Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,614)

Search Parameters:
Keywords = rational design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 750 KB  
Review
Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques
by Karen Isela Vargas-Rubio, Efrén Delgado, Cristian Patricia Cabrales-Arellano, Claudia Ivette Gamboa-Gómez and Damián Reyes-Jáquez
Biophysica 2025, 5(4), 49; https://doi.org/10.3390/biophysica5040049 (registering DOI) - 25 Oct 2025
Abstract
Microencapsulation is a fundamental technology for protecting active compounds from environmental degradation by factors such as light, heat, and oxygen. This process significantly improves their stability, bioavailability, and shelf life by entrapping an active core within a protective matrix. Therefore, a thorough understanding [...] Read more.
Microencapsulation is a fundamental technology for protecting active compounds from environmental degradation by factors such as light, heat, and oxygen. This process significantly improves their stability, bioavailability, and shelf life by entrapping an active core within a protective matrix. Therefore, a thorough understanding of the physicochemical interactions between these components is essential for developing stable and efficient delivery systems. The composition of the microcapsule and the encapsulation method are key determinants of system stability and the retention of encapsulated materials. Recently, the application of computational tools to predict and optimize microencapsulation processes has emerged as a promising area of research. In this context, molecular dynamics (MD) simulation has become an indispensable computational technique. By solving Newton’s equations of motion, MD simulations enable a detailed study of the dynamic behavior of atoms and molecules in a simulated environment. For example, MD-based analyses have quantitatively demonstrated that optimizing polymer–core interaction energies can enhance encapsulation efficiency by over 20% and improve the thermal stability of active compounds. This approach provides invaluable insights into the molecular interactions between the core material and the matrix, ultimately facilitating the rational design of optimized microstructures for diverse applications, including pharmaceuticals, thereby opening new avenues for innovation in the field. Ultimately, the integration of computational modeling into microencapsulation research not only represents a methodological advancement but also pivotal opportunity to accelerate innovation, optimize processes, and develop more effective and sustainable therapeutic systems. Full article
Show Figures

Figure 1

17 pages, 3259 KB  
Article
Engineering a Thermostable Reverse Transcriptase for RT-PCR Through Rational Design of Pyrococcus furiosus DNA Polymerase
by Aleksandra A. Kuznetsova, Irina A. Grishina, Elena S. Mikushina and Nikita A. Kuznetsov
Biomolecules 2025, 15(11), 1507; https://doi.org/10.3390/biom15111507 (registering DOI) - 24 Oct 2025
Abstract
Engineering of a bifunctional enzyme that combines DNA-dependent DNA polymerase and reverse transcriptase (RT) activities is a highly promising biotechnological goal, as it would enable one-enzyme RT-PCR. For this purpose, we selected the high-fidelity Pyrococcus furiosus (Pfu) DNA polymerase as engineering scaffold. The [...] Read more.
Engineering of a bifunctional enzyme that combines DNA-dependent DNA polymerase and reverse transcriptase (RT) activities is a highly promising biotechnological goal, as it would enable one-enzyme RT-PCR. For this purpose, we selected the high-fidelity Pyrococcus furiosus (Pfu) DNA polymerase as engineering scaffold. The selection of amino acid residues for replacement was carried out based on a multi-sequence alignment of diverse DNA polymerases and literature data, which allowed us to target amino acids, which presumably are triggers of the RT activity appearance. Six mutant variants of the Pfu enzyme were created and their activity was analyzed. Through enzymatic screening, we identified the Pfu-M6 variant, which exhibits dual DNA-dependent and RNA-dependent DNA polymerase activity. This thermostable enzyme retains its inherent DNA polymerase function and has acquired the ability to catalyze reverse transcription under standard PCR conditions, which allows the created mutant form to be used for efficient amplification of DNA starting from an RNA template. Full article
26 pages, 2244 KB  
Article
Study on Fiber-Fabric Hierarchical Reinforcement for High-Toughness Magnesium Phosphate Cement Composites
by Weipeng Feng, Yuan Fang, Chengman Wang, Peng Cui, Kunde Zhuang, Wenyang Zhang and Zhijun Dong
Polymers 2025, 17(21), 2844; https://doi.org/10.3390/polym17212844 (registering DOI) - 24 Oct 2025
Abstract
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced [...] Read more.
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced polymer (CFRP) fabric capable of multi-scale crack control. The experimental program systematically evaluated the hybrid fiber system, dosage, and CFRP positioning effects through mechanical testing of 7-day cured specimens. The results indicated that 3.5% fiber dosage optimized flexural–compressive balance (45% flexural gain with <20% compressive reduction), while CFRP integration at 19 mm displacement enhanced flexural capacity via multi-scale reinforcement. Fracture analysis revealed that the combined system increases post-cracking strength by 60% through coordinated crack bridging at micro (fiber) and macro (CFRP) scales. These findings elucidated the mechanisms by which fiber–CFRP interaction mitigates MPC’s brittleness through hierarchical crack control while maintaining its rapid hardening advantages. The study established quantitative design guidelines, showing the fiber composition of CF/WSF/CPS15 = 1/1/1 with 19 mm CFRP placement achieves optimal toughness–flexural balance (ff/fc > 0.38). The developed composite system reduced brittleness through effective crack suppression across scales, confirming its capability to transform fracture behavior from brittle to quasi-ductile. This work advances MPC’s engineering applicability by resolving its mechanical limitations through rationally designed composite systems, with particular relevance to rapid repair scenarios requiring both early strength and damage tolerance, expanding its potential in specialized construction where conventional cement proves inadequate. Full article
(This article belongs to the Section Polymer Fibers)
29 pages, 3896 KB  
Review
From Waste to Wealth: Unlocking the Potential of Cellulase Characteristics for Food Processing Waste Management
by Muhammad Hammad Hussain, Kamran Ashraf, Redhwan Ebrahim Abdullah Alqudaimi, Maria Martuscelli, Shao-Yuan Leu, Salim-ur Rehman, Muhammad Shahbaz Aslam, Zhanao Li, Adnan Khaliq, Yingping Zhuang, Meijin Guo and Ali Mohsin
Foods 2025, 14(21), 3639; https://doi.org/10.3390/foods14213639 (registering DOI) - 24 Oct 2025
Abstract
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant [...] Read more.
A surge in environmental pollution compels society to utilize food processing wastes to produce valuable compounds. Enzymatic technology, specifically cellulase-mediated hydrolysis, provides an eco-friendly and effective approach for treating food processing leftovers. The main objective of this review is to explore the significant contributions of cellulase, both in industrial settings and from an environmental perspective. Therefore, this review covers all the aspects of cellulase structural identification, classification, and evolution to its profound applications. The review initially explores cellulases’ structural and functional characteristics based on the catalytic and cellulose-binding domains and discusses cellulases’ evolutionary origin. A thorough understanding of cellulase properties is essential for overcoming the challenges associated with its commercial production for various applications. In this regard, the optimization for cellulase production through several approaches, including rational design, direct evolution, genetic engineering, and fermentation technology, is also reviewed. In addition, it also underscores the significance of agro-industrial biorefineries, which provide scalable and sustainable solutions to meet future demands for food, chemicals, materials, and fuels. Finally, the last sections of the review solely highlight the potential applications of microbial cellulases in bioremediation. In summary, this review outlines the role of cellulase in efficient valorization aimed at producing multiple bioproducts and the enhancement of environmental remediation efforts. Full article
Show Figures

Figure 1

14 pages, 432 KB  
Review
Changing Antibiotic Prescribing Cultures: A Comprehensive Review of Social Factors in Outpatient Antimicrobial Stewardship and Lessons Learned from the Local Initiative AnTiB
by Janina Soler Wenglein, Reinhard Bornemann, Johannes Hartmann, Markus Hufnagel and Roland Tillmann
Antibiotics 2025, 14(11), 1068; https://doi.org/10.3390/antibiotics14111068 (registering DOI) - 24 Oct 2025
Abstract
Antimicrobial resistance (AMR) constitutes a major global health challenge, driven significantly by inappropriate antibiotic use in human medicine. Despite the existence of evidence-based guidelines, variability in antibiotic prescribing persists, influenced by psychosocial factors, diagnostic uncertainty, patient expectations, and local prescribing cultures. Outpatient care, [...] Read more.
Antimicrobial resistance (AMR) constitutes a major global health challenge, driven significantly by inappropriate antibiotic use in human medicine. Despite the existence of evidence-based guidelines, variability in antibiotic prescribing persists, influenced by psychosocial factors, diagnostic uncertainty, patient expectations, and local prescribing cultures. Outpatient care, the setting in which most antibiotics are prescribed, is particularly affected by such challenges. Traditional top-down interventions, such as national guidelines, often fail to achieve sustained behavioral change among prescribers. In this comprehensive review, we provide an overview of the psychological and behavioral factors influencing antimicrobial stewardship (AMS) implementation, as well as describe a bottom-up project working to meet these challenges: the “Antibiotic Therapy in Bielefeld” (AnTiB) initiative. AnTiB employs a cross-sectoral strategy aimed at developing rational prescribing culture by means of locally developed consensus guidelines, interdisciplinary collaboration, and regularly held trainings. By addressing both the organizational and psychological aspects of prescribing practices, AnTiB has facilitated a harmonization of antibiotic use across specialties and care interfaces at the local level. The initiative’s success has led to its expansion within Germany, including through the creation of the AMS-Network Westphalia Lippe and the development of AnTiB-based national pediatric recommendations. These projects are all grounded in social structures designed to strengthen the long-term establishment of AMS measures. Our efforts underscore the importance of considering local social norms, professional network, and real-world practice conditions in AMS interventions. Integrating behavioral and social science approaches into outpatient antimicrobial stewardship—exemplified by the practitioner-led AnTiB model—improves acceptability and alignment with stewardship principles; wider adoption will require local adaptation, routine outpatient resistance surveillance, structured evaluation, and sustainable support. Full article
(This article belongs to the Special Issue Antimicrobial Stewardship—from Projects to Standard of Care)
Show Figures

Figure 1

17 pages, 2315 KB  
Article
Enhancing the Solubility of Indomethacin: A Breakthrough with Cocrystal Formation
by Hugo Pardo, Víctor Guarnizo-Herrero, Borja Martínez-Alonso and Mª Ángeles Peña Fernández
Pharmaceuticals 2025, 18(11), 1610; https://doi.org/10.3390/ph18111610 (registering DOI) - 24 Oct 2025
Abstract
Background/objectives: Pharmaceutical cocrystals have emerged as a promising strategy to enhance the solubility and bioavailability of poorly water-soluble drugs. Indomethacin (IND), classified as a Biopharmaceutics Classification System (BCS) Class II drug, exhibits low solubility but high permeability. This study aims to develop a [...] Read more.
Background/objectives: Pharmaceutical cocrystals have emerged as a promising strategy to enhance the solubility and bioavailability of poorly water-soluble drugs. Indomethacin (IND), classified as a Biopharmaceutics Classification System (BCS) Class II drug, exhibits low solubility but high permeability. This study aims to develop a synthesis method, evaluate cocrystal solubility/stability and the physicochemical properties of the pure components, and describe cocrystal solubility using a mathematical model. Methods: Cocrystals were synthesized via solvent evaporation, using ethanol, methanol, and ethyl acetate. The pure components, IND and benzoic acid (AcBz) were dissolved in each solvent and maintained in a thermostabilizer for 24 h. Cocrystal formation was confirmed by UV-V spectroscopy, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. Results: The results showed that the solubility of the cocrystals decreased with increasing benzoic acid concentration. Mathematical modelling revealed that solubility can be expressed as the product of the solubilities of the individual components and the stability constant of the solution complex. Among the solvents tested, ethanol exhibited the highest solubility and equilibrium constant (Keq) for IND–AcBz cocrystals, suggesting a greater molecular affinity and enhanced cocrystal formation. Conclusions: These findings demonstrate that the formation of the novel INDAcBz cocrystal significantly enhances Indomethacin solubility and thermodynamic stability. These results validate benzoic acid as an effective coformer and establish phase solubility diagrams (PSD) as predictive tools for rational cocrystal design, supporting the future development of optimized pharmaceutical formulations. Full article
(This article belongs to the Special Issue Drug Formulation: Solubilization and Controlled-Release Strategies)
Show Figures

Figure 1

12 pages, 2734 KB  
Article
Effect of CaO/SiO2 and MgO/Al2O3 on the Metallurgical Properties of Low Boron-Bearing High-Alumina Slag
by Ye Sun, Zuoliang Zhang, Chunlei Wu and Zhenggen Liu
Inorganics 2025, 13(11), 346; https://doi.org/10.3390/inorganics13110346 - 24 Oct 2025
Abstract
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive [...] Read more.
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive investigation into the influence of the CaO/SiO2 and MgO/Al2O3 ratios on the viscosity, break point temperature (TBr), and activation energy (Eη) of low boron-bearing high-alumina slag. Concurrently, we elucidated the underlying mechanisms through which these ratios affect the viscous behavior of the slag by employing a combination of analytical techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and thermodynamic modeling using the Factsage software. The experimental findings reveal that, as the CaO/SiO2 ratio increases from 1.10 to 1.30, the slag viscosity at 1773 K decreases from 0.316 Pa·s to 0.227 Pa·s, while both the TBr and Eη exhibit an upward trend, rising from 1534 K and 117.01 kJ·mol−1 to 1583 K and 182.86 kJ·mol−1, respectively. Conversely, an elevation in the MgO/Al2O3 ratio from 0.40 to 0.65 results in a reduction in slag viscosity at 1773 K from 0.290 Pa·s to 0.208 Pa·s, accompanied by a decrease in TBr from 1567 K to 1542 K. The observed deterioration in slag flow properties can be attributed to an enhanced polymerization degree of complex viscous structural units within the slag matrix. Ultimately, our study identifies that an optimal viscous performance of the slag is achieved when the CaO/SiO2 ratio is maintained at 1.25 and the MgO/Al2O3 ratio is maintained at 0.55, providing valuable insights for the rational design and control of blast furnace slag systems. Full article
(This article belongs to the Special Issue Mixed Metal Oxides, 3rd Edition)
Show Figures

Figure 1

29 pages, 4329 KB  
Article
Using Machine Learning for the Discovery and Development of Multitarget Flavonoid-Based Functional Products in MASLD
by Maksim Kuznetsov, Evgeniya Klein, Daria Velina, Sherzodkhon Mutallibzoda, Olga Orlovtseva, Svetlana Tefikova, Dina Klyuchnikova and Igor Nikitin
Molecules 2025, 30(21), 4159; https://doi.org/10.3390/molecules30214159 - 22 Oct 2025
Viewed by 197
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a multifactorial condition requiring multi-target therapeutic strategies beyond traditional single-marker approaches. In this work, we present a fully in silico nutraceutical screening pipeline that integrates molecular prediction, systemic aggregation, and technological design. A curated panel of [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a multifactorial condition requiring multi-target therapeutic strategies beyond traditional single-marker approaches. In this work, we present a fully in silico nutraceutical screening pipeline that integrates molecular prediction, systemic aggregation, and technological design. A curated panel of ten MASLD-relevant targets, spanning nuclear receptors (FXR, PPAR-α/γ, THR-β), lipogenic and cholesterogenic enzymes (ACC1, FASN, DGAT2, HMGCR), and transport/regulatory proteins (LIPG, FABP4), was assembled from proteomic evidence. Bioactivity records were extracted from ChEMBL, structurally standardized, and converted into RDKit descriptors. Predictive modeling employed a stacked ensemble of Random Forest, XGBoost, and CatBoost with isotonic calibration, yielding robust performance (mean cross-validated ROC-AUC 0.834; independent test ROC-AUC 0.840). Calibrated probabilities were aggregated into total activity (TA) and weighted TA metrics, combined with structural clustering (six structural clusters, twelve MOA clusters) to ensure chemical diversity. We used physiologically based pharmacokinetic (PBPK) modeling to translate probabilistic profiles into minimum simulated doses (MSDs) and chrono-specific exposure (%T>IC50) for three prototype concepts: HepatoBlend (morning powder), LiverGuard Tea (evening aqueous form), and HDL-Chews (postprandial chew). Integration of physicochemical descriptors (MW, logP, TPSA) guided carrier and encapsulation choices, addressing stability and sensory constraints. The results demonstrate that a computationally integrated pipeline can rationally generate multi-target nutraceutical formulations, linking molecular predictions with systemic coverage and practical formulation specifications, and thus provides a transferable framework for MASLD and related metabolic conditions. Full article
(This article belongs to the Special Issue Analytical Technologies and Intelligent Applications in Future Food)
Show Figures

Figure 1

13 pages, 7189 KB  
Communication
Comparative Study on Structural and Transport Properties of SSC and LSC PFSA Ionomers in PEMFCs with Coexistence of O2 and N2: Molecular Dynamics Simulation Approach
by Guanghua Wei, Jingjing Huang, Lina Yu, Jinghao Zhou, Jiabin You, Zhu Ling, Shenrong Ye and Junliang Zhang
Membranes 2025, 15(11), 324; https://doi.org/10.3390/membranes15110324 - 22 Oct 2025
Viewed by 195
Abstract
Efficient O2 transport through the ionomer film in cathode catalyst layers (CCLs) is a critical factor for the output performance of proton exchange membrane fuel cells (PEMFCs), yet the molecular mechanisms of gas transport in ionomers remain elusive. Herein, molecular dynamics (MDs) [...] Read more.
Efficient O2 transport through the ionomer film in cathode catalyst layers (CCLs) is a critical factor for the output performance of proton exchange membrane fuel cells (PEMFCs), yet the molecular mechanisms of gas transport in ionomers remain elusive. Herein, molecular dynamics (MDs) simulations are employed to investigate short-side-chain (SSC) and long-side-chain (LSC) perfluorosulfonic acid (PFSA) ionomers on Pt/C surfaces with the coexistence of O2/N2. The results reveal that the side-chain structures significantly modulate the ionomer nanostructures and gas transport. SSC ionomers form compact hydrophobic domains and more interconnected hydrophilic–hydrophobic interfaces, thereby facilitating more efficient O2 transport pathways than LSC ionomers, particularly at low hydration (λ = 3). At high hydration (λ = 11), swelling of water domains attenuates these structural disparities and becomes the dominant factor governing gas transport. In addition, O2 diffusion consistently exceeds that of N2, while the diffusion coefficients of O2, N2 and H3O+ become larger at high hydration. Collectively, these findings demonstrate the structural advantages of SSC ionomers in facilitating coupled oxygen and proton transport, offering molecular-level insights to inform the rational design of high-performance PEMFCs. Full article
Show Figures

Figure 1

28 pages, 3546 KB  
Review
Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives
by Wenjing Bao, Chao Feng, Chongze Wang, Dandan Liu, Xing Fan and Peng Liang
Int. J. Mol. Sci. 2025, 26(21), 10267; https://doi.org/10.3390/ijms262110267 - 22 Oct 2025
Viewed by 63
Abstract
Polyoxometalates (POMs) are nanoscale anionic clusters constructed from transition-metal oxide units with well-defined architectures and tunable electronic structures, offering abundant reversible redox sites and adjustable energy levels. Their diverse valence states and compositional flexibility of molecular architectures render them promising candidates for electrochemical [...] Read more.
Polyoxometalates (POMs) are nanoscale anionic clusters constructed from transition-metal oxide units with well-defined architectures and tunable electronic structures, offering abundant reversible redox sites and adjustable energy levels. Their diverse valence states and compositional flexibility of molecular architectures render them promising candidates for electrochemical energy storage. Rational molecular design and nano-structural engineering can significantly enhance the electrical conductivity, structural stability, and ion transport kinetics of POM-based materials, thus improving device performance. In solar cells, the tunable energy levels and light-harvesting capabilities contribute to enhanced photoconversion efficiency. In secondary batteries, the dense redox centers provide additional capacity. For supercapacitors, the rapid electron transfer supports high power density storage. This review systematically summarizes recent advances in POM-based functional nanomaterials, with an emphasis on material design strategies, energy storage mechanisms, performance optimization approaches, and structure–property relationships. Fundamental structures and properties of POMs are outlined, followed by synthesis and functionalization approaches. Key challenges such as dissolution, poor conductivity, and interfacial instability are discussed, together with progress in batteries and hybrid capacitors. Finally, future challenges and development directions are outlined to inspire further advancement in POM-based energy storage materials. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Graphical abstract

31 pages, 5318 KB  
Review
Recent Advances in Doping and Polymer Hybridization Strategies for Enhancing ZnO-Based Gas Sensors
by Nazir Mustapha, Boutheina Ben Abdelaziz, Majdi Benamara and Mokhtar Hjiri
Nanomaterials 2025, 15(21), 1609; https://doi.org/10.3390/nano15211609 - 22 Oct 2025
Viewed by 123
Abstract
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, [...] Read more.
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, and suboptimal detection at low gas concentrations. To address these limitations, significant research efforts have focused on dopant incorporation and polymer hybridization. This review summarizes recent advances in dopant engineering using elements such as Al, Ga, Mg, In, Sn, and transition metals (Co, Ni, Cu), which modulate ZnO’s crystal structure, defect density, carrier concentration, and surface activity—resulting in enhanced gas adsorption and electron transport. Furthermore, ZnO–polymer nanocomposites (e.g., with polyaniline, polypyrrole, PEG, and chitosan) exhibit improved flexibility, surface functionality, and room-temperature responsiveness due to the presence of active functional groups and tunable porosity. The synergistic combination of dopants and polymers facilitates enhanced charge transfer, increased surface area, and stronger gas–molecule interactions. Where applicable, sol–gel-based studies are explicitly highlighted and contrasted with non-sol–gel routes to show how synthesis controls defect chemistry, morphology, and sensing metrics. This review provides a comprehensive understanding of the structure–function relationships in doped ZnO and ZnO–polymer hybrids and offers guidelines for the rational design of next-generation, low-power, and selective gas sensors for environmental and industrial applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

22 pages, 4949 KB  
Article
The Effect of Wind–Wave Correlations on the Optimal Thruster Location for Offshore Vessels
by Francesco Mauro and Giada Kyaw’oo D’Amore
J. Mar. Sci. Eng. 2025, 13(11), 2025; https://doi.org/10.3390/jmse13112025 - 22 Oct 2025
Viewed by 110
Abstract
Offshore vessels are nowadays equipped with dynamic positioning systems, meaning they have additional thrusters dedicated to the station keeping of the unit. However, there is no rational criterion on the placement of these devices to increment station keeping capabilities. This is true both [...] Read more.
Offshore vessels are nowadays equipped with dynamic positioning systems, meaning they have additional thrusters dedicated to the station keeping of the unit. However, there is no rational criterion on the placement of these devices to increment station keeping capabilities. This is true both in case of a vessel retrofitting or for the design of a new unit. The present work proposes investigating a methodology for the optimal placement of thrusters along the hull of an offshore unit. This implies the adoption of a suitable optimisation algorithm capable of handling all the constraints of the optimisation problem. As the target is the optimal capability, the optimisation should handle multiple dynamic positioning capability calculations, meaning (in a quasi-static approach) that it is capable of solving multiple thrust allocation problems at each optimisation step. As thruster allocation is another optimisation problem, the process should handle two nested optimisations. Here, the global location problem is solved with a differential evolution algorithm, while the thrust allocation employs non-linear programming. As the capability calculations imply the adoption of a specific wind–wave correlation, the present work compares the effect of different correlations on the optimised location of the thrusters. The results presented on a reference Pipe Lay Crane Vessel highlight the differences in the final optimum as a function of the environmental modelling. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

24 pages, 3917 KB  
Article
Hydrodynamics of Toroidal Vortices in Torque-Flow Pumps
by Ivan Pavlenko, Vladyslav Kondus and Roman Puzik
Appl. Sci. 2025, 15(20), 11299; https://doi.org/10.3390/app152011299 - 21 Oct 2025
Viewed by 224
Abstract
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the [...] Read more.
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the toroidal vortex and the vortex subsequently imparts momentum to the main throughflow. The model identifies vortex deformation as a primary source of hydraulic losses. The theoretical framework was validated by computational fluid dynamics (CFD) simulations of a torque-flow pump. Analysis of the axial, circumferential, and vertical velocity components revealed a closed three-dimensional toroidal circulation loop within the free chamber, confirming the predictions of the mathematical model. A parametric study was conducted to assess the influence of impeller extension into the free chamber (Δb2) on pump performance. Three characteristic regimes were identified. At Δb2 ≈ 6 mm, the shaft power decreased to 120.3 kW (an 8.1% decrease compared to the baseline), with efficiency improving to 39.2%. At Δb2 ≈ 10 mm, the pump achieved its best balance of parameters: efficiency increased from 34.0% to 42.8% (+8.7 percentage points), while head rose from 32.8 m to 38.5 m (+17.4%), with moderate power demand (122.3 kW). At Δb2 ≈ 70 mm, the head reached 45.6 m (+39%), but power consumption rose to 146.9 kW (+12%), and the design shifted toward centrifugal-type operation, reducing reliability for abrasive fluids. Overall, the results provide both a validated mathematical description of toroidal vortex dynamics and practical guidelines for optimizing torque-flow pump design, with Δb2 ≈ 10 mm identified as the most rational configuration. Full article
36 pages, 13927 KB  
Review
From Conventional to Next-Generation Strategies: Recent Advances in Polymeric Micelle Preparation for Drug Delivery
by Suhyeon Cho, Morteza Rasoulianboroujeni, Rae Hyung Kang and Glen S. Kwon
Pharmaceutics 2025, 17(10), 1360; https://doi.org/10.3390/pharmaceutics17101360 - 21 Oct 2025
Viewed by 478
Abstract
Polymeric micelles are promising nanocarriers for hydrophobic drug delivery, offering enhanced solubility, circulation time, and targeted release. This review presents a comprehensive evaluation of micelle preparation strategies, spanning conventional methods such as direct dissolution, dialysis, and thin-film hydration to emerging techniques including microfluidics, [...] Read more.
Polymeric micelles are promising nanocarriers for hydrophobic drug delivery, offering enhanced solubility, circulation time, and targeted release. This review presents a comprehensive evaluation of micelle preparation strategies, spanning conventional methods such as direct dissolution, dialysis, and thin-film hydration to emerging techniques including microfluidics, supercritical fluids, stimuli-responsive systems, and PEG-assisted assembly. Each method is compared in terms of scalability, reproducibility, solvent use, and regulatory compatibility. Among them, PEG-assisted methods show particular promise due to their simplicity and industrial readiness. We also explore the impact of fabrication strategy on drug loading, stability, and therapeutic efficacy across applications in cancer, infection, and inflammation. Finally, the review discusses key challenges in storage, manufacturing, and regulation, and highlights potential solutions through Quality-by-Design and scalable process integration. These insights provide guidance for the rational development of clinically translatable micelle-based drug delivery systems. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

22 pages, 662 KB  
Article
Multi-Chain Fusion Reasoning for Knowledge Graph Link Prediction
by Shaonian Huang, Peilin Li, Huanran Wang and Zhixin Chen
Electronics 2025, 14(20), 4127; https://doi.org/10.3390/electronics14204127 - 21 Oct 2025
Viewed by 164
Abstract
The knowledge graph link prediction task currently faces challenges such as insufficient semantic fusion of structured knowledge and unstructured text, limited representation learning of long-tailed entities, and insufficient interpretability of the reasoning process. Aiming at the above problems, this paper proposes a multi-chain [...] Read more.
The knowledge graph link prediction task currently faces challenges such as insufficient semantic fusion of structured knowledge and unstructured text, limited representation learning of long-tailed entities, and insufficient interpretability of the reasoning process. Aiming at the above problems, this paper proposes a multi-chain fusion reasoning framework to realize accurate link prediction. First, a dual retrieval mechanism based on semantic similarity metrics and embedded feature matching is designed to construct a high-confidence candidate entity set; second, entity-attribute chains, entity-relationship chains, and historical context chains are established by integrating context information from external knowledge bases to generate a candidate entity set. Finally, a self-consistency scoring method fusing type constraints and semantic space alignment is proposed to realize the joint validation of structural rationality and semantic relevance of candidate entities. Experiments on two public datasets show that the method in this paper fully utilizes the ability of multi-chain reasoning and significantly improves the accuracy of knowledge graph link prediction. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications, 2nd Edition)
Show Figures

Figure 1

Back to TopTop