured one month before and after Hurricane Otis) revealed that the southern coast of Acapulco, specifically Zona Diamante—where the major seafront hotels are located—experienced substantial shoreline erosion (94 ha) and damage. In the northwestern section of the study area, the Coyuca Bar experienced the most dramatic geomorphological change in surface area. This was primarily due to the complete disappearance of the bar on October 26, which resulted in a shoreline retreat of 85 m immediately after the passage of Hurricane Otis. Sentinel-1 Synthetic Aperture Radar (SAR) showed that Hurricane John inundated 2385 ha, four times greater than Hurricane Otis’s flooding (567 ha). The retrofitted QGIS methodology demonstrated high reliability when compared to limited in situ local reports. Given the increased frequency of intense hurricanes, these methods and findings will be relevant in other coastal areas for monitoring and managing local communities affected by severe climate events. Full article
Show Figures

Figure 1

15 pages, 8138 KB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 233
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

21 pages, 9506 KB  
Article
A Stability Model for Sea Cliffs Considering the Coupled Effects of Sea Erosion and Rainfall
by Haoyu Zhao, Xu Chang, Yingbin Huang, Junlong Zhou and Zilong Ti
Oceans 2025, 6(3), 45; https://doi.org/10.3390/oceans6030045 - 14 Jul 2025
Viewed by 543
Abstract
This study proposed a sea cliff stability model that accounted for the coupled effects of sea erosion and rainfall, offering an improved quantitative assessment of the toppling risk. The approach integrated the notch morphology (height and depth) and rainfall infiltration to quantify stability, [...] Read more.
This study proposed a sea cliff stability model that accounted for the coupled effects of sea erosion and rainfall, offering an improved quantitative assessment of the toppling risk. The approach integrated the notch morphology (height and depth) and rainfall infiltration to quantify stability, validated by field data from six toppling sites near Da’ao Bay, where the maximum erosion distance error between model predictions and measurements ranged from 0.81% to 48.8% (with <20% error for Sites S2, S3, and S4). The results indicated that the notch morphology and rainfall exerted significant impacts on the sea cliff stability. Site S4 (the highest site) corresponded to a 17.5% decrease in K per 0.1 m notch depth increment. The rainfall infiltration reduced the maximum stable notch depth, decreasing by 8.86–21.92% during prolonged rainfall. This model can predict sea cliff stability and calculate the critical notch depth (e.g., 0.56–1.22 m for the study sites), providing a quantitative framework for coastal engineering applications and disaster mitigation strategies under climate change scenarios. Full article
Show Figures

Figure 1

31 pages, 7541 KB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 375
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

32 pages, 13821 KB  
Article
Spatiotemporal Evolution and Driving Factors of Karst Rocky Desertification in Guangxi, China, Under Climate Change and Human Activities
by Jialei Su, Meiling Liu, Qin Yang, Xiangnan Liu, Zeyan Wu and Yanan Wen
Remote Sens. 2025, 17(13), 2294; https://doi.org/10.3390/rs17132294 - 4 Jul 2025
Cited by 1 | Viewed by 545
Abstract
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it [...] Read more.
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it is crucial to comprehensively analyze the spatiotemporal evolution of KRD in Guangxi and its driving forces. This study proposed a novel three-dimensional feature space model for monitoring KRD in Guangxi. We then applied transition matrices, dynamic degree indices, and landscape metrics to analyze the spatiotemporal evolution of KRD. We also proposed a Spatiotemporal Interaction Intensity Index (STII) to quantify mutual influences among KRD patches. Finally, we used GeoDetector to analyze the driving factors of KRD. The results indicate the following: (1) The three-dimensional model showed high applicability for large-scale KRD monitoring, with an overall accuracy of 92.86%. (2) KRD in Guangxi exhibited an overall recovery–deterioration–recovery trend from 2000 to 2023. The main recovery phases were 2005–2015 and 2020–2023. During these phases, both severe and moderate KRD showed strong signals of recovery, including significant declines in area, number of patches, and Landscape Shape Index, along with persistently low STII values. In contrast, from 2015 to 2020, KRD predominantly deteriorated, primarily characterized by transitions from no KRD to potential KRD and from potential KRD to light KRD. (3) For severe KRD patches, the intensity of interaction required from neighboring patches to promote recovery exceeded that which led to deterioration, indicating the difficulty of reversing severe KRD. (4) Slope, land use, and elevation were the main drivers of KRD in Guangxi from 2000 to 2023. Erosive rainfall exhibited a higher explanatory power for KRD than average precipitation. Two-factor interactions significantly enhanced the driving forces of KRD. These findings provide a scientific basis for KRD management. Full article
Show Figures

Figure 1

13 pages, 1512 KB  
Article
Uncertainty in Kinetic Energy Models for Rainfall Erosivity Estimation in Semi-Arid Regions
by José Bandeira Brasil, Ana Célia Maia Meireles, Carlos Wagner Oliveira, Sirleide Maria de Menezes, Francisco Dirceu Duarte Arraes and Maria Simas Guerreiro
Hydrology 2025, 12(7), 181; https://doi.org/10.3390/hydrology12070181 - 4 Jul 2025
Viewed by 617
Abstract
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models [...] Read more.
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models for estimating rainfall kinetic energy (KE) and erosivity index (EI30) in this region, for all events and erosive events, using high-resolution rainfall data collected at the Federal University of Cariri (UFCA), Ceará. A total of 283 natural rainfall events were analyzed, with KE and EI30 values calculated using multiple models: Wischmeier and Smith, USDA, Van Dijk, a temporal variation-based model (KE_VT), and a regional model developed for Brazil’s semi-arid zone, which served as the reference. The results show a predominance of small rainfall events (<5.2 mm), though maximum EI30 values exceeded 1300 MJ ha−1 mm h−1, highlighting the potential for extreme erosive events. Comparative analysis revealed that all international models significantly underestimated KE and EI30 values compared to the regional reference, with the KE_VT model showing the closest approximation (13% underestimation), for all events and erosive events. Statistical assessments using the Wilcoxon test, Nash–Sutcliffe efficiency, and Willmott concordance index confirmed the superior performance of the KE_VT, for all events and erosive events. These findings underscore the importance of considering intra-event rainfall variability and regional calibration when modeling erosivity in semi-arid climates, contributing to more effective soil conservation and hydrological planning. Full article
Show Figures

Figure 1

Back to TopTop